JPH1010146A - Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet - Google Patents

Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet

Info

Publication number
JPH1010146A
JPH1010146A JP9085813A JP8581397A JPH1010146A JP H1010146 A JPH1010146 A JP H1010146A JP 9085813 A JP9085813 A JP 9085813A JP 8581397 A JP8581397 A JP 8581397A JP H1010146 A JPH1010146 A JP H1010146A
Authority
JP
Japan
Prior art keywords
movable member
film magnet
thin film
acceleration
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9085813A
Other languages
Japanese (ja)
Inventor
Shinji Yamashita
慎次 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP9085813A priority Critical patent/JPH1010146A/en
Publication of JPH1010146A publication Critical patent/JPH1010146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformize the strength of the leaking magnetic field from a thin- film magnet reaching a magnetic sensor and to improve the adjustment as an acceleration operating part. SOLUTION: An acceleration sensor 1 is constituted of a stage 21 having a pyramid-shaped recess 21a, whose bottom surface is directed upward in the vertical direction, and a fixing member 2 comprising an elastic body 22 embedded in the pyramid-shaped recess 21a and a semispherical recess 22a provided on the upper surface of the elastic body 22. In this case, a sphere 3, which is the movable member, is held on the semispherical recess 22a. A thin-film magnet is formed on the surface of the lower half part of the sphere 3. At least one of magnetic sensors 5a, 5b, 5c and 4d is provided on each side surface of the pyramid-shaped recess 21a, respectively. Therefore, the strength of the magnetic field from the thin-film magnet reaching the magnetic sensor becomes uniform, and the accelerations in many directions can be accurately detected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気抵抗素子など
の磁気センサを利用して加速度を検出する加速度センサ
に係り、特に小型で、広範囲の検出が可能な薄膜磁石付
可動部材を備えた加速度センサ及び薄膜磁石の着磁装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor for detecting acceleration using a magnetic sensor such as a magnetoresistive element, and more particularly to an acceleration sensor having a movable member with a thin film magnet which is small and can detect a wide range. The present invention relates to a sensor and a thin film magnet magnetizing device.

【0002】[0002]

