JPS61270639A - Flow sight meter - Google Patents

Flow sight meter

Info

Publication number
JPS61270639A
JPS61270639A JP60112363A JP11236385A JPS61270639A JP S61270639 A JPS61270639 A JP S61270639A JP 60112363 A JP60112363 A JP 60112363A JP 11236385 A JP11236385 A JP 11236385A JP S61270639 A JPS61270639 A JP S61270639A
Authority
JP
Japan
Prior art keywords
flow
sample
laser beam
light
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60112363A
Other languages
Japanese (ja)
Inventor
Mitsuo Watanabe
光雄 渡辺
Masao Yamazaki
山崎 真雄
Hiroshi Masago
央 真砂
Shunichi Yoshimura
俊一 吉村
Katsuji Hasegawa
勝二 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP60112363A priority Critical patent/JPS61270639A/en
Publication of JPS61270639A publication Critical patent/JPS61270639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the same sample on the best condition for the detection of respective necessary pieces of light information by irradiating a sample flow with laser beams which differ in shape and kind by using plural irradiation luminous flux systems. CONSTITUTION:Two irradiation luminous flux systems 8 and 9 are provided and a laser beam from a light source is converged to illuminate different positions A and B of the sample flow. Photodetection systems 10 and 11 are provided corresponding to the laser beam irradiated positions A and B. Scattered light generated at the position A is measured and fluorescent light generated at the position B is measured. The time difference between both measurements corresponds to the time that the sample flow requires to flow between the points A and B. A signal fetch/arithmetic processing part 16 for the fluorescent light is operated a specific time after the peak of the scattered light to integrate fluorescent light pulses. Consequently, both pieces of light information on the same sample are measured while made to correspond to each other accurately.

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は連続的に流tする懸濁液中の微小粒子サンプル
の特性篩を自動的に測定するフローサイトメータに関し
、特に照射光束系を機数設け、各特性に応じた最適な条
件での測定を可能とするフローサイトメータに関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Industrial Field of Application The present invention relates to a flow cytometer for automatically measuring the characteristic sieve of a sample of microparticles in a continuously flowing suspension. The present invention relates to a flow cytometer that enables measurements under optimal conditions according to each characteristic.

従来技術 フローサイトメータは毎秒数十個又はそれ以上の速さで
細胞を分析測定するもので、分析の結果に基き細胞の性
状を高速で判断できるため、病状診断や遺伝子生物学の
分野等で需要が増加しつつある。
Conventional flow cytometers analyze and measure cells at a rate of several dozen or more cells per second, and can quickly determine the properties of cells based on the analysis results, making them useful in the fields of disease diagnosis and gene biology. Demand is increasing.

一般にフローサイトメータV[、不活性流体(シース液
)を層流として毛管内を通過させ、とのシース液の流れ
の中心に細胞懸濁液等のサンプルを流すフローセル部、
このサンプル流にレーザビームを照射する照射光束系、
レーザビーム照射によるサンゾルからの散乱光、螢光等
を検出する光検出系、及び光検出系からの信号を電気的
に処理して必要な光情報を得る処理表水系を備えている
In general, a flow cytometer V [, a flow cell section in which an inert fluid (sheath liquid) is passed through a capillary tube as a laminar flow, and a sample such as a cell suspension is caused to flow in the center of the flow of the sheath liquid;
An irradiation beam system that irradiates this sample flow with a laser beam,
It is equipped with a photodetection system that detects scattered light, fluorescence, etc. from Sansol caused by laser beam irradiation, and a processing surface water system that electrically processes signals from the photodetection system to obtain necessary optical information.

第1図は一般的表フローセル部の一部を概略的に示した
もので、サンプル流1とこれを取巻くシース流2がフロ
ーセル3内を層流状態を保ちながら流れている0図中、
4がサンプル流1に照射されるレーザビームで照射方向
から見たところを模式的に示しており、aがビーム巾、
bがビーム厚である。
Fig. 1 schematically shows a part of a typical front flow cell.
4 schematically shows the laser beam irradiated onto the sample flow 1 as seen from the irradiation direction, a is the beam width,
b is the beam thickness.

