JPS61153226A - Method for improving residual stress in steel plate, or the like - Google Patents

Method for improving residual stress in steel plate, or the like

Info

Publication number
JPS61153226A
JPS61153226A JP59279266A JP27926684A JPS61153226A JP S61153226 A JPS61153226 A JP S61153226A JP 59279266 A JP59279266 A JP 59279266A JP 27926684 A JP27926684 A JP 27926684A JP S61153226 A JPS61153226 A JP S61153226A
Authority
JP
Japan
Prior art keywords
domain
treated
stress
steel plate
plastic deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59279266A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshida
和夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59279266A priority Critical patent/JPS61153226A/en
Publication of JPS61153226A publication Critical patent/JPS61153226A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To improve residual stress in steel plate, etc., without being influenced by shape, by heating circumference of a domain to be treated, to cause tensile stress above the yield point near the rim part of said domain, then cooling the heated part to cause residual stress at the domain. CONSTITUTION:Circumference of the domain 2 to be treated of a plane-shaped steel plate 1 is heated, while holding the temp. of the domain 2 to room temp., etc. By expansion of the domain 3, the vicinity of rim part thereof, i.e. that of a boundary part 4 with the domain 3 is stretched in radial direction indicated by an arrow. Force is generated so that the domain 2 is also stretched similarly to the domain 3. In this case, since the sizes at each part of the plate 1 is enlarged at the vicinity of the part 4, the plastic deformation is generated concentratedly near the rim part of the domain 2. Next, if the plate 1 under the state generating thermal expansion and plastic deformation is cooled by natural cooling in state left standing, the pressing force corresponding to the increase of size due to plastic deformation is caused accompanying with thermal contraction of the domain 3, the domain 2 becomes to pressed state, and the state receiving residual pressing stress can be attained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、綱板等の残留応力改善方法に係」つり、特に
平板、大型構造物等の一部分の残留応力を改善する方法
に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for improving residual stress in steel plates, etc., and particularly relates to a method for improving residual stress in parts of flat plates, large structures, etc. be.

「従来の技術」 一般に、金属材料、例えば原子力や化学プラント等に多
用されているオーステナイト系ステンレス鋼等において
は、引っ張り応力と腐食因子とが共存する場合、腐食割
れが急速に進行することが知られている。
"Prior Art" Generally, it is known that corrosion cracking progresses rapidly in metallic materials such as austenitic stainless steel, which is often used in nuclear power plants, chemical plants, etc., when tensile stress and corrosion factors coexist. It is being

従来、金属材料が鋼管等である場合は、管の中に冷却水
を挿通させながら管を誘導加熱して、管の内外面に降伏
点以上の熱応力が生じる温度差を与え、応力改善を必要
とする管の継ぎ目等に残留圧縮応力を発生させた状態と
する応力改善方法が考えられている。
Conventionally, when the metal material is a steel pipe, etc., the pipe is induction heated while cooling water is passed through the pipe to create a temperature difference that causes thermal stress above the yield point on the inner and outer surfaces of the pipe, thereby improving stress. Stress improvement methods have been considered in which residual compressive stress is generated at required joints of pipes, etc.

「発明が解決しようとする問題点」 しかしながら、このような方法は、直管等の単純な形状
には適用可能であるが、複雑な形状の大型構造物や平板
等には適用が困難であり、また、冷却水を送り込むこと
ができない場合には適用不可能になるという問題点があ
る。
``Problem to be solved by the invention'' However, although this method is applicable to simple shapes such as straight pipes, it is difficult to apply to large structures with complex shapes, flat plates, etc. Further, there is a problem that it cannot be applied when cooling water cannot be pumped.

本発明は、このような従来技術の問題点を有効に解決す
るとともに、形状の影響を受けることが少なく、一部分
に応力腐食割れや疲労発生の心配のある広い範囲の構造
物に適用可能である残留応力改善方法の提供を目的とす
るものである。
The present invention effectively solves the problems of the prior art, and is less affected by shape, and can be applied to a wide range of structures where stress corrosion cracking or fatigue may occur in some parts. The purpose of this invention is to provide a method for improving residual stress.

「問題点を解決するための手段」 このような目的を達成するため、本発明は、被処理領域
の周囲を加熱して、該被処理領域の縁部付近に降伏点以
上の引っ張り応力を発生させた後、前記加熱部分を冷却
して被処理領域に残留圧縮応力を発生させることを特徴
とするものであり、被処理領域の縁部付近に引っ張り方
向の塑性変形を生じさせることにより、その部分の寸法
を大きくしておき、加熱部分の冷却にともなう収縮によ
り、被処理領域を圧縮状態にするものである。
"Means for Solving the Problems" In order to achieve such an objective, the present invention heats the periphery of a region to be treated to generate tensile stress higher than the yield point near the edge of the region to be treated. After that, the heated part is cooled to generate residual compressive stress in the area to be treated, and by causing plastic deformation in the tensile direction near the edge of the area to be treated, The size of the portion is made large, and the area to be treated is brought into a compressed state by contraction as the heated portion cools.