【従来の技術】従来、磁気抵抗素子などの磁気センサを
利用して加速度を検出する加速度センサが種々提案され
ている。例えば図5に示すように、撓むことのできる梁
12の先端に取り付けられた永久磁石13と、永久磁石
13を挟んで両側に対称の位置に設けられた磁気センサ
14とを備え、梁12に加速度Gが加わった時に、質量
がmの永久磁石13が磁気センサ14に対して変位した
量をxとし、比例定数をkとしたとき、変位量xを磁気
センサ14の電圧変動から求めて、加速度Gを、G=k
x/m として得るものが開示されている(例えば、特
公平7−7012号公報)。また、上記加速度センサの
応用例として、バルク状若しくは薄膜磁石を用いて、種
々の形状を有する可動部材と、磁気センサとを組み合わ
せたものが提案されており、このなかで、特に小型で、
広範囲の検出が可能な薄膜磁石を有する可動部材を備え
た加速度センサもその一つである。この薄膜磁石の着磁
において、従来は図6に示すように可動部材に球体5か
ら成るものを用いており、球体5の半球表面に薄膜磁石
6を形成し、第1および第2の着磁ヨ−ク8、9は球体
5との接触面が平面状のものであり、二つの着磁ヨ−ク
8、9の間に球体5を挟んで着磁していた。
2. Description of the Related Art Hitherto, various acceleration sensors have been proposed which detect acceleration using a magnetic sensor such as a magnetoresistive element. For example, as shown in FIG. 5, a permanent magnet 13 attached to the tip of a bendable beam 12 and magnetic sensors 14 provided at symmetrical positions on both sides of the permanent magnet 13 are provided. When the acceleration G is applied to the magnetic sensor 14, the displacement amount of the permanent magnet 13 having the mass m with respect to the magnetic sensor 14 is x, and the proportionality constant is k. , Acceleration G, G = k
What is obtained as x / m is disclosed (for example, Japanese Patent Publication No. 7-7012). In addition, as an application example of the acceleration sensor, a combination of a movable member having various shapes and a magnetic sensor using a bulk or thin film magnet has been proposed.
An acceleration sensor including a movable member having a thin film magnet capable of detecting a wide range is one of them. In the magnetization of the thin film magnet, conventionally, as shown in FIG. 6, a movable member composed of a sphere 5 is used, and a thin film magnet 6 is formed on a hemispherical surface of the sphere 5, and first and second magnetizations are performed. Each of the yokes 8 and 9 had a flat contact surface with the sphere 5, and was magnetized with the sphere 5 interposed between the two magnetized yokes 8 and 9.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術の加速度センサでは、永久磁石13が梁12の先端に
取り付けられているので、一旦、梁12に加速度Gが印
加されると、梁12に残留振動が残り、新たな振動が次
々に印加された場合に、正確な加速度が検出できないと
いう問題があった。また、永久磁石13を用いているの
で、センサの小型化ができず、広範囲の検出ができなか
った。また、梁12の撓みを検出できる方向が梁12を
挟む一方向であるので、一つの加速度センサで一方向の
加速度しか検出できなかった。一方、加速度センサに具
備された可動部材の薄膜磁石の着磁装置においては、図
6に示すような着磁装置で球体5の半球表面に形成した
薄膜磁石6を着磁する場合、薄膜磁石6はその厚さ方向
に異方性を有しているので、電磁石コイル10、11に
よって第2の着磁ヨ−ク9から漏れる着磁磁界が薄膜磁
石6を通過して第1の着磁ヨ−ク8へ抜けるとき、着磁
磁束の方向が薄膜磁石6の厚さ方向とほぼ平行な部分で
は十分に着磁できるが、図7に示すように、着磁磁界が
薄膜磁石6の厚さ方向と角度をなす部分では着磁磁束の
方向と薄膜磁石6の異方性の方向が一致しないために十
分に着磁できない。したがって、着磁後の薄膜磁石6
は、全体にわたり均一に着磁されないので、薄膜磁石6
からの漏れ磁界は場所によって強度が異なるために加速
度を検出するための加速度演算部の調整が難しく、精度
の高い加速度の検出ができなかった。さらに、前記公知
技術である特公平7−7012号公報に示す加速度セン
サは、独自の特徴を有するものであるが、本発明の加速
度センサの特徴である薄膜磁石が形成された可動部材お
よび薄膜磁石の着磁装置については何等開示されていな
い。そこで、本発明は、第1の目的として、残留振動が
少なく、小型で、広範囲な検出範囲を持ち、多方向の加
速度を正確に検出できる薄膜磁石付可動部材を備えた加
速度センサを提供することにある。また、第2の目的と
して、磁気センサに到達する薄膜磁石からの漏れ磁界の
強さが均一にでき、加速度演算部での調整が向上する薄
膜磁石の着磁装置を提供することにある。
However, in the acceleration sensor of the prior art, since the permanent magnet 13 is attached to the tip of the beam 12, once the acceleration G is applied to the beam 12, the acceleration G is applied to the beam 12. When residual vibrations remain and new vibrations are applied one after another, there is a problem that an accurate acceleration cannot be detected. Further, since the permanent magnet 13 is used, the size of the sensor cannot be reduced, and a wide range cannot be detected. Also, since the direction in which the deflection of the beam 12 can be detected is one direction sandwiching the beam 12, only one acceleration can be detected by one acceleration sensor. On the other hand, in the magnetizing device of the thin film magnet of the movable member provided in the acceleration sensor, when the thin film magnet 6 formed on the hemispherical surface of the sphere 5 is magnetized by the magnetizing device as shown in FIG. Since the magnetic field has anisotropy in the thickness direction, the magnetized magnetic field leaking from the second magnetized yoke 9 by the electromagnet coils 10 and 11 passes through the thin film magnet 6 and becomes the first magnetized magnetic field. When exiting to step 8, the magnetization can be sufficiently magnetized in a portion where the direction of the magnetizing magnetic flux is substantially parallel to the thickness direction of the thin film magnet 6, but as shown in FIG. In the part that forms an angle with the direction, the magnetization cannot be sufficiently magnetized because the direction of the magnetic flux does not match the direction of the anisotropy of the thin film magnet 6. Therefore, the magnetized thin film magnet 6
Are not uniformly magnetized over the whole, so that the thin film magnet 6
Since the intensity of the leakage magnetic field varies depending on the location, it is difficult to adjust the acceleration calculation unit for detecting the acceleration, and it is not possible to detect the acceleration with high accuracy. Further, the acceleration sensor disclosed in Japanese Patent Publication No. 7-7012, which is the above-mentioned known technique, has a unique feature. However, a movable member and a thin-film magnet having a thin-film magnet, which is a feature of the acceleration sensor of the present invention, are provided. Is not disclosed at all. Therefore, the first object of the present invention is to provide an acceleration sensor having a movable member with a thin-film magnet that has a small residual vibration, has a wide detection range, and can accurately detect acceleration in multiple directions, as a first object. It is in. It is a second object of the present invention to provide a thin film magnet magnetizing device that can make the intensity of a leakage magnetic field from a thin film magnet reaching a magnetic sensor uniform and improve adjustment in an acceleration calculation unit.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、次のような構成にしたものである。固定