従来it 1本のレーザビームがサンプル流へ照射され
、照射同一サンプルからの散乱光、螢光等を同時に検出
処理1〜でいるため、例えば検出される2つの信号の時
間的関係は第2図に示すようになる。つまり5図中X軸
は時間(t)、y軸は相対強度(電圧V)、5は散乱光
による電気信号パルス(以下「パルスJ )% ];を
螢iの、母ルスで、両パルス5,6が時間的に重なった
関係で検出測定される。
Conventionally, one laser beam is irradiated onto the sample stream, and the scattered light, fluorescence, etc. from the same irradiated sample are detected at the same time through processing 1. Therefore, for example, the temporal relationship between the two detected signals is as shown in Figure 2. It becomes as shown in . In other words, in Figure 5, the X-axis is time (t), the y-axis is relative intensity (voltage V), and 5 is the electric signal pulse (hereinafter referred to as "pulse J")% due to scattered light; 5 and 6 are detected and measured in a temporally overlapping relationship.

発明が解決しようとする問題点 しかしながら、従来のようなフローサイトメータを災際
に使用し測定を行った場合、サンプル流に照射するレー
ザビームの形状が測定結果に重大な影響を及ばずことが
判明した0例えば、(1)変動係数(LV値)の小さな
再現性の良いデータを得たい場合には第1図のビーム巾
aを広くすることが望ましい;(2)弱い螢光を発する
サンプルを感度よく測定する場合はビーム巾暴を狭くシ
、ビームのエネルギー密度を高くする必要がhる;(3
)パルス巾からサンプルの長さく大きさ)を測定する場
合はビーム厚すを目的粒子に比べてできるだけ小さくす
る必要がある。
Problems to be Solved by the Invention However, when a conventional flow cytometer is used to perform measurements in the event of a disaster, the shape of the laser beam that irradiates the sample flow does not have a significant effect on the measurement results. For example, (1) If you want to obtain data with a small coefficient of variation (LV value) and good reproducibility, it is desirable to widen the beam width a in Figure 1; (2) For samples that emit weak fluorescence To measure with high sensitivity, it is necessary to narrow the beam width and increase the beam energy density; (3
) When measuring the length and size of the sample from the pulse width, it is necessary to make the beam thickness as small as possible compared to the target particle.

すなわち、同一サンプルから複数の光情報を得る場合そ
れぞれに最適なビーム形状が異るため、従来の装置では
他を犠牲にして1つの条件だけを最適にするか、又はそ
れぞれの条件の中間で妥協するかしかなかった。例えば
第2図のように前方散乱光と螢光を測定する場合には中
間的条件とせざるを得す、いずれのスペクトル強度もあ
る程度犠牲を強いられた。
In other words, when obtaining multiple pieces of optical information from the same sample, the optimal beam shape is different for each, so conventional equipment either optimizes only one condition at the expense of others, or compromises between each condition. I had no choice but to do it. For example, when measuring forward scattered light and fluorescent light as shown in Fig. 2, intermediate conditions had to be used, and the spectral intensity of both had to be sacrificed to some extent.

又光情報をパルスの高さではなく、パルスの時間積分値
と1−て取如扱う場合、例えば最も一般的に行なわれて
いる方法として、散乱光・9ルスで粒子が来たことを検
知し、その間螢光パルスの積分を行なうが、この場合散
乱光パルスがトリが一レベル者を越えている間だけ螢光
パルスの積分が行なわれる@ gR2k) −(b)図
の螢光パルス中、斜視部分が積分領域である。
Also, when treating optical information not as the pulse height but as the time integral value of the pulse, for example, the most commonly used method is to detect the arrival of a particle using scattered light/9 lass. During that time, the fluorescence pulse is integrated, but in this case, the fluorescence pulse is integrated only while the scattered light pulse exceeds one level. , the oblique part is the integral region.

トリが一レベルは電気ノイズと信号パルスを区別する1
紹値であり、ノイズレベルより少し高目に設定される*
 tic 2 (a)図の5や第2(b)図の5Lのよ
うに散乱光のパルスがノイズに比べて充分大きい場合に
はこれでもほとんど問題は無いが、第2 (b)図の5
8のように散乱光/4’ルスが小さい場合(例えば粒子
が小さい場合)、パルスがトリガーレベルを越えている
時間が短くなり、螢光の積分値が期待される値より小さ
くなってしまう。
One level of the bird distinguishes between electrical noise and signal pulses.
This is an introductory value and is set slightly higher than the noise level*
tic 2 If the pulse of the scattered light is sufficiently large compared to the noise, such as 5 in Figure 2 (a) or 5L in Figure 2 (b), there is almost no problem with this, but 5 in Figure 2 (b)
When the scattered light/4' Lux is small as in 8 (for example, when the particles are small), the time during which the pulse exceeds the trigger level becomes short, and the integrated value of fluorescence becomes smaller than the expected value.

