JPS61273163A - Voice coil motor - Google Patents

Voice coil motor

Info

Publication number
JPS61273163A
JPS61273163A JP11369885A JP11369885A JPS61273163A JP S61273163 A JPS61273163 A JP S61273163A JP 11369885 A JP11369885 A JP 11369885A JP 11369885 A JP11369885 A JP 11369885A JP S61273163 A JPS61273163 A JP S61273163A
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
magnetic flux
core
voice coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11369885A
Other languages
Japanese (ja)
Inventor
Tetsuji Kawasaki
哲治 川崎
Susumu Murata
進 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11369885A priority Critical patent/JPS61273163A/en
Publication of JPS61273163A publication Critical patent/JPS61273163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Abstract

PURPOSE:To uniformly generate a torque by deciding the magnetization of a permanent magnet so that the magnetic flux density of an air gap between an outer permanent magnet and a main core and the magnetic flux density of an air gap between an inner permanent magnet and the main core are uni formly distributed. CONSTITUTION:A coil 3 is rockably supported at a shaft 2 as a center, and a main core 5a is arranged to pass the coil 3. an outer permanent magnet 18 is disposed at the outside of the maximum circle drawn by the profile of the coil 3 upon rocking of the coil 3 to generate an outer magnetic flux which passes a main core 5a through the coil 3. An inner permanent magnet 19 is disposed at the inside of the minimum circle drawn by the profile of the coil 3 upon rocking of the coil 3 to generate an inner magnetic flux which passes the core 5a through the coil 3. The magnets 18 and 19 are magnetized radially to have a center at the opposite side to the side of the coil 3 with respect to the magnets 18, 19.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、コイルが一軸を中心として揺動できるよう夛
こした回転揺動形のボイスコイルモータ。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a rotary and oscillating voice coil motor in which a coil is arranged to be able to oscillate about a single axis.

特にコイルCζよって発生させらnる前記−軸に対する
トルクを、該コイルσ)全揺動範囲にわたって一様IC
することが容易シこ実現できる構成tこ関する。
In particular, the torque on the -axis generated by the coil Cζ is uniformly applied over the entire swing range of the coil σ).
This relates to a configuration that can be easily realized.

〔従来技術とその問題点〕[Prior art and its problems]

上述し、た回転揺動形ボイスコイルモータは従来第3図
IC示し、たよう−ζ構成されている。すなわち第3図
(6)は側面図、第3図■は同図(6)におけるZ−Z
切断面図で、両図においで% 1.1は各一端が負荷を
駆動する軸2Iこ固定された2本のアームで1両アーム
l、1は平行になるよう予こ配設さゎている。3は断面
方形の空心4を有するコイルで、該コイル3は両アーム
1.1の各自由端間tと挟持されている。5は扇形に形
成ざnた三舞鉄心で。
The above-mentioned rotary oscillating voice coil motor is conventionally constructed as shown in FIG. 3IC. In other words, Fig. 3 (6) is a side view, and Fig. 3 (■) is a Z-Z in the same figure (6).
In the cross-sectional views, % 1.1 in both figures is two arms with one end of each fixed to the shaft 2I that drives the load, and both arms 1 and 1 are arranged in advance to be parallel. There is. Reference numeral 3 denotes a coil having an air core 4 having a rectangular cross section, and the coil 3 is held between the free ends t of both arms 1.1. 5 is a three-piece iron core formed into a fan shape.

鉄心5は、三脚σ)中央部を形成しでいる主鉄心5aと
、三脚のうちの前記扇形σ)外側脚を形成し、でいる外
側鉄心5bと、三脚σ)うちの前記扇形の内側脚を形1
1i3 L、でいる内側鉄心5Cと、鉄心5aと鉄心5
bとを磁気的に接続する継手部5d、5dと、鉄心5a
と鉄心5cとを磁気的tC接続する継手部5e、5eと
で構成され、かつ三脚鉄心5とコイル3とは空心4を主
鉄心5aが貫通するようlc配設さnでいる。6は主鉄
心5aと継手部5d。
The iron core 5 includes a main iron core 5a forming the central part of the tripod σ), an outer iron core 5b forming the fan-shaped outer leg of the tripod, and an inner fan-shaped inner leg of the tripod σ). The shape 1
1i3 L, inner core 5C, core 5a and core 5
joint parts 5d, 5d magnetically connecting the iron core 5a and
The tripod core 5 and the coil 3 are arranged in such a way that the main core 5a passes through the air core 4. 6 is the main iron core 5a and the joint portion 5d.