部材と、この固定部材に保持された可動部材と、この可
動部材の少なくとも一部に設けられた永久磁石と、この
永久磁石に対向配置され前記可動部材の変位によって生
じる漏れ磁界の変化を検出する磁気センサと、この磁気
センサの出力変化から前記永久磁石に印加される加速度
を演算する加速度演算部と、を備えた加速度センサにお
いて、前記固定部材は、底面を鉛直方向の上方に向けた
角錐状凹部を有する架台と、前記角錐状凹部に埋め込ま
れた弾性体と、前記弾性体の上面に設けられた半球状凹
部とからなり、前記可動部材は、前記半球状凹部に保持
された球体からなり、前記永久磁石は、前記球体の少な
くとも下半分の表面に形成された薄膜磁石としたもので
ある。また、請求項1に記載の薄膜磁石付可動部材を備
えた加速度センサにおいて、前記磁気センサは前記角錐
状凹部の各側面にそれぞれ少なくとも1個設けてあるも
のである。また、請求項1または2に記載の薄膜磁石付
可動部材を備えた加速度センサにおいて、前記磁気セン
サは磁気抵抗素子からなるものである。また、請求項1
または2に記載の薄膜磁石付可動部材を備えた加速度セ
ンサにおいて、前記磁気センサはホール素子からなるも
のである。また、請求項1または2に記載の薄膜磁石付
可動部材を備えた加速度センサにおいて、前記磁気セン
サはフラックスゲ−トからなるものである。また、本発
明は、次のような方法にしたものである。少なくともそ
の一部に形成された未着磁の薄膜磁石を有する可動部材
と、前記可動部材の両端を挟んで対向して設けた電磁石
コイルと着磁ヨークとから構成される一対の着磁装置
と、を備え、前記電磁石コイルに電流を供給することで
前記着磁ヨークから漏れる磁界により前記薄膜磁石を着
磁する薄膜磁石の着磁装置において、前記可動部材の両
端に設けた着磁ヨークのうち、少なくとも一方の前記可
動部材の被膜形成面側と対向する着磁ヨークの端面の形
状が、前記薄膜磁石が形成された可動部材の表面を覆う
ような形状を有し、前記着磁ヨークと前記可動部材を密
接して設けるようにしたものである。また、請求項6に
記載の薄膜磁石の着磁装置において、前記可動部材を球
体としたものである。
Means for Solving the Problems To solve the above problems, the present invention has the following configuration. A fixed member, a movable member held by the fixed member, a permanent magnet provided on at least a part of the movable member, and a change in a leakage magnetic field caused by displacement of the movable member which is disposed to face the permanent magnet and is detected. An acceleration calculator that calculates an acceleration applied to the permanent magnet from an output change of the magnetic sensor, wherein the fixing member has a pyramid with a bottom surface directed upward in the vertical direction. A pedestal having a concave shape, an elastic body embedded in the pyramid-shaped concave portion, and a hemispherical concave portion provided on an upper surface of the elastic body, wherein the movable member is formed of a sphere held by the hemispherical concave portion. The permanent magnet is a thin-film magnet formed on at least the lower half surface of the sphere. Further, in the acceleration sensor having the movable member with the thin film magnet according to claim 1, at least one magnetic sensor is provided on each side surface of the pyramidal concave portion. Further, in the acceleration sensor provided with the movable member with a thin film magnet according to claim 1 or 2, the magnetic sensor comprises a magnetoresistive element. Claim 1
In the acceleration sensor provided with the movable member with a thin-film magnet described in 2 or 3, the magnetic sensor comprises a Hall element. Further, in the acceleration sensor provided with the movable member with the thin film magnet according to claim 1 or 2, the magnetic sensor is made of a flux gate. Further, the present invention is based on the following method. A movable member having a non-magnetized thin film magnet formed at least in part thereof, and a pair of magnetizing devices each including an electromagnet coil and a magnetizing yoke provided to face each other with both ends of the movable member interposed therebetween; A magnetizing device for magnetizing the thin film magnet by a magnetic field leaking from the magnetized yoke by supplying a current to the electromagnet coil, wherein the magnetized yokes provided at both ends of the movable member are provided. The shape of the end surface of the magnetized yoke facing the film forming surface side of at least one of the movable members has a shape so as to cover the surface of the movable member on which the thin film magnet is formed, and the magnetized yoke and the The movable member is provided closely. Further, in the thin film magnet magnetizing device according to claim 6, the movable member is a sphere.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。図1は本実施例の加速度センサの構造を
示す斜視図である。図2は図1のy方向から見た側断面
図である。図3は本実施例の薄膜磁石の着磁装置を示す
側断面図である。図4は着磁後の薄膜磁石の着磁状態を
示す側面図である。まず、図1および図2により加速度
センサの構造について説明する。加速度センサ1におい
て、2は固定部材であり、固定部材2のうち、21は架
台で、中央に45°の傾斜角をもった正四角錐の底面を
鉛直方向の上方に、頂点を下方に向けた角錐状凹部21
aを設けてある。22は架台21の角錘状凹部21aに
埋め込まれた弾性体で、上面中央に半球状凹部22aを
設けてある。3は半球状凹部22aに埋め込まれて固定
された磁性を有する球体、下半分の表面に薄膜磁石4が
形成されている。5(5a、5b、5c、5d)は角錘
状凹部21aの各側面に固定された磁気抵抗素子からな
る磁気センサ、6は各磁気センサ5の出力から加速度を
演算する加速度演算器である。この場合、初期の状態で
各磁気センサ5a、5b、5c、5dから球体3の表面
までの最短距離が同一になるように設定してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing the structure of the acceleration sensor according to the present embodiment. FIG. 2 is a side sectional view seen from the y direction in FIG. FIG. 3 is a side sectional view showing a magnetizing apparatus for a thin film magnet according to the present embodiment. FIG. 4 is a side view showing a magnetized state of the thin film magnet after the magnetization. First, the structure of the acceleration sensor will be described with reference to FIGS. In the acceleration sensor 1, reference numeral 2 denotes a fixed member, and 21 of the fixed members 2 is a gantry, the bottom surface of which is a square pyramid having an inclination angle of 45 ° in the center, with the bottom surface facing upward in the vertical direction and the vertex facing downward. Pyramidal recess 21
a is provided. Reference numeral 22 denotes an elastic body embedded in the pyramidal recess 21a of the gantry 21. A hemispherical recess 22a is provided at the center of the upper surface. Reference numeral 3 denotes a sphere having magnetism embedded and fixed in the hemispherical concave portion 22a, and a thin film magnet 4 is formed on the surface of the lower half. Numerals 5 (5a, 5b, 5c, 5d) denote magnetic sensors composed of magnetoresistive elements fixed to each side surface of the pyramidal recess 21a, and 6 denotes an acceleration calculator for calculating acceleration from the output of each magnetic sensor 5. In this case, the shortest distance from each of the magnetic sensors 5a, 5b, 5c, and 5d to the surface of the sphere 3 is set to be the same in the initial state.

