JPH0645932Y2 - Optical isolator - Google Patents

Optical isolator

Info

Publication number
JPH0645932Y2
JPH0645932Y2 JP4881888U JP4881888U JPH0645932Y2 JP H0645932 Y2 JPH0645932 Y2 JP H0645932Y2 JP 4881888 U JP4881888 U JP 4881888U JP 4881888 U JP4881888 U JP 4881888U JP H0645932 Y2 JPH0645932 Y2 JP H0645932Y2
Authority
JP
Japan
Prior art keywords
optical isolator
polarizer
permanent magnet
light
faraday rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4881888U
Other languages
Japanese (ja)
Other versions
JPH01155020U (en
Inventor
一穂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4881888U priority Critical patent/JPH0645932Y2/en
Publication of JPH01155020U publication Critical patent/JPH01155020U/ja
Application granted granted Critical
Publication of JPH0645932Y2 publication Critical patent/JPH0645932Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案はレーザ発振器より発射したレーザ光が発振器内
に帰還することを防止する光アイソレータに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an optical isolator for preventing laser light emitted from a laser oscillator from returning to the inside of the oscillator.

〈従来の技術〉 レーザ光を用いた情報制御システムにおいては発振器か
ら発振した出力光の一部がシステムの構成素子によって
反射され発振器内に帰還し戻り光となり,レーザの発振
が乱れる現象があり,これを防止するために光アイソレ
ータが用いられている。
<Prior Art> In an information control system using laser light, there is a phenomenon in which a part of the output light oscillated from the oscillator is reflected by the constituent elements of the system and returned to the oscillator to become return light, which disturbs the laser oscillation. An optical isolator is used to prevent this.

この光アイソレータは第4図および第5図に示すよう
に,発振器より発振された矢印Aの方向の任意の楕円偏
光となっている入射光は第1の偏光子2を透過すると平
面偏光となって出力される。この平面偏光は矢印Bの方
向に加えられた磁界の中に設けられたファラデー回転子
1を透過すると矢印Rの方向に45°回転した平面偏光と
なって出力され,またこの平面偏光は第2の偏光子2′
を透過しても偏光面の方向は変らない平面偏光の出力光
となる。すなわちファラデー回転子1は入射光の偏光面
と出力光の偏光面との間に偏波面の向きにかかわらずフ
ァラデー回転によって45°回転させ,また偏光子2,2′
は透過光のうちそれぞれの偏光子2,2′に個有な特定の
偏光の成分のみを透過させ,これに垂直な成分は吸収さ
れる。
In this optical isolator, as shown in FIGS. 4 and 5, the incident light, which is oscillated by the oscillator and has an arbitrary elliptically polarized light in the direction of arrow A, becomes a plane polarized light when transmitted through the first polarizer 2. Is output. This plane-polarized light passes through the Faraday rotator 1 provided in the magnetic field applied in the direction of arrow B and is output as plane-polarized light rotated by 45 ° in the direction of arrow R. This plane-polarized light is Polarizer 2 '
The output light is plane-polarized light whose polarization plane direction does not change even when transmitted through. That is, the Faraday rotator 1 is rotated by 45 ° by Faraday rotation between the polarization plane of the incident light and the polarization plane of the output light regardless of the direction of the polarization plane, and the polarizers 2, 2 '
Transmits only the specific polarized light component unique to each of the polarizers 2 and 2'of the transmitted light, and absorbs the component perpendicular thereto.

ここで出力光が帰還して矢印Cの方向のレーザ光は第5
図のように楕円偏光の戻り光は第2の偏光子2′を透過
して平面偏光となり,またこの平面偏光はファラデー回
転子1で45°偏光面が回転し第1の偏光子2に達する。
しかし第1の偏光子2においては入射される戻り光は偏
光子2の偏波面とは90°の差を生ずるので偏光子2を透
過することができず発振器に戻ることがない。
Here, the output light returns and the laser light in the direction of arrow C is
As shown in the figure, the elliptically polarized return light passes through the second polarizer 2'and becomes plane polarized light, and this plane polarized light reaches the first polarizer 2 by rotating the plane of polarization by 45 ° by the Faraday rotator 1. .
However, in the first polarizer 2, the incident return light makes a difference of 90 ° with the polarization plane of the polarizer 2, so that it cannot pass through the polarizer 2 and does not return to the oscillator.

この種の光アイソレタの例は第6図に示すように,ファ
ラデー回転子1に磁界を発生させる円筒状の永久磁石3
の貫通孔7の中にファラデー回転子1を中央に,その両
側面にそれぞれ偏光子2,2′を密着させて形成されてい
る。
An example of this type of optical isolator is, as shown in FIG. 6, a cylindrical permanent magnet 3 for generating a magnetic field in the Faraday rotator 1.
The Faraday rotator 1 is formed in the through hole 7 of the center of the Faraday rotator 1 and the polarizers 2 and 2'are closely attached to both side surfaces thereof.