5dと外側鉄心5bとで取り囲まわた円弧状の外側空隙
、7は主鉄心5aと継手部5e、5eと内側鉄心5Cと
で取り囲まわた円弧状0)内fi]1122隙で。
5d and an arc-shaped outer gap surrounded by the outer core 5b, and 7 is an arc-shaped inner gap surrounded by the main core 5a, joint parts 5e, 5e, and the inner core 5C.

主鉄心5aと空隙6,7とは、空心4に鉄心5aが貫通
させられた状態で、アーム1.1+こ支持されたコイル
3が空隙6,7内を軸2を中心としで揺動できるように
構成さnでいる。8は空隙6内においてコイル3Iζ対
向するよう曇こ外側鉄心5b醗こ接着し、た円弧状σ)
外側永久磁石、9は空隙7内においでコイル3に対向す
るよう―ζ内側鉄心5Cに接着した円弧状σ)内側永久
磁石で、外側永久磁石8はコイル3を介し、て主鉄心5
af!:通る外側磁束を生成するよう一ζ着磁ざn、内
側永久磁石9はコイル3を介して主鉄心5aを通る内側
磁束を生成するように着磁されでいる。前記外側磁束は
、永久磁石8と空隙6と主鉄心5aと第3図(ハ)にお
ける左側継手部5dと外側鉄心5bとからなる閉磁路l
O1および永久磁石8と空隙6と主鉄心5aと第3図O
ICおける右側継手部5dと外側鉄心5bとからなる閉
磁路11のそれぞれを通る磁束である。前記内側磁束は
、永久磁石9と空隙7と主鉄心5aと継手部5e、5e
と内側鉄心5Cとからなる、閉磁路1o、tiのそれぞ
れlこ対応する閉磁路12,13の各々を通る磁束であ
る。
The main iron core 5a and the gaps 6 and 7 are such that the coil 3 supported by the arm 1.1 can swing around the shaft 2 within the gaps 6 and 7, with the iron core 5a passing through the air core 4. It is configured as n. 8 is an arc-shaped outer core 5b which is bonded to the outer core 5b so as to face the coil 3Iζ in the air gap 6.
The outer permanent magnet 9 is an arc-shaped inner permanent magnet bonded to the inner core 5C in the air gap 7 so as to face the coil 3, and the outer permanent magnet 8 is connected to the main core 5 through the coil 3.
af! : The inner permanent magnet 9 is magnetized to generate an inner magnetic flux passing through the main iron core 5a via the coil 3. The outer magnetic flux is generated through a closed magnetic path l consisting of the permanent magnet 8, the air gap 6, the main core 5a, the left side joint portion 5d in FIG. 3(c), and the outer core 5b.
O1, permanent magnet 8, air gap 6, main iron core 5a, and O in Fig. 3
This is the magnetic flux that passes through each of the closed magnetic paths 11 made up of the right side joint portion 5d and the outer core 5b in the IC. The inner magnetic flux is caused by the permanent magnet 9, the air gap 7, the main iron core 5a, and the joint parts 5e, 5e.
This is the magnetic flux passing through each of the closed magnetic paths 12 and 13, which correspond to the closed magnetic paths 1o and ti, respectively, and which are made up of the inner iron core 5C and the inner iron core 5C.

第3図においてはボイスコイルモータが上述のよう昏こ
構成されているので、コイル3に通電することによって
該コイル3を軸2を中心として揺動させることができ、
この結果@2Iこ結合された負荷多こ回転トルクを与え
ることができる。第3図ICおいでは閉磁路lO〜13
は紙面に平行な面内憂ζ配置さnでいるが、永久磁石8
.9が紙面の表側。
In FIG. 3, since the voice coil motor has the above-mentioned configuration, the coil 3 can be oscillated about the shaft 2 by energizing the coil 3.
As a result, it is possible to provide a multi-rotation torque with multiple loads connected by @2I. Figure 3 IC is a closed magnetic circuit lO~13
is arranged in a plane parallel to the plane of the paper n, but the permanent magnet 8
.. 9 is the front side of the paper.

裏側蟇こそれぞれ配置されるように、閉磁路10〜13
を紙面に垂直な面内醗こ配置しでも、第3図σ〕場合と
同様にコイル3Iこ揺動運動をさせることができる。し
かしながらこのように磁石8.9を第3図の紙面の表裏
側に配置すると、ボイスコイルモータの該紙面に垂直な
方向の厚さが厚くなり。
Closed magnetic circuits 10 to 13 are arranged so that the toe holes on the back side are arranged respectively.
Even if the coil 3I is arranged in a plane perpendicular to the plane of the paper, the oscillating motion of the coil 3I can be made as in the case shown in Fig. 3 σ. However, if the magnets 8.9 are arranged on the front and back sides of the page of FIG. 3 in this way, the thickness of the voice coil motor in the direction perpendicular to the page of FIG. 3 increases.