発明の構成 問題点を解決するための手段 従来技術におはるこの問題を解消するため本発明による
フローサイトメータは、不活性流体をシース液とi−て
層流状態で毛管内を通過させ、該シース液の流れの中心
に細胞懸濁液等のサンプルを流すフローセル部、該フロ
ーセル部において少くとも2本のレーザビームをサンプ
ル流の異った個所に照射する複数の照射光束系、各レー
ザビーム照射によるサンプルからの散乱光、螢光等の光
情報を検出するため各レーザ光照射位置に対応して設は
られた光検出系、及び該光検出系からの信号に基き、上
記サンプル流のレーザビーム照射位置間の時間差を考慮
しながら同一サンプルに関する必要な複数の光情報を電
気的に処理して得る処理表示系を備えてしることを特徴
とし、必要な光情報に最適々条件下での測定を可能にす
ると共に、螢光・9ルスについて常に充分な積分時間を
得られるようにしたものである。
Structure of the Invention Means for Solving the Problems In order to solve this problem in the prior art, the flow cytometer according to the present invention allows an inert fluid to pass through a capillary tube in a laminar flow state as a sheath liquid. , a flow cell section that causes a sample such as a cell suspension to flow through the center of the flow of the sheath liquid; a plurality of irradiation beam systems that irradiate at least two laser beams to different parts of the sample flow in the flow cell section; A photodetection system is installed corresponding to each laser beam irradiation position to detect optical information such as scattered light and fluorescence from the sample by laser beam irradiation, and based on the signal from the photodetection system, the sample is detected. It is characterized by being equipped with a processing display system that electrically processes and obtains multiple pieces of necessary optical information regarding the same sample while taking into account the time difference between the laser beam irradiation positions of the flow, and is optimally suited for the required optical information. This makes it possible to perform measurements under various conditions, and also ensures that sufficient integration time is always available for fluorescence and 9 lus.

」L抱土± 以下本発明の一例を第3,4図を参照しながら詳しく説
明する。尚第1.2図との対応部分は同一番号で表わす
An example of the present invention will be described in detail below with reference to FIGS. 3 and 4. Note that parts corresponding to those in FIG. 1.2 are indicated by the same numbers.

第3図は本発明によるフローサイトメータの構成を示す
ブロック図で、図中6がフローセル部、8,9が照射光
束系、In、I 1が光検出系、12が処理表示系であ
る。
FIG. 3 is a block diagram showing the configuration of a flow cytometer according to the present invention, in which 6 is a flow cell section, 8 and 9 are an irradiation beam system, In, I1 is a photodetection system, and 12 is a processing display system.

フローセル部6は従来と同じ構成で、不活性流体等のシ
ース液13のフローの中心軸としてサンゾル14を江入
しながら第1図に示すようにサンプル流lとそれを取巻
くシース流2が層流状態を保持しながらフローセル部6
中を上向きに流れ、このフローセル部中の流れが検知領
域を形成する。
The flow cell section 6 has the same configuration as the conventional one, and as shown in FIG. Flow cell part 6 while maintaining the flow state
The flow in this flow cell section forms the sensing region.

図示例において照射光学系は第1及び絡2照射光束系8
,9として2系統設けられており、レーザ光源(図示せ
ず)からのレーザビームが適当な光学系を介【7て集束
され、フローセル3中を流れるサンプル流の異った個所
A、Hに照射される。各照射光束系8.9の光学系は集
束されるビーム形状を任意に変えられるように独立に調
整可能で、必要な光情報の検出に最適なビーム形状とさ
れる。レーザ光源は単一でもよいが、測定すべき光情報
に合わせて異った光源を用い、形状の他種類も違うレー
ザビームを照射し、でもよい。
In the illustrated example, the irradiation optical system is the first and second irradiation beam system 8.
, 9 are provided, and a laser beam from a laser light source (not shown) is focused through an appropriate optical system [7] and directed to different points A and H of the sample flow flowing through the flow cell 3. irradiated. The optical system of each irradiation beam system 8.9 can be adjusted independently so that the shape of the focused beam can be changed arbitrarily, and the beam shape is optimal for detecting the necessary optical information. Although a single laser light source may be used, different light sources may be used depending on the optical information to be measured, and laser beams of different shapes and types may be irradiated.

光検出系111 、 ]、 1は上記のレーザビーム照
射位置A、Bにそれぞれ対応(1、て設V1られ、図示
例において10はサンプルの前方散乱光測定用、11i
i試料の螢光測定用である。各党検出系10.11は分
光器、検知器、増巾器等を備えて成り、それぞれの検知
器−増巾器から散乱光及び螢光の強度に応じた電気信号
が発せられる。これら光検出系は周知の構成なので、こ
こでは説明を省略する。
The photodetection systems 111, ], 1 correspond to the above laser beam irradiation positions A and B, respectively (1, is set at V1, and in the illustrated example, 10 is for measuring forward scattered light of the sample, 11i is for
This is for fluorescence measurement of i samples. Each detection system 10.11 is equipped with a spectrometer, a detector, an amplifier, etc., and an electric signal corresponding to the intensity of scattered light and fluorescent light is emitted from each detector-amplifier. Since these photodetection systems have well-known configurations, their explanations will be omitted here.