また光アイソレータの他の例は第7図に示すように中央
にファラデー回転子1を設けその両側面にリング状の永
久磁石3,3′を貫通孔7をそれぞれの中心を一致密着さ
せ,さらにその両側面にそれぞれ偏光子2,2′を密着さ
せて形成されている。
As another example of the optical isolator, as shown in FIG. 7, a Faraday rotator 1 is provided at the center, and ring-shaped permanent magnets 3 and 3'are attached to both side surfaces of the through holes 7 so that the centers of the permanent magnets 3 are in close contact with each other. Polarizers 2 and 2'are formed in close contact with both side surfaces thereof.

〈考案が解決しようとする課題〉 従来光アイソレータにおいてはファラデー回転子1,偏光
子2,2′などの部品は接触面を密着させて組立てられ,
光に対して正しく透過するような加工に精度を要する欠
点がある。また使用される部品は加熱接着固定されるの
で各部品の熱膨張係数の差によって,加熱により生ずる
ひずみ応力のために光アイソレータが破損劣化し,信頼
性に欠ける欠点がある。
<Problems to be solved by the invention> In the conventional optical isolator, the components such as the Faraday rotator 1, the polarizer 2, and 2'are assembled with the contact surfaces in close contact.
There is a drawback that precision is required for processing that allows light to be correctly transmitted. In addition, since the parts used are fixed by heat adhesion, the optical isolator is damaged and deteriorated due to the strain stress generated by heating due to the difference in the thermal expansion coefficient of each part, resulting in a lack of reliability.

〈課題を解決するための手段〉 本考案は従来のかかる欠点を除き,金属材よりなる円筒
形スペーサの外周より内方に向けて複数個の爪が折り曲
げられ他端が開放されたスペーサの爪の内面に1個の偏
光子2と外面に1個のファラデー回転子1を密着させ,
且つ開放端より1個の円筒状の永久磁石3を挿入した光
アイソレータである。
<Means for Solving the Problems> In the present invention, except for such drawbacks of the prior art, a plurality of claws are bent inward from the outer periphery of a cylindrical spacer made of a metal material, and the other end of the spacer claw is opened. Adhere one polarizer 2 on the inner surface and one Faraday rotator 1 on the outer surface,
Further, the optical isolator has one cylindrical permanent magnet 3 inserted from the open end.

〈作用〉 ここに光アイソレータからの順方向の出力光を偏光面を
有するファイバで受ける場合,また逆に出力光が偏光で
偏光面に垂直な偏光を持つ場合のようなものでは光ファ
イバー側およびレーザ側の偏光子2を省略でき,部品の
点数が少く組立が容易となる。
<Operation> Here, when the output light in the forward direction from the optical isolator is received by a fiber having a polarization plane, and conversely, when the output light is polarized light and polarized perpendicular to the polarization plane, the optical fiber side and the laser The side polarizer 2 can be omitted, the number of parts is small, and the assembly is easy.

〈実施例〉 本考案の光アイソレータの実施例を第1図の分解斜視
図,第2の縦断側面図に示す。
<Embodiment> An embodiment of the optical isolator of the present invention is shown in the exploded perspective view of FIG. 1 and the second longitudinal side view.

図面に示すように非磁性金属材よりなり軸方向に一端を
開口した円筒状で他端に軸方向内側に向けて折り曲げた
複数個の爪6を設けスペーサ4を形成する。このスペー
サ4に光軸5を中心にして爪6の内側に偏光子2を,外
側にファラデー回転子1を接着固定する。さらにスペー
サ4の偏光子2に接し中央に貫通孔7が貫設された筒状
の永久磁石3を貫通孔7と偏光子2,ファラデー回転子1
の光軸5を合わせて挿入し接触させて光アイソレータが
形成される。ここにおいて光軸5を一致させるために
は,スペーサ4と永久磁石3および偏光子2とは接着し
ないで自由回転させておき,光軸5の位置に基準光を透
過させスペーサ4を回転させて偏光子2が光アイソレー
タとして性能が最大となるように微調整を行なう。その
後永久磁石3とスペーサ4とを接着固定し調整を終り,
高性能な光アイソレータとなる。
As shown in the drawing, a spacer 4 is formed by providing a plurality of claws 6 made of a non-magnetic metal material, one end of which is open in the axial direction and the other end of which is bent inward in the axial direction. The polarizer 2 is fixed to the spacer 4 around the optical axis 5 inside the claw 6 and the Faraday rotator 1 is fixed to the outside. Further, a cylindrical permanent magnet 3 in contact with the polarizer 2 of the spacer 4 and having a through hole 7 formed in the center thereof is provided with a through hole 7, a polarizer 2, and a Faraday rotator 1.
An optical isolator is formed by aligning and inserting the optical axes 5 of and into contact with each other. In order to make the optical axis 5 coincide with each other, the spacer 4 and the permanent magnet 3 and the polarizer 2 are not bonded and are freely rotated, and the reference light is transmitted to the position of the optical axis 5 to rotate the spacer 4. Fine adjustment is performed so that the polarizer 2 has the maximum performance as an optical isolator. After that, the permanent magnet 3 and the spacer 4 are bonded and fixed to finish the adjustment,
It becomes a high-performance optical isolator.