この結果該ボイスコイルモータの実用上不都合を生じる
σ)で、ボイスコイルモータは通常第3図のように構成
さnで図θ)紙面に垂直な方向の厚さが薄くなるよう多
こしCいるが、こσ)ようICボイスコイルモータを構
成すると、今度は、以下に説明するようCζ、空隙6,
7に?ける磁束密度分布を均一にすることが困難になる
という問題が発生する。
This results in practical inconveniences for the voice coil motor (σ), and the voice coil motor is usually constructed as shown in Figure 3 (n) and Figure θ) (Fig. θ). However, if the IC voice coil motor is configured like this σ), then Cζ, air gap 6,
At 7? A problem arises in that it becomes difficult to make the magnetic flux density distribution uniform.

第4図は、第3図の構成を有するボイスコイルモータI
c jijいで、そnぞn磁石内各部の磁束方向が平行
疹こなるように着磁された外側永久磁石142よび内側
永久磁石15を用いたボイスコイルモータの、第3図豪
ζ対応する断面図である。図におけるX−Xは軸2の軸
心を通るよう擾ζ本図面上蚤ζ設定した。扇形の三脚鉄
心5rハ中心軸としての仮想軸である。この場合、外側
永久磁石14は、その外側鉄心5b+こ接する面と主鉄
心5al(対向する面とが同軸円筒面上にあるよう蚤こ
し゛C円環σ)一部であるようlこ形成さnでいる。ま
た内側永久磁石15も、その内側鉄心5Cに接する面と
主鉄心5atC対向する面とか同軸円筒面上にあるよう
にしC円環の一部であるよう−C形成ざV、でいる。P
は永久磁石14−ζおける内部磁束の方向を示す矢印、
Qは永久磁石151こおける内部磁束の方向を示す矢印
で、第4図1こおいては図示したようtC1磁石L4.
L5は、い、ずれも各磁石σ)ど61部分においても内
部磁束の方向がX−X軸の方向−ζ平行tこなるように
着磁されている。Y−Yは、軸2の軸心を通り軸X−X
と角θをなすよう―こ設定した仮想の座標線である。
FIG. 4 shows a voice coil motor I having the configuration shown in FIG.
Fig. 3 is a cross section corresponding to Fig. 3 of a voice coil motor using an outer permanent magnet 142 and an inner permanent magnet 15, which are magnetized so that the directions of magnetic flux in each part of the magnets are parallel to each other. It is a diagram. XX in the drawing is set so that it passes through the axis of the shaft 2. The fan-shaped tripod core 5r is a virtual axis serving as the central axis. In this case, the outer permanent magnet 14 is formed so that the surface in contact with the outer core 5b and the main core 5al are part of the ring σ so that the opposing surface is on the coaxial cylindrical surface. I'm here. The inner permanent magnet 15 is also formed into a -C shape so that the surface in contact with the inner core 5C and the surface facing the main core 5atC are on coaxial cylindrical surfaces, so that the magnet 15 is part of the C ring. P
is an arrow indicating the direction of internal magnetic flux in the permanent magnet 14-ζ,
Q is an arrow indicating the direction of internal magnetic flux in the permanent magnet 151, and as shown in FIG. 4, tC1 magnet L4.
L5 is magnetized so that the direction of the internal magnetic flux is parallel to the direction of the X-X axis - ζ in all 61 parts of the magnet σ. Y-Y passes through the axis of axis 2 and axis X-X
This is a virtual coordinate line set to form an angle θ with .

第5図(2)および第5図■はそ、nぞ・れ第4図1ご
示した空隙6′Bよび7Iζおける磁束密度分布6a。
FIG. 5 (2) and FIG.

7aの実測結果説明図で、両図における慣軸θは第4図
において座標線Y−Yが横切る空隙6.7多ζおける各
位置を表している。また両図ICおけるθ0は、第4図
膠ζ示したボイスコイルモータの実用上決定されている
。コイル3の可動範囲である。
7a, the inertia axis θ in both figures represents each position in the gap 6.7 ζ crossed by the coordinate line Y-Y in FIG. 4. Moreover, θ0 in IC in both figures is determined practically for the voice coil motor shown in FIG. 4. This is the movable range of the coil 3.