1メ上の構成でサンゾルを流し、そのサンプル流に2系
統のレーザビームを照射すると同一サンゾルについて見
れば、まず照射位itAで生じた散乱光が測定され、次
いで照射位[Bで生じた螢光が測定される6両測定間の
時間差Δtは、AB間をサンプル流が流れるのに要する
時間に対応する。つ−まり、この時間差を知れば同一サ
ンゾルについて別々の位置で測定を行っても、処理上同
一サンプルに関する複数の光情報を正しく得ることがで
きる。このようにして本発明の装置の両党検出系から得
られる同一サンプルに関する2つの信号を示せば、第4
図のようになる。第2図と同様、y軸は時間(t) 、
 y軸は相対強度(電圧V)、Fl’は散乱光パルス、
6′は螢光パルスで、両パルス間は一定の時間差Δtだ
け離れている。
When Sansol is flowed in a one-meter configuration and the sample flow is irradiated with two systems of laser beams, if we look at the same Sansol, first the scattered light generated at the irradiation position itA is measured, and then the scattered light generated at the irradiation position [B] is measured. The time difference Δt between the six measurements where the light is measured corresponds to the time required for the sample flow to flow between AB. In other words, if this time difference is known, it is possible to correctly obtain a plurality of pieces of optical information regarding the same sample during processing, even if measurements are performed on the same Sansol at different positions. If two signals related to the same sample obtained from the two-party detection system of the device of the present invention are shown in this way, the fourth
It will look like the figure. As in Figure 2, the y-axis is time (t),
The y-axis is the relative intensity (voltage V), Fl' is the scattered light pulse,
Reference numeral 6' denotes a fluorescent pulse, and the two pulses are separated by a constant time difference Δt.

両党検出系10.11からの信号はそれぞれ信号取込/
演算処理部IF>、16に入り、データインターフェイ
ス17を経てデータ処理系18に導かれ、周知な方法に
よって散乱光、螢光の強度を表示記録等するための電気
的処理が行われる。図中19はトリが一回路、20は遅
延回路であり、散乱光処理用のトリが一レベル・及U同
一サンゾルの両ノ9ルス間の時間差Δtに対応した遅延
時間をそれぞれ与える。つまり、螢光用の信号取込/演
算処理部16を散乱光のピークから一定時間遅らせて作
動し、螢光i4ルス6′の積分を行うことで、同一サン
プルに関する両光情報が正しく対応付けられて測定され
る。
Signals from both party detection systems 10 and 11 are acquired by signal acquisition/
The light enters the arithmetic processing unit IF>, 16, is led to the data processing system 18 via the data interface 17, and is subjected to electrical processing for displaying and recording the intensity of the scattered light and fluorescent light by a well-known method. In the figure, reference numeral 19 denotes one circuit, and 20 denotes a delay circuit, which respectively provide a delay time corresponding to the time difference Δt between one level of the scattering light processing circuit and the two pulses of the same sunsol. In other words, by operating the fluorescence signal acquisition/arithmetic processing unit 16 with a certain period of time delay from the peak of the scattered light and integrating the fluorescence i4 pulse 6', both light information regarding the same sample can be correctly correlated. measured.

尚1時間差Δtけあらかじめ既知のサンゾル粒子を流し
、例えば第1のノ9ルスのピークと第2のパルスのピー
クの時間差を電気的に計測することで容易に知ることが
でき、同時に自動的に遅延時間を設定することもできる
。もちろん、多現象ノオシロスコープ郷で両・ぐルスの
時間差を目視で計測することも可能である。
In addition, it is possible to easily know by flowing Sansol particles, which are known in advance by a one-time difference Δt, and electrically measuring the time difference between the first pulse peak and the second pulse peak, and at the same time automatically. You can also set a delay time. Of course, it is also possible to visually measure the time difference between the two and the gurus using a multi-phenomenon oscilloscope.