【0006】このような構成の加速度センサに外部から
加速度が印加されると、球体3は加速度の大きさに応じ
て弾性体22を押し付けて変位する。このとき、球体3
の表面に形成された薄膜磁石4が発する漏れ磁界によっ
て、磁気センサ5の抵抗が球体3の表面と磁気センサ5
との間の距離に応じて変化し、その距離に応じて変化し
た各磁気センサ5からの出力が加速度演算部6に入力さ
れ、3次元の各座標方向の加速度が演算され、出力され
る。例えば、図1のx方向に加速度が印加された場合
は、磁気センサ5aと5cの抵抗バランスの変化により
x方向の加速度が検出される。y方向の場合も同様に、
磁気センサ5bと5dの抵抗バランスの変化で加速度を
検出できる。また、z方向に加速度が印加された場合
は、磁気センサ5a、5b、5c、5dの全ての抵抗の
変化によりz方向の加速度が検出できる。このように多
方向の加速度を正確に検出できる。また、可動部材に薄
膜磁石を設けてあるので、センサを小型にでき、しかも
広範囲に加速度を検出できる。また、弾性体22に制振
性能の高い弾性を有する高分子材料を用いることにり、
弾性体22によって拘束される球体3の残留振動は、従
来例のような梁の残留振動に比べて極めて少なく、精度
のよい加速度の検出ができる。なお、上記実施例では磁
気センサに磁気抵抗素子を用いた例について説明した
が、ホール素子またはフラックスゲ−トを用いても同様
の効果が得られる。
When an acceleration is externally applied to the acceleration sensor having such a configuration, the sphere 3 is displaced by pressing the elastic body 22 in accordance with the magnitude of the acceleration. At this time, the sphere 3
The resistance of the magnetic sensor 5 is reduced by the leakage magnetic field generated by the thin film magnet 4 formed on the surface of the sphere 3 and the surface of the sphere 3.
The output from each of the magnetic sensors 5 changed according to the distance is input to the acceleration calculator 6, and the three-dimensional acceleration in each coordinate direction is calculated and output. For example, when the acceleration is applied in the x direction in FIG. 1, the acceleration in the x direction is detected by a change in the resistance balance between the magnetic sensors 5a and 5c. Similarly, in the y direction,
The acceleration can be detected by a change in the resistance balance between the magnetic sensors 5b and 5d. When acceleration is applied in the z direction, the acceleration in the z direction can be detected by a change in resistance of all the magnetic sensors 5a, 5b, 5c, and 5d. Thus, the acceleration in multiple directions can be accurately detected. Further, since the thin film magnet is provided on the movable member, the size of the sensor can be reduced, and the acceleration can be detected over a wide range. Further, by using a high-elasticity polymer material having high damping performance for the elastic body 22,
The residual vibration of the sphere 3 constrained by the elastic body 22 is extremely small as compared with the residual vibration of the beam as in the conventional example, and accurate acceleration can be detected. In the above embodiment, an example in which a magnetic resistance element is used for a magnetic sensor has been described. However, the same effect can be obtained by using a Hall element or a flux gate.