第5図から明らかなよう条こ、空隙6の磁束密度分布6
aは底辺の長い台形状となっており、また空隙7の磁束
密度分布7aは半円形状となっていて、空隙6,7σ〕
いずれ1こおいても、可動範囲θG内で磁束密度分布は
一様ICなっていない。したがつて第4図のボイスコイ
ルモータでは、コイル3の可動範囲θ。内で、該コイル
の位置多こ無関係蚤ζ一様なトルクを軸2Iζ発生させ
ることができないという問題がある。
As is clear from Fig. 5, the magnetic flux density distribution 6 in the strips and gaps 6
a has a trapezoidal shape with a long base, and the magnetic flux density distribution 7a of the air gap 7 has a semicircular shape, and the air gap 6,7σ]
In any case, the magnetic flux density distribution is not uniform within the movable range θG. Therefore, in the voice coil motor of FIG. 4, the movable range of the coil 3 is θ. However, there is a problem in that it is not possible to generate a uniform torque on the shaft 2Iζ regardless of the position of the coil.

第6図は、上述した可動範囲θ。内で、空隙6゜7のそ
れぞれ(こおける磁束密度分布6a、7aが一様憂ζな
るよう■ζ、外側永久磁石16および内側永久磁石17
の各形状を設定し、たボイスコイルモータの第4図に対
応した断面図である。この場合も永久磁石16.17は
、第4図ICおける磁石14゜150)それぞnと同様
に、内部磁束がいずれも平行磁束で、かつこれら磁束の
方向P、Qがいずれも軸X−Xの方向シζ平行tζなる
よう−C着磁されているが、磁石16の外側鉄心5b+
C接する面と該磁石16の主鉄心5a+ζ対向する面と
の間の長さく以後この長さを磁石16の厚さということ
がある)、および磁石17の内側鉄心5C1こ接する面
と該磁石17の主鉄心5aIこ対向する面との間の長さ
く以後この長さを磁石17の厚さということがある)の
それぞれは、磁石16.17+こおける。
FIG. 6 shows the above-mentioned movable range θ. In each of the air gaps 6°7 (so that the magnetic flux density distributions 6a and 7a are uniform), the outer permanent magnet 16 and the inner permanent magnet 17 are
FIG. 4 is a sectional view corresponding to FIG. 4 of a voice coil motor in which various shapes are set. In this case as well, the permanent magnets 16 and 17 have internal magnetic fluxes that are both parallel magnetic fluxes, and the directions P and Q of these magnetic fluxes are both along the axis X- -C magnetization is carried out so that the direction of X is ζ parallel tζ, but the outer iron core 5b+ of the magnet 16
(hereinafter, this length may be referred to as the thickness of the magnet 16), and the length between the surface in contact with the inner core 5C1 of the magnet 17 and the opposing surface of the main iron core 5a+ζ of the magnet 17. The length between the main iron core 5aI and the opposing surface (hereinafter this length may be referred to as the thickness of the magnet 17) is the length of the magnet 16.17+.

中心軸X−Xからの位置多こ応じた大きさになるように
設定されでいる。換言すれば磁石16.17は、第5図
に示したように磁束密度6a+7aが小さくなると、磁
束密度σ)減少に応じてこの部分の磁石の厚さが厚くな
るように形成ざnている。
The size is set according to the position from the center axis XX. In other words, the magnets 16 and 17 are formed so that, as shown in FIG. 5, when the magnetic flux density 6a+7a decreases, the thickness of the magnet at this portion increases as the magnetic flux density σ) decreases.

したがって第6図のボイスコイルモータでは、第7図会
こ実測結果を示し、たよう−ζ、空隙6,7Iこおける
各磁束密度分布6 a t 7 aはいずれも長方形I
C近い台形となり、両空隙6.7のいずれ1Cおいても
磁束密度分布6a+  7aはコイル3の可動範囲θ。
Therefore, in the voice coil motor shown in Fig. 6, Fig. 7 shows the actual measurement results, and each magnetic flux density distribution 6 a t 7 a in the air gaps 6 and 7 I is a rectangle I.
The magnetic flux density distribution 6a+7a is the movable range θ of the coil 3 in any one C of both air gaps 6.7.

内で一様になっている。It is uniform within.

第6図のボイスコイルモータlこおいては、永久磁石1
6.17を上述のようをこ形成しているので空隙6*’
y+Cおける磁束密度分布が一様になり。
In the voice coil motor l shown in Fig. 6, the permanent magnet 1
6.17 is formed as described above, so the air gap 6*'
The magnetic flux density distribution at y+C becomes uniform.

したがってコイル3力可動範囲θ。内で該コイルの位[
IC無関係に一様なトルクを軸2Iこ発生させることが
できるが、一方、このようなボイスコイルモータでは磁
石16.17の厚さを複雑+C変化させなけnばならな
いσ]で製作が面倒であるという問題がある。
Therefore, the coil 3 force movable range θ. The position of the coil within [
Although it is possible to generate a uniform torque on the shaft 2I regardless of the IC, on the other hand, in such a voice coil motor, the thickness of the magnets 16 and 17 must be changed in a complicated manner, making it difficult to manufacture. There is a problem.