ここで偏光子2とファラデー回転子1をスペーサ4に接
着のとき加熱固定の工程が加わっても各光学素子は薄板
のスペーサ4のたわみによってひずみが吸収されるの
で,熱膨張係数の差によって生ずるひずみで破損するこ
とがない。
When the polarizer 2 and the Faraday rotator 1 are bonded to the spacer 4, the strain is absorbed by the deflection of the thin spacer 4 even if a heating and fixing process is added. Therefore, it is caused by the difference in the coefficient of thermal expansion. Will not be damaged by strain.

また本考案においては光アイソレータからの順方向の出
力光を偏光面を持っている特殊なファイバーで受ける場
合,逆に出力光が偏光で偏波面に垂直な偏光を持つ戻り
光に対して雑音による発振モードの乱れが小さい分布帰
還型レーザの場合の例においては,光ファイバ側および
レーザ側の偏光子2を省略しても機能に変化はない。
Further, in the present invention, when the output light in the forward direction from the optical isolator is received by a special fiber having a polarization plane, conversely, the output light is polarized and the return light having the polarization perpendicular to the polarization plane is affected by noise. In the case of the distributed feedback laser in which the disturbance of the oscillation mode is small, the function does not change even if the polarizers 2 on the optical fiber side and the laser side are omitted.

一般に円筒形の永久磁石3の回転中心となる光軸5上の
磁界は永久磁石3の外形が対称であるので,つねに光軸
5に平行な向きになる。ここで第3図に示すように永久
磁石3として外形4mm,内径2mm,長さ4mmの例で,縦軸に
磁界の相対強度G横軸に永久磁石3の中央よりの距離0m
mをシュミレーションした特性曲線図を示す。図面に示
すように横軸に対し磁界の相対強度Gは永久磁石3の中
央D1で最大となり端面D2に近ずくにつれて減少し,端面
D2よりやや外側で磁界強度が零となり,さらに外側では
負の相対強度となり,増大後再び減少する傾向にある。
したがってファラデー回転子1に飽和した磁界を与える
ために光軸5上の位置は永久磁石3の内部X1と端面より
やや離れた外部X2の2個所となる。しかし本考案による
筒状の永久磁石3を使用するものにあっては外部磁界を
使用しているので内部磁界に比べて若干小さいので使用
する永久磁石3は多少大きなものとなる。しかしファラ
デー回転子1が永久磁石3の外側に設置されているので
組立が容易で微調が可能となる。
In general, the magnetic field on the optical axis 5 which is the center of rotation of the cylindrical permanent magnet 3 is always parallel to the optical axis 5 because the outer shape of the permanent magnet 3 is symmetrical. Here, as shown in FIG. 3, the permanent magnet 3 has an outer diameter of 4 mm, an inner diameter of 2 mm, and a length of 4 mm, and the vertical axis indicates the relative strength of the magnetic field G. The horizontal axis indicates the distance 0 m from the center of the permanent magnet 3.
The characteristic curve figure which simulated m is shown. As shown in the drawing, the relative strength G of the magnetic field with respect to the horizontal axis becomes maximum at the center D 1 of the permanent magnet 3 and decreases as it approaches the end face D 2 ,
The magnetic field strength becomes zero slightly outside D 2, and becomes negative relative strength outside, and tends to decrease again after increasing.
Therefore, in order to give a saturated magnetic field to the Faraday rotator 1, there are two positions on the optical axis 5, the inner X 1 of the permanent magnet 3 and the outer X 2 slightly apart from the end face. However, in the case of using the cylindrical permanent magnet 3 according to the present invention, since the external magnetic field is used, it is slightly smaller than the internal magnetic field, so that the permanent magnet 3 used is somewhat large. However, since the Faraday rotator 1 is installed outside the permanent magnet 3, it is easy to assemble and fine adjustment is possible.