【0007】次に、図3および図4により加速度センサ
に用いる薄膜磁石の着磁装置について説明する。図にお
いて、7は着磁装置で、着磁装置7のうち、8、9は第
1および第2の着磁ヨーク、8aは第1の着磁ヨーク8
の端面に設けた球面状凹部、10、11は第1および第
2の電磁石コイルである。3は加速度センサの可動部材
である球体、4は球体3の半球面上に形成した薄膜磁石
である。このような構成において、最初に、未着磁の薄
膜磁石4が形成された球体3を第1の着磁ヨーク8と第
2の着磁ヨーク9の間に挟む。このとき球体3の薄膜磁
石4が形成された半球面を第1の着磁ヨーク8の端面に
形成された球面状凹部8aにほぼ密着するように設置す
る。次に、この状態で着磁電源(図示せず)から第1お
よび第2の電磁石コイル10、11に電流を供給して球
体3の半球面上に形成された薄膜磁石4を着磁する。こ
の時、第2の着磁ヨーク9から出る磁束は薄膜磁石4の
内部を通り第1の着磁ヨーク8の球面状凹部8aへ抜け
るが、このとき薄膜磁石4内に進入してきた磁束は薄膜
磁石4の各部分において薄膜磁石4の厚さ方向とほぼ平
行になるように通過する。したがって、球体3の半球上
に形成された薄膜磁石4の磁化は各部分において厚さ方
向すなわち球体3の半径方向を向くので、球体3の半球
上に形成された薄膜磁石4は全体にわたり均一な強さで
放射状に着磁される。図4は着磁後の薄膜磁石4の着磁
状態を示し、図中の矢印は磁化の方向と強さを示す。着
磁後の薄膜磁石4は各部分で厚さ方向に均一な強さで確
実に着磁されていることを確認した。本発明の方法によ
り厚さ方向に均一に着磁した半球面上に薄膜磁石が形成
された球体を用いて、請求項に記載した加速度センサに
適用することで磁気センサに到達する薄膜磁石からの漏
れ磁界の強さが均一になり、加速度演算部での調整が簡
単で、しかも精度の高い加速度センサを得ることができ
る。
Next, a magnetizing device for a thin film magnet used in an acceleration sensor will be described with reference to FIGS. In the figure, reference numeral 7 denotes a magnetizing device, of which 8 and 9 are first and second magnetized yokes, and 8a is a first magnetized yoke 8
The spherical concave portions 10 and 11 provided on the end surfaces of the first and second electromagnet coils are first and second electromagnet coils. Reference numeral 3 denotes a sphere which is a movable member of the acceleration sensor, and reference numeral 4 denotes a thin film magnet formed on a hemisphere of the sphere 3. In such a configuration, first, the sphere 3 on which the unmagnetized thin film magnet 4 is formed is sandwiched between the first magnetized yoke 8 and the second magnetized yoke 9. At this time, the hemispherical surface of the sphere 3 on which the thin film magnet 4 is formed is placed so as to be almost in close contact with the spherical concave portion 8 a formed on the end face of the first magnetized yoke 8. Next, in this state, a current is supplied from a magnetizing power supply (not shown) to the first and second electromagnet coils 10 and 11 to magnetize the thin film magnet 4 formed on the hemisphere of the sphere 3. At this time, the magnetic flux emitted from the second magnetized yoke 9 passes through the inside of the thin film magnet 4 and escapes to the spherical concave portion 8a of the first magnetized yoke 8, but the magnetic flux that has entered the thin film magnet 4 at this time is In each part of the magnet 4, it passes so as to be substantially parallel to the thickness direction of the thin film magnet 4. Accordingly, since the magnetization of the thin film magnet 4 formed on the hemisphere of the sphere 3 is directed in the thickness direction, that is, in the radial direction of the sphere 3 at each portion, the thin film magnet 4 formed on the hemisphere of the sphere 3 is uniform throughout. Magnetized radially with strength. FIG. 4 shows the magnetized state of the thin film magnet 4 after magnetization, and the arrows in the figure show the direction and intensity of the magnetization. It was confirmed that the magnetized thin film magnet 4 was surely magnetized in each part with a uniform strength in the thickness direction. By using a sphere in which a thin film magnet is formed on a hemispherical surface uniformly magnetized in the thickness direction by the method of the present invention, by applying to the acceleration sensor described in the claims, a thin film magnet from the thin film magnet reaching the magnetic sensor is used. The strength of the leakage magnetic field becomes uniform, the adjustment in the acceleration calculation unit is easy, and a highly accurate acceleration sensor can be obtained.