〔発明の目的〕[Purpose of the invention]

本発明は、上述したような従来のボイスコイルモータ蚤
こおける問題を解消しで、コイルの可動範囲内、すなわ
ち該コイルの全揺動範囲内で、該コイルσ)揺動位置昏
こよって変ることのない一様な磁束密度分布、換言すれ
は一様な発生トルクを容易(こ得ることができるボイス
コイルモータを提供することを目的とする。
The present invention solves the above-mentioned problems with the conventional voice coil motor, and the oscillation position of the coil (σ) changes accordingly within the movable range of the coil, that is, within the entire oscillation range of the coil. It is an object of the present invention to provide a voice coil motor that can easily generate a uniform magnetic flux density distribution, in other words, a uniform generated torque.

〔発明の要点〕[Key points of the invention]

本発明は、上述σ)目的を達成するために、−軸を中心
とし、で揺動可能1こ支持されたコイルと;該コイルを
貫通するように配設された主鉄心と:コイルの揺動に伴
って該コイルθ)輪郭が画く最大円の外側に配置され、
コイルを介しC主鉄心を通る外側磁束を生成させる外側
永久磁石と:コイルの揺動に伴って該コイルq】輪郭が
画く最小円の内側に配置され、コイルを介して主鉄心を
通る内側磁束を生成させる内側永久磁石と二を備えたボ
イスコイルモータ昏こおいで、外側永久磁石および内側
永久磁石はいずれも当該永久磁石に対してコイルσ)側
とは反対側に中心を有する放射状IC着磁ざnでいるよ
うにしたもσ)で、このように構成すること曇こよって
、コイルの全揺動範囲一ζわたって外側永久磁石、内側
永久磁石を共奢こ一様な厚さに形成しでも、外側永久磁
石と主鉄心との間σ〕空隙のgi磁束密度よび内側永久
磁石と主鉄心との間の空隙σ〕磁束密度が、共醗こ、コ
イルの揺動位置によることなく一様醤こ分布されるよう
にして、こび)結果コイルの全揺動範囲一こわたつで一
様な発生トルクを容易醗こ得ることができるボイスコイ
ルモータが得られるよう量こしたものである。
In order to achieve the above-mentioned object σ), the present invention provides a coil supported swingably around an axis; a main core disposed so as to pass through the coil; As the coil moves, the coil θ) is placed outside the maximum circle that outlines the
An outer permanent magnet that generates an outer magnetic flux that passes through the main core C through the coil: as the coil swings, the inner magnetic flux that passes through the main core via the coil is placed inside the smallest circle whose outline is drawn by the coil q]. The outer permanent magnet and the inner permanent magnet both have a radial IC magnetization having a center on the side opposite to the coil σ) side with respect to the permanent magnet. By configuring it in this way, the outer permanent magnet and inner permanent magnet are formed to have a uniform thickness over the entire oscillation range of the coil. However, if the magnetic flux density gi of the air gap σ between the outer permanent magnet and the main iron core and the magnetic flux density of the air gap σ] between the inner permanent magnet and the main iron core are the same, regardless of the swinging position of the coil. As a result, a voice coil motor that can easily generate uniform torque over the entire oscillation range of the coil is obtained by distributing the coil in a uniform manner.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明σ)一実施例σ)構成説明図で1本図は
第4図または第6図tC対応した断面図である。
FIG. 1 is an explanatory view of the structure of one embodiment of the present invention σ), and this figure is a sectional view corresponding to FIG. 4 or FIG. 6 tC.