「実施例」 以下、本発明に係る綱板等の残留応力改善方法を適用し
た一実施例を図面に基づいて説明する。
"Example" Hereinafter, an example to which the method for improving residual stress in steel plates, etc. according to the present invention is applied will be described based on the drawings.

第1図に示す平板状をなす鋼板Iの一部に、残留応力を
改善したい部分、即ち被処理領域2があるとき、該被処
理領域2の温度を常温等に保持したまま、被処理領域2
の周囲を加熱する。該加熱部分(加熱領域)3が膨張す
ると、被処理領域2の縁部付近、つまり加熱領域3との
境界部分4の近傍が、第1図及び第2図の矢印で示すよ
うに、放射方向に引っ張られる。このため、被処理領域
2と加熱領域3との境界部分4の(=l近には、第3図
の実線で示すように、引っ張り応力σ1が発生ずる。こ
のときの境界部分4あるいはその近傍の加熱領域3では
、高温化により材料の引っ張り強度が低下しており、こ
の部分の引っ張り応力が降伏点以上になると、その部分
に塑性変形を生じ、該塑性変形により寸法が僅かに大き
くなる現象が発生ずる。即ち、境界部分4の外側位置の
任意の2点A−B間の距離りは、加熱状態において、熱
膨張により寸法が大きくなった分だけ増加して、L十Δ
Lとなる(ただし、ΔI7−αI7ΔT、α:線膨張係
数、へT;温度差)。そして、被処理領域2も加熱領域
3と同様に伸ばされるように力が働く。また、このとき
、第3図に示すように、鋼板lの各部における応力の大
きさは、境界部分4の付近が大きくなるから、被処理領
域2の縁部付近に塑性変形が集中して発生することにな
る。
When there is a part of the flat steel plate I shown in FIG. 1 in which the residual stress is to be improved, that is, a region 2 to be treated, the temperature of the region 2 to be treated is maintained at room temperature, etc. 2
heat the surrounding area. When the heating portion (heating region) 3 expands, the vicinity of the edge of the processing region 2, that is, the vicinity of the boundary portion 4 with the heating region 3, moves in the radial direction as shown by the arrows in FIGS. 1 and 2. I'm drawn to it. Therefore, as shown by the solid line in FIG. In the heating area 3, the tensile strength of the material decreases due to high temperature, and when the tensile stress in this area exceeds the yield point, plastic deformation occurs in that area, and the plastic deformation causes the dimensions to slightly increase. In other words, the distance between any two points A and B on the outside of the boundary portion 4 increases by the amount that the dimension increases due to thermal expansion in the heated state, and becomes L + Δ.
L (where ΔI7−αI7ΔT, α: coefficient of linear expansion, T: temperature difference). Then, a force is applied so that the region to be treated 2 is also stretched in the same way as the heating region 3 . In addition, at this time, as shown in FIG. 3, the magnitude of stress in each part of the steel plate l is large near the boundary part 4, so plastic deformation is concentrated near the edge of the treated area 2. I will do it.

次いで、熱膨張及び塑性変形が生じた状態の鋼板lを自
然放置等により冷却すると、加熱領域3の熱収縮にとも
なって、塑性変形による寸法の増加分に相当する圧縮力
が生じ、被処理領域2が第4図の矢印で示すように圧縮
状態になり、残留圧縮応力を付与した状態とすることが
できる。
Next, when the steel plate l in a state where thermal expansion and plastic deformation has occurred is allowed to cool down naturally, etc., as the heated area 3 thermally contracts, a compressive force corresponding to the increase in dimension due to plastic deformation is generated, and the treated area 2 is in a compressed state as shown by the arrow in FIG. 4, and a residual compressive stress can be applied thereto.

なお、第1図例では、被処理領域2を常温状態に維持す
る手段についての説明を省略したが、鋼板1の両面冷却
等の他、綱板等の一部に熱容量の大きなノズル部品が一
体に配設される場合等であると、その熱放散を利用して
、低温状態の維持あるいは冷却を行なうことができる。
In the example shown in FIG. 1, explanation of the means for maintaining the treated area 2 at room temperature is omitted, but in addition to cooling both sides of the steel plate 1, nozzle components with a large heat capacity are integrated into a part of the steel plate, etc. If the device is installed in a large area, the heat dissipation can be used to maintain a low temperature state or to perform cooling.

また、第1図例では、加熱領域3の外側が伸縮自在とな
っているが、加熱領域3の面積が大きい場合等であると
、加熱工程において、加熱領域3の大部分を弾性変形状
態に維持しながら、被処理領域2の縁部付近に引っ張り
応力を発生させて、必要な塑性変形を生じさせることが
できるので、適用範囲が広いことが理解できよう。した
がって、多くの金属構造物、部品等の応力改善を行ない
得る可能性を有するものである。
In addition, in the example in FIG. 1, the outside of the heating area 3 is expandable and contractible, but if the area of the heating area 3 is large, most of the heating area 3 may be elastically deformed during the heating process. It can be understood that the range of application is wide because it is possible to generate the necessary plastic deformation by generating tensile stress near the edge of the treated region 2 while maintaining the treatment area 2. Therefore, it has the potential to improve stress in many metal structures, parts, etc.