【0008】[0008]

【発明の効果】以上述べたように、本発明によれば、弾
性体によって拘束された薄膜磁石を有する球体の3次元
の方向の変位を磁気センサの抵抗バランスの変化として
検出し、球体に印加された加速度を求めるので、3次元
の方向の加速度を一つの加速度センサによって求めるこ
とができると共に、残留振動が少なく、広範囲に多方向
の加速度を正確に検出できる、小型の薄膜磁石付可動部
材を備えた加速度センサを得る効果がある。また、球体
の半球上に形成された薄膜磁石は、その厚さ方向に均一
に着磁されているので、磁気センサに到達する薄膜磁石
からの漏れ磁界の強さが均一になり、加速度演算部での
調整を向上できる薄膜磁石の着磁装置を得る効果があ
る。
As described above, according to the present invention, a three-dimensional displacement of a sphere having a thin film magnet constrained by an elastic body is detected as a change in the resistance balance of the magnetic sensor and applied to the sphere. Because the obtained acceleration is obtained, a three-dimensional acceleration can be obtained by one acceleration sensor, and a small thin film magnet movable member capable of accurately detecting multidirectional acceleration over a wide area with little residual vibration. There is an effect of obtaining an acceleration sensor provided. In addition, since the thin film magnet formed on the spherical hemisphere is uniformly magnetized in the thickness direction, the strength of the leakage magnetic field from the thin film magnet reaching the magnetic sensor becomes uniform, and the acceleration calculation unit There is an effect of obtaining a thin-film magnet magnetizing device that can improve the adjustment in the above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施例の加速度センサの構造を示す斜視図
である。
FIG. 1 is a perspective view illustrating a structure of an acceleration sensor according to an embodiment.

【図2】 図1のy方向から見た側断面図である。FIG. 2 is a side sectional view seen from a y direction in FIG.

【図3】 本実施例の薄膜磁石の着磁装置を示す側断面
図である。
FIG. 3 is a side sectional view showing a magnetizing device for a thin film magnet according to the present embodiment.