本図の第4図と異なる所は外側永久磁石18および内側
永久磁石19のそれぞれtこ着磁された各内部磁束σ)
方向である。こθ)場合、外側永久磁石18は、該磁石
ICおける内部磁束の方向Rが、該磁石181こ対しで
1コイル3の側とは反対側にある軸X−X上り)放射中
心点20を中心とする放射状であるよう号ζ着磁されで
いる。また内側永久磁石19は、該磁石シこおける内部
磁束σ〕方向Sが、該磁石191こ対しCコイル3の側
とは反対側にある軸X−X上の放射中心点21を中心と
する放射状であるよう番ζ着磁されている。磁石18.
19+こおける上述の放射状内部磁束は、これらの磁石
を形成する際、磁石0)整形を上述のような放射状をし
た弱磁界内で行った後、第4図1こ示した磁石14゜1
5を着磁する場合のように平行な強磁界を加えて得たも
ので、磁石18.19の各厚さは空隙6゜7σ)各長手
方向1こわたつでそnぞれ一様であるように形成されで
いる。換言すれば、磁石18.19は第4図に2ける磁
石14115と同様曇こいずれも円環q】一部であるよ
うIC形成さnでいる。
The difference from FIG. 4 in this figure is that each internal magnetic flux σ of the outer permanent magnet 18 and the inner permanent magnet 19 is magnetized.
It is the direction. In this case θ), the direction R of the internal magnetic flux in the magnet IC of the outer permanent magnet 18 points to the radiation center point 20 of the axis The number ζ is magnetized so that it is radial around the center. In addition, the inner permanent magnet 19 has an internal magnetic flux σ] direction S centered on a radiation center point 21 on the axis XX, which is on the opposite side of the magnet 191 from the C coil 3 side. It is magnetized in a radial pattern. Magnet 18.
The above-mentioned radial internal magnetic flux at 19+ is generated when forming these magnets.
The thickness of each of the magnets 18 and 19 is uniform with a gap of 6° and 7σ) in each longitudinal direction by applying a parallel strong magnetic field as in the case of magnetizing the magnet. It is formed like this. In other words, magnets 18, 19, like magnets 14115 in FIG.

第1図蚤こおいては、永久磁石18.19を各内部磁束
が上述σ)ような放射状になるよう−c着磁したので、
空隙6.7Iこおける各磁束密度分布は第2図1こ示し
たよう1こなる。すなわち第2図は第5図または第7図
fこ対応する実測結果説明図で、第2図(2)は空隙6
における磁束密度分布6aを示し。
In the flea cage shown in Fig. 1, the permanent magnets 18 and 19 are magnetized by −c so that each internal magnetic flux becomes radial as described above.
Each magnetic flux density distribution in the air gap 6.7I becomes one as shown in FIG. In other words, FIG. 2 is an explanatory diagram of the actual measurement results corresponding to FIG. 5 or FIG.
The magnetic flux density distribution 6a is shown in FIG.

第2図0は空隙71Cおける磁束密度分布7aを示しで
いる。′w、2図から明らかなようをこ、空隙6゜71
こおける各磁束密度分布5a、7aはいずれもほぼ長方
形をなしており、いずれの磁束密度もコイルσ)可動範
囲θ。内では一様となっている。したがって第1図疹こ
示り、たボイスコイルモータは、コイル3の全揺動範囲
にわたって一様な、軸2に対するトルクを発生させるこ
とが可能であり、このようなボイスコイルモータは永久
磁石18.19が円環の一部であるよう昏こ形成されて
いるり)で製作がまこと一ζ容易である。第1図におけ
る22゜23は、外側永久磁石18)ζよって閉磁路1
0゜11のそれぞれトζ生成された各外側磁束、同図暑
こおける24.25は、内側磁石19IζよつC閉磁路
12.13のそれぞれIC生成ざnた各内側磁束である
FIG. 20 shows the magnetic flux density distribution 7a in the air gap 71C. 'w, as is clear from Figure 2, the air gap is 6°71
Each of the magnetic flux density distributions 5a and 7a in this case has a substantially rectangular shape, and both magnetic flux densities correspond to the coil σ) movable range θ. It is uniform inside. Therefore, the voice coil motor shown in FIG. .19 is formed into a ring so that it is part of the ring), making it extremely easy to manufacture. 22°23 in FIG. 1 is the closed magnetic path 1 due to the outer permanent magnet 18)ζ.
The generated outer magnetic fluxes of 0°11 and 24.25 in the figure are the inner magnetic fluxes generated by the ICs of the inner magnets 19I and C closed magnetic circuits 12 and 13, respectively.

なお第1図のボイスコイルモータでは、上述したよう−
ご空隙6.7における磁束密度分布かいずれも長方形に
近くなっているので、コイル3の可動範囲θ0を固定す
nば磁石18.19の長手方向&〕長さを第4図の場合
よりも短くしてボイスコイルモータを小さくすることが
できるなど、磁束密度が一様多こなっている空隙617
17)各部をそれぞn有効1こ利用できる利点がある。
In the voice coil motor shown in Fig. 1, as mentioned above, -
Since the magnetic flux density distribution in the air gap 6.7 is close to a rectangle, if the movable range θ0 of the coil 3 is fixed, the length of the magnet 18. The air gap 617 has a uniform magnetic flux density, which can be shortened to make the voice coil motor smaller.
17) There is an advantage that each part can be effectively used.