「発明の効果」 以上説明したように本発明によれば、被処理領域の周囲
を加熱して、該被処理領域の縁部付近に降伏点以上の引
っ張り応力を発生させた後、加熱   −領域を冷却し
て前記被処理領域に残留圧縮応力を発生させるごとくし
ているので、複雑な形状、大型構造物等の制限が少なく
、適用範囲が広範囲となるとともに、作業性が高く、ま
た、冷却水を送り込むことを省略し得て、冷却水の制限
を受けることがない等の効果を奏することができる。
"Effects of the Invention" As explained above, according to the present invention, the periphery of the region to be treated is heated to generate a tensile stress equal to or higher than the yield point near the edge of the region to be treated, and then the heating region is heated. Since the cooling process generates residual compressive stress in the area to be treated, there are fewer restrictions on complex shapes and large structures, the range of application is wide, and workability is high. It is possible to omit sending water, and it is possible to achieve effects such as not being subject to restrictions on cooling water.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は鋼板に
おける被処理領域及び加熱領域を説明する斜視図、第2
図は加熱領域による引っ張り力の発生を説明する断面図
、第3図は加熱時の発生応力の分布図、第4図は熱処理
後における鋼板の状態を説明する断面図である。 1・・・・・・鋼板、2・・・・被処理領域、3・・・
・・・加熱領域。 第2図
The drawings show one embodiment of the present invention, and FIG. 1 is a perspective view illustrating a treated area and a heated area in a steel plate, and
FIG. 3 is a cross-sectional view illustrating the generation of tensile force in the heated region, FIG. 3 is a distribution diagram of stress generated during heating, and FIG. 4 is a sectional view illustrating the state of the steel plate after heat treatment. 1... Steel plate, 2... Treated area, 3...
...Heating area. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被処理領域の周囲を加熱して、該被処理領域の縁部付近
に降伏点以上の引っ張り応力を発生させた後、前記加熱
部分を冷却して被処理領域に残留圧縮応力を発生させる
ことを特徴とする綱板等の残留応力改善方法。
After heating the periphery of the region to be treated to generate tensile stress equal to or higher than the yield point near the edge of the region to be treated, the heated portion is cooled to generate residual compressive stress in the region to be treated. Features: A method for improving residual stress in steel plates, etc.
JP59279266A 1984-12-26 1984-12-26 Method for improving residual stress in steel plate, or the like Pending JPS61153226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279266A JPS61153226A (en) 1984-12-26 1984-12-26 Method for improving residual stress in steel plate, or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279266A JPS61153226A (en) 1984-12-26 1984-12-26 Method for improving residual stress in steel plate, or the like

Publications (1)

Publication Number Publication Date
JPS61153226A true JPS61153226A (en) 1986-07-11

Family

ID=17608768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279266A Pending JPS61153226A (en) 1984-12-26 1984-12-26 Method for improving residual stress in steel plate, or the like

Country Status (1)

Country Link
JP (1) JPS61153226A (en)

Similar Documents

Publication Publication Date Title
JPS6124117B2 (en)
EP0093349A2 (en) Method of heating piping arrangement and heating coil
JPH0340668B2 (en)
JPS61153226A (en) Method for improving residual stress in steel plate, or the like
JP5782210B1 (en) Regenerative heat treatment method for heat-resistant metal material member with creep damage
JPS5817807B2 (en) Heat treatment method for piping
JPS6130626A (en) Heat treatment of metal tube
US4772336A (en) Method of improving residual stress in circumferential weld zone
JPS55110728A (en) Improvement of residual stress in outside of steel pipe
JPS58210123A (en) Heat treatment of clad steel pipe
JPS6328825A (en) Improvement of residual stress in metallic tube
JPS5494415A (en) Heat treatment method of pipes
JPS6242015B2 (en)
JPS5941425A (en) Improvement in residual stress of hollow body
Jahanian Thermoelastoplastic stress analysis of a thick-walled tube of nonlinear strain hardening
RU2015773C1 (en) Method of billets bending
JPH06182578A (en) Method and equipment for welding pipings
JPS5935831A (en) Hot bending method of pipe
SU778861A1 (en) Method and apparatus for straightening welded shell
JPS61227133A (en) Heat treatment
Saimoto et al. Versatile analysis of limited plasticity by body force method
JPS61197892A (en) Method of locking pipe
JPS5770095A (en) Method for improving residual stress of weld zone of pipe
Odumodu Finite element simulation of laser shaping.
JPH039167B2 (en)