【図4】 着磁後の薄膜磁石の着磁状態を示す側面図で
ある。
FIG. 4 is a side view showing a magnetized state of the thin film magnet after magnetization.

【図5】 従来例を示す加速度センサの構造を示す側断
面図である。
FIG. 5 is a side sectional view showing a structure of an acceleration sensor showing a conventional example.

【図6】 従来の薄膜磁石の着磁装置を示す側断面図で
ある。
FIG. 6 is a side sectional view showing a conventional thin film magnet magnetizing apparatus.

【図7】 従来の着磁後の薄膜磁石の着磁状態を示す側
面図である。
FIG. 7 is a side view showing a magnetized state of a conventional thin film magnet after magnetization.

【符号の説明】[Explanation of symbols]

1:加速度センサ 2:固定部材 21:架台 21a:角錐状凹部 22:弾性体 22a:半球状凹部 3:球体 4:薄膜磁石 5(5a、5b、5c、5d):磁気センサ 6:加速度演算部 7:着磁装置 8:第1の着磁ヨーク 8a:球面状凹部 9:第2の着磁ヨーク 10:第1の電磁石コイル 11:第2の電磁石コイル 1: acceleration sensor 2: fixed member 21: pedestal 21a: pyramid-shaped recess 22: elastic body 22a: hemispherical recess 3: sphere 4: thin film magnet 5 (5a, 5b, 5c, 5d): magnetic sensor 6: acceleration calculation unit 7: magnetizing device 8: first magnetizing yoke 8a: spherical concave portion 9: second magnetizing yoke 10: first electromagnet coil 11: second electromagnet coil

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 固定部材と、この固定部材に保持された
可動部材と、この可動部材の少なくとも一部に設けられ
た永久磁石と、この永久磁石に対向配置され前記可動部
材の変位によって生じる漏れ磁界の変化を検出する磁気
センサと、この磁気センサの出力変化から前記永久磁石
に印加される加速度を演算する加速度演算部と、を備え
た加速度センサにおいて、 前記固定部材は、底面を鉛直方向の上方に向けた角錐状
凹部を有する架台と、前記角錐状凹部に埋め込まれた弾
性体と、前記弾性体の上面に設けられた半球状凹部とか
らなり、 前記可動部材は、前記半球状凹部に保持された球体から
なり、 前記永久磁石は、前記球体の少なくとも下半分の表面に
形成された薄膜磁石であることを特徴とする薄膜磁石付
可動部材を備えた加速度センサ。
1. A fixed member, a movable member held by the fixed member, a permanent magnet provided on at least a part of the movable member, and a leakage generated by displacement of the movable member which is arranged to face the permanent magnet and is opposed to the permanent magnet. An acceleration sensor comprising: a magnetic sensor that detects a change in a magnetic field; and an acceleration calculator that calculates an acceleration applied to the permanent magnet from a change in output of the magnetic sensor. A pedestal having a pyramid-shaped concave portion facing upward, an elastic body embedded in the pyramid-shaped concave portion, and a hemispherical concave portion provided on an upper surface of the elastic body, wherein the movable member is provided in the hemispherical concave portion. An acceleration sensor comprising a movable member with a thin film magnet, wherein the permanent magnet is a thin film magnet formed on at least a lower half surface of the sphere. .
【請求項2】 前記磁気センサは前記角錐状凹部の各側
面にそれぞれ少なくとも1個設けてある請求項1に記載
の薄膜磁石付可動部材を備えた加速度センサ。
2. The acceleration sensor according to claim 1, wherein at least one magnetic sensor is provided on each side surface of the pyramidal concave portion.
【請求項3】 前記磁気センサは磁気抵抗素子からなる
請求項1または2に記載の薄膜磁石付可動部材を備えた
加速度センサ。
3. The acceleration sensor according to claim 1, wherein the magnetic sensor comprises a magnetoresistive element.
【請求項4】 前記磁気センサはホール素子からなる請
求項1または2に記載の薄膜磁石付可動部材を備えた加
速度センサ。
4. The acceleration sensor according to claim 1, wherein the magnetic sensor comprises a Hall element.
【請求項5】 前記磁気センサはフラックスゲ−トから
なる請求項1または2に記載の薄膜磁石付可動部材を備
えた加速度センサ。
5. The acceleration sensor according to claim 1, wherein the magnetic sensor comprises a flux gate.
【請求項6】 少なくともその一部に形成された未着磁
の薄膜磁石を有する可動部材と、前記可動部材の両端を
挟んで対向して設けた電磁石コイルと着磁ヨークとから
構成される一対の着磁装置と、を備え、前記電磁石コイ
ルに電流を供給することで前記着磁ヨークから漏れる磁
界により前記薄膜磁石を着磁する薄膜磁石の着磁装置に
おいて、 前記可動部材の両端に設けた着磁ヨークのうち、少なく
とも一方の前記可動部材の被膜形成面側と対向する着磁
ヨークの端面の形状が、前記薄膜磁石が形成された可動
部材の表面を覆うような形状を有し、前記着磁ヨークと
前記可動部材を密接して設けてあることを特徴とする薄
膜磁石の着磁装置。
6. A pair of a movable member having an unmagnetized thin film magnet formed at least in a part thereof, an electromagnet coil and a magnetized yoke provided to face each other across both ends of the movable member. And a magnetizing device for magnetizing the thin-film magnet by a magnetic field leaking from the magnetizing yoke by supplying a current to the electromagnet coil, provided at both ends of the movable member. Of the magnetized yokes, the shape of the end surface of the magnetized yoke facing the film forming surface side of at least one of the movable members has a shape that covers the surface of the movable member on which the thin film magnet is formed, A magnetizing device for a thin film magnet, wherein a magnetizing yoke and the movable member are provided in close contact with each other.
【請求項7】 前記可動部材を球体とした請求項6に記
載の薄膜磁石の着磁装置。
7. The thin film magnet magnetizing device according to claim 6, wherein the movable member is a sphere.
JP9085813A 1996-04-26 1997-03-19 Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet Pending JPH1010146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9085813A JPH1010146A (en) 1996-04-26 1997-03-19 Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP13085896 1996-04-26
JP8-130858 1996-04-26
JP9085813A JPH1010146A (en) 1996-04-26 1997-03-19 Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet

Publications (1)

Publication Number Publication Date
JPH1010146A true JPH1010146A (en) 1998-01-16

Family

ID=26426822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9085813A Pending JPH1010146A (en) 1996-04-26 1997-03-19 Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet

Country Status (1)

Country Link
JP (1) JPH1010146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010074568A (en) * 2001-05-08 2001-08-04 이중호 The acceleration sensing motion sensor and Method for sensing therof
KR20020082449A (en) * 2002-09-30 2002-10-31 이중호 Motion sensor and producing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010074568A (en) * 2001-05-08 2001-08-04 이중호 The acceleration sensing motion sensor and Method for sensing therof
KR20020082449A (en) * 2002-09-30 2002-10-31 이중호 Motion sensor and producing method thereof

Similar Documents

Publication Publication Date Title
KR20060056230A (en) Accelerometer with real-time calibration
JP3455706B2 (en) Non-contact position sensor using a tapered dipole magnet
US7140258B2 (en) Magnetic-based force/torque sensor
EP0701314B1 (en) Vibration isolating apparatus and vibration isolating table
US7621189B2 (en) Apparatus and method for generating and sensing torsional vibrations using magnetostriction
JPH11241955A (en) Load detecting device
KR20070119077A (en) Multi-axis accelerometer with magnetic field detectors
KR20100056534A (en) Magnetic force sensor
JP2008537139A (en) Device comprising a sensor device
WO2006106454A1 (en) A device with a sensor arrangement
JP2019168239A (en) Magnetic sensor device
US6897656B2 (en) Magnetic field homogenizing method and apparatus, and magnetic field generating apparatus
JPH1010146A (en) Acceleration sensor provided with movable member with thin-film magnet and magnetizing device for thin-film magnet
JPH0368827A (en) Force measuring apparatus
KR101397273B1 (en) Magnetic force sensor
JP2004325328A (en) Multiple component force detector
JP6483069B2 (en) Sensor device including carrier
KR20040040974A (en) Flexural Wave and Vibration Measuring Apparatus and Method Using a Magnetostriction Sensor
KR101046539B1 (en) sensor
US20100045287A1 (en) Sensor
JPH10260200A (en) Acceleration sensor
JPH0540808U (en) Rotating magnetic circuit
JPH07128132A (en) Sensor for vibration measurement
JP2003028735A (en) Magnetostrictive sensor
Clara et al. An electromagnetically actuated oscillating sphere used as a viscosity sensor