〈考案の効果〉 以上に述べたように本考案によれば,ファラデー回転子
1,偏光子2,永久磁石3,スペーサ4はそれぞれ1個を使用
するのみでよく,ファラデー回転子1,偏光子2などの光
学素子およびスペーサ4との接着面のひずみ応力は減少
され,また組立が容易で組立後微調整が可能で性能がよ
い光アイソレータが得られる。
<Effects of the Invention> As described above, according to the present invention, the Faraday rotator
It is only necessary to use one each of the polarizer 1, the permanent magnet 3, and the spacer 4, and the strain stress of the optical element such as the Faraday rotator 1, the polarizer 2 and the adhesive surface with the spacer 4 is reduced, and An optical isolator that is easy to assemble, allows fine adjustment after assembly, and has good performance is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の光アイソレータの実施例の分解外観斜
視図,第2図は第1図における光軸にて切断した縦断側
面図,第3図は本考案における永久磁石の中央から光軸
に治った外部磁界の相対強度の関係を示す特性曲線図,
第4図は光アイソレータの順方向の光に対する動作を示
す分解斜視図,第5図は第4図に対する逆方向の光に対
する動作を示す分解斜視図,第6図は従来の光アイソレ
ータの例の縦断側面図および外観正面図,第7図は従来
の光アイソレータの他の例の縦断側面図および外観正面
図である。 なお 1:ファラデー回転子、2,2′:偏光子,3,3′:永久磁石,
4:スペーサ,5:光軸,6:爪,7:貫通孔。
1 is an exploded perspective view of an optical isolator according to an embodiment of the present invention, FIG. 2 is a vertical sectional side view taken along the optical axis in FIG. 1, and FIG. 3 is an optical axis from the center of a permanent magnet in the present invention. Curve diagram showing the relationship between the relative strength of the external magnetic field
FIG. 4 is an exploded perspective view showing the operation of the optical isolator with respect to light in the forward direction, FIG. 5 is an exploded perspective view showing the operation with respect to light in the opposite direction to FIG. 4, and FIG. 6 is an example of a conventional optical isolator. FIG. 7 is a vertical sectional side view and an external front view of another example of the conventional optical isolator. Note 1: Faraday rotator, 2, 2 ': polarizer, 3, 3': permanent magnet,
4: Spacer, 5: Optical axis, 6: Claw, 7: Through hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一端に中心軸に向けて複数個の爪6が折り
曲げられ,他端が開放された非磁性材よりなる円筒状ス
ペーサ4の前記爪6の内面に1個の偏光子2と外面に1
個のファラデー回転子1を接着し,かつ前記スペーサ4
内に円筒形の永久磁石3を内接してなる光アイソレー
タ。
1. A polarizer 2 is provided on the inner surface of a claw 6 of a cylindrical spacer 4 made of a non-magnetic material, one end of which has a plurality of claws 6 bent toward the central axis and the other end open. 1 on the outside
One Faraday rotator 1 is bonded and the spacer 4
An optical isolator having a cylindrical permanent magnet 3 inscribed therein.
JP4881888U 1988-04-13 1988-04-13 Optical isolator Expired - Lifetime JPH0645932Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4881888U JPH0645932Y2 (en) 1988-04-13 1988-04-13 Optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4881888U JPH0645932Y2 (en) 1988-04-13 1988-04-13 Optical isolator

Publications (2)

Publication Number Publication Date
JPH01155020U JPH01155020U (en) 1989-10-25
JPH0645932Y2 true JPH0645932Y2 (en) 1994-11-24

Family

ID=31274951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4881888U Expired - Lifetime JPH0645932Y2 (en) 1988-04-13 1988-04-13 Optical isolator

Country Status (1)

Country Link
JP (1) JPH0645932Y2 (en)

Also Published As

Publication number Publication date
JPH01155020U (en) 1989-10-25

Similar Documents

Publication Publication Date Title
US5691845A (en) Optical isolator, optical isolator with fiber and method for making the same
JPH0545927B2 (en)
KR0142017B1 (en) Method for assembling optical isolator and method for measuring isolation
JPH0645932Y2 (en) Optical isolator
JPH0645933Y2 (en) Optical isolator
JPH0750262B2 (en) Method for manufacturing optical isolator
JPS5828561B2 (en) optical isolator
JPH0980355A (en) Polarizing glass and optical isolator
JP2857502B2 (en) Optical isolator
JP2526716Y2 (en) Optical isolator
WO1991014193A1 (en) Optical isolator
JP3278999B2 (en) Optical isolator
JP2571046B2 (en) Optical isolator element
JPH0545608A (en) Element for optical isolator
JP2572624Y2 (en) Optical isolator
JPH03140904A (en) Connector type optical isolator
JPH03107915A (en) Optical isolator
JP2794132B2 (en) Optical isolator
JPH04233510A (en) Optical isolator
JPH1068907A (en) Optical isolator
JPH01131520A (en) Optical isolator
JPS6136725A (en) Optical isolator and its production
JPH07113986A (en) Method for assembling optical isolator and method for measuring isolation
JPH01270021A (en) Optical isolator
JP2529483Y2 (en) Optical isolator