〔発明の効果〕〔Effect of the invention〕

上述したよう暑こ1本発明tζおいでは、−軸を中心と
しで揺動可能IC支持されたコイルと;該コイルを貫通
するように配設された主鉄心と;コイルの揺動昏ζ伴っ
て該コイルの輪郭が画く最大円の外側醗こ配置され、コ
イルを介して主鉄心を通る外側磁束を生成させる外側永
久磁石と;コイルの揺動1(伴って該コイルの輪郭が画
く最小円の内側1c配置され、コイルを介して主鉄心を
通る内側磁束を生成させる内側永久磁石と;を備えたボ
イスコイルモータ蚤こおいて、外側永久磁石および内側
永久磁石はいずれも当該永久磁石に対してコイルの側と
は反対側に中心を有する放射状昏こ着磁されでいるよう
■こしたσ)で、こσ)ようシこ構成することtこよっ
て、コイルの全揺動範囲疹こわたって外側永久磁石、内
側永久磁石を共醤こ一様な厚さシと形成しでも。
As described above, the present invention includes a coil supported by an IC that is swingable about an axis; a main iron core disposed to penetrate the coil; an outer permanent magnet that is placed outside the largest circle that outlines the coil and generates an outer magnetic flux passing through the main core through the coil; In a voice coil motor flea, both the outer permanent magnet and the inner permanent magnet are arranged with respect to the permanent magnet. The radial coil with the center on the opposite side of the coil is magnetized. Therefore, the entire swing range of the coil is extended. Even if the outer permanent magnet and inner permanent magnet are formed with a uniform thickness.

外側永久磁石と主鉄心との間の空隙σ〕磁束密度および
内側永久磁石と主鉄心との間の空隙σ〕磁束密度が、共
蚤ζ、コイルの揺動位置ICよることなく一様IC分布
される結果、コイルの全揺動範囲にわたって一様な発生
トルクを容易に得ることができるボイスコイルモータが
得らnる効果がある。
The air gap σ between the outer permanent magnet and the main iron core] magnetic flux density and the air gap σ between the inner permanent magnet and the main iron core] magnetic flux density are the same ζ, and the IC distribution is uniform regardless of the swing position IC of the coil. As a result, a voice coil motor that can easily generate uniform torque over the entire swing range of the coil can be obtained.

【図面の簡単な説明】 第1図は本考案の一実施例σ)構成説明用断面図、第2
図は第1図の実施例における実験結果説明図で、第2図
囚、第2図■はそれぞれ異なる説明図である。第3図は
従来のボイスコイルモータの一般的構成図で、同図(2
)は側面図、同図0は同図囚暑こおけるZ−Z断面図で
ある。第4図および第6図はボイスコイルモータの第1
従来例および第2従来例におけるそnぞれ第3図a1こ
対応した断面図、第5図および第7図はそれぞれ第4図
および第6図蚤ζ示した各ボイスコイルモータ蟇こおけ
る実験結果説明図で、第5図および第7図θ〕各々IC
おける囚図および0図は、それぞれ第2図1こおける囚
図および0図に対応した説明図である。 2・・・・・・・軸、3・・・・・・コイル、  5a
・・・・・・主鉄心、8゜14.16. ts・・・・
・・外側永久磁石、9.15.17゜19・・・・・・
内側永久磁石、22.23・・川・外側磁束、24、2
5・・・・・・内側磁束。 第  3  図 (A”)
[Brief Description of the Drawings] Figure 1 is a cross-sectional view for explaining the configuration of one embodiment of the present invention σ);
The figure is an explanatory diagram of the experimental results in the example shown in Fig. 1, and Fig. 2 (Fig. 2) and (2) are different explanatory diagrams. Figure 3 is a general configuration diagram of a conventional voice coil motor.
) is a side view, and FIG. 0 is a Z-Z sectional view of the same figure. Figures 4 and 6 show the first part of the voice coil motor.
Cross-sectional views corresponding to FIG. 3 a1 in the conventional example and the second conventional example, and FIGS. 5 and 7 are experiments in each voice coil motor shown in FIG. 4 and FIG. In the result explanatory diagram, Fig. 5 and Fig. 7 θ] IC
The prisoner diagram and Figure 0 in FIG. 2 are explanatory views corresponding to the prisoner diagram and Figure 0 in FIG. 2, respectively. 2...Axis, 3...Coil, 5a
...Main iron core, 8°14.16. ts...
・・Outer permanent magnet, 9.15.17°19・・・・・・
Inner permanent magnet, 22.23... River/outer magnetic flux, 24, 2
5...Inner magnetic flux. Figure 3 (A”)

Claims (1)

【特許請求の範囲】[Claims] 一軸を中心として揺動可能に支持されたコイルと;前記
コイルを貫通するように配設された主鉄心と;前記コイ
ルの揺動に伴つて該コイルの輪郭が画く最大円の外側に
配置され、前記コイルを介して前記主鉄心を通る外側磁
束を生成させる外側永久磁石と;前記コイルの揺動に伴
つて該コイルの輪郭が画く最小円の内側に配置され、前
記コイルを介して前記主鉄心を通る内側磁束を生成させ
る内側永久磁石と;を備え、前記外側永久磁石および前
記内側永久磁石はいずれも当該永久磁石に対して前記コ
イルの側とは反対側に中心を有する放射状に着磁されて
いることを特徴とするボイスコイルモータ。
a coil supported so as to be swingable about a single axis; a main core disposed so as to pass through the coil; a main core disposed outside the largest circle that outlines the coil as the coil swings; , an outer permanent magnet that generates an outer magnetic flux that passes through the main core via the coil; and an outer permanent magnet that is disposed inside the smallest circle that outlines the coil as the coil swings; an inner permanent magnet that generates an inner magnetic flux passing through an iron core, wherein both the outer permanent magnet and the inner permanent magnet are radially magnetized with centers on a side opposite to the coil with respect to the permanent magnet. A voice coil motor characterized by:
JP11369885A 1985-05-27 1985-05-27 Voice coil motor Pending JPS61273163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11369885A JPS61273163A (en) 1985-05-27 1985-05-27 Voice coil motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11369885A JPS61273163A (en) 1985-05-27 1985-05-27 Voice coil motor

Publications (1)

Publication Number Publication Date
JPS61273163A true JPS61273163A (en) 1986-12-03

Family

ID=14618913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11369885A Pending JPS61273163A (en) 1985-05-27 1985-05-27 Voice coil motor

Country Status (1)

Country Link
JP (1) JPS61273163A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265647A (en) * 1988-08-29 1990-03-06 Hitachi Ltd Voice coil motor for magnetic disk device
US5329267A (en) * 1992-03-13 1994-07-12 Hitachi Metals, Ltd. Magnet assembly and a voice coil motor using such magnet assembly
JP2006035239A (en) * 2004-07-22 2006-02-09 Hitachi Via Mechanics Ltd Oscillating actuator and laser beam machining apparatus
JP2006286819A (en) * 2005-03-31 2006-10-19 Tdk Corp Rare earth sintered magnet and vcm device using the same
JP2006335483A (en) * 2005-05-31 2006-12-14 Murata Mach Ltd Yarn traverse device, and textile machine therewith
WO2008128130A1 (en) * 2007-04-12 2008-10-23 Massachusetts Institute Of Technology Limited-angle actuator for electromechanical engine valve actuation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265647A (en) * 1988-08-29 1990-03-06 Hitachi Ltd Voice coil motor for magnetic disk device
US5329267A (en) * 1992-03-13 1994-07-12 Hitachi Metals, Ltd. Magnet assembly and a voice coil motor using such magnet assembly
JP2006035239A (en) * 2004-07-22 2006-02-09 Hitachi Via Mechanics Ltd Oscillating actuator and laser beam machining apparatus
JP2006286819A (en) * 2005-03-31 2006-10-19 Tdk Corp Rare earth sintered magnet and vcm device using the same
JP2006335483A (en) * 2005-05-31 2006-12-14 Murata Mach Ltd Yarn traverse device, and textile machine therewith
WO2008128130A1 (en) * 2007-04-12 2008-10-23 Massachusetts Institute Of Technology Limited-angle actuator for electromechanical engine valve actuation

Similar Documents

Publication Publication Date Title
US7038565B1 (en) Rotating dipole permanent magnet assembly
US3223898A (en) Variable magnet
JP2001289609A (en) Angle-of-rotation detector
JP3584473B2 (en) Magnetic damper device
JPS61273163A (en) Voice coil motor
JPH02102918A (en) Magnetic bearing device
JPS6226561B2 (en)
JP3029701B2 (en) Magnetic damper device
JPH02102919A (en) Magnetic bearing device
JP4258872B2 (en) Oscillating actuator
JPH04337140A (en) Magnetic damper device
JPS5842949Y2 (en) Zero position adjustment device for crossed coil type instruments
JPS59160767A (en) Velocity detecting device
JPS6294904A (en) Manufacture of multipolar magnet
JPH01203768A (en) Sealing device utilizing magnetic fluid
JPS59193699A (en) Plane driving type speaker
JPS5810336Y2 (en) Magnetizer for circulator
JPH0234621Y2 (en)
JPS621724Y2 (en)
JPH1146473A (en) Movable magnet type oscillation-controlled actuator
JPH0618203A (en) Linear displacement detector
JPH0645932Y2 (en) Optical isolator
JPH0979858A (en) Protection construction of vibrator
JPH1010146A (en) Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet
JPH0334408A (en) Manufacture of fixed magnetic apparatus