父、積分時間d′は上記の既知サンプル粒子を流したと
きのi4ルス巾であるが、測定する粒子の大きさに依り
多少変動する為、あらかじめノ9ルス巾より若干長目に
設定することで実用上充分対応できる。この積分時間d
′はパルス巾を電気的に計測し、自動的に設定すること
も容易であり、もちろんオシロスコープ等で目視で計測
することも可能である。
The integration time d' is the i4 Lus width when the above-mentioned known sample particles are flowed, but since it varies somewhat depending on the size of the particles to be measured, it should be set in advance to be slightly longer than the Lus width. This is sufficient for practical use. This integration time d
' can be easily set automatically by electrically measuring the pulse width, and of course can also be measured visually using an oscilloscope or the like.

発明の効果 以上述べたように本発明によれば、複数の照射光束系を
用いサンプル流の異った地点で異った形状及び種類のレ
ーザビームを照射するよう(lO) にしたため、必要な各光情報の検出に最適な条件下で同
一サンノルに関する測定を行々うことができる0例えば
散乱光と螢光を測定する場合、従来のように中間条件と
する必W):t々〈それぞれに最適なビーム形状でレー
ザビームを照射できるので、両方共に良好な光信号が得
られる。
Effects of the Invention As described above, according to the present invention, a plurality of irradiation beam systems are used to irradiate different shapes and types of laser beams at different points in the sample flow (lO), so that the required For example, when measuring scattered light and fluorescent light, it is necessary to use intermediate conditions as in the past. Since the laser beam can be irradiated with the optimal beam shape for both, good optical signals can be obtained for both.

又本発明では、両スペクトル間の時間差によって両スペ
クトルが対応付けられ、積分時間を任意に設定できるの
で、螢光測定の更なる改善が可能である。
Further, in the present invention, both spectra are associated with each other based on the time difference between them, and the integration time can be set arbitrarily, so that further improvement in fluorescence measurement is possible.

又、フローサイトメータにおいては、流速は光検出系と
それ以降の電気処理系の時定数や、積分値の安定性、更
にけサンプル流の安定性に至るまで重大な影響を与える
が、本発明では第1のピークと第2のピークの時間差を
常時監視することにより流速を知ることができ、流速の
コントロールや流速の便化に依るデータの変動の補正等
のシステムを働かせることが可能になる利点もある。
In addition, in a flow cytometer, the flow rate has a significant effect on the time constant of the photodetection system and subsequent electrical processing system, the stability of the integral value, and even the stability of the sample flow. By constantly monitoring the time difference between the first and second peaks, it is possible to know the flow velocity, and it becomes possible to use systems such as controlling the flow velocity and correcting data fluctuations due to the facilitation of the flow velocity. There are also advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフローサイトメータのフローセル部の説明図、
第2図(a) 、 (b)は従来装置による散乱光と螢
光両Alルスの関係の一例を示す図、第3図は本発明に
よるフローサイトメータの一例の構成を示すブロック図
、第4図は本発明によるフローサイトメータによる散乱
光と螢光両・Iルスの関係の一例を示す図である。 l・・・サンプル流、2・・・シース流、4・・・レー
ザビーム、6・・・フローセルi、8.9・・・[It
 i 束系、In、11・・・光検出系、12・・・処
理表示系、13・・・シース液、14・・・サンプル。
Figure 1 is an explanatory diagram of the flow cell part of a flow cytometer.
FIGS. 2(a) and 2(b) are diagrams showing an example of the relationship between scattered light and fluorescent Al irradiation using a conventional device, and FIG. 3 is a block diagram showing the configuration of an example of a flow cytometer according to the present invention. FIG. 4 is a diagram showing an example of the relationship between scattered light, fluorescent light, and I-laser by a flow cytometer according to the present invention. l... Sample flow, 2... Sheath flow, 4... Laser beam, 6... Flow cell i, 8.9... [It
i Bundle system, In, 11... Light detection system, 12... Processing display system, 13... Sheath liquid, 14... Sample.

Claims (1)

【特許請求の範囲】[Claims] 不活性流体をシース液として層流状態で毛管内を通過さ
せ、該シース液の流れの中心に細胞懸濁液等のサンプル
を流すフローセル部、該フローセル部において少くとも
2本のレーザビームをサンプル流の異った個所に照射す
る複数の照射光束系、各レーザビーム照射によるサンプ
ルからの散乱光、螢光等の光情報を検出するため各レー
ザ光照射位置に対応して設けられた光検出系、及び該光
検出系からの信号に基き、上記サンプル流のレーザビー
ム照射位置間の時間差を考慮しながら同一サンプルに関
する必要な複数の光情報を電気的に処理して得る処理表
示系を備えて成ることを特徴とする複数の照射光束を備
えたフローサイトメータ。
A flow cell part in which an inert fluid is passed through a capillary tube in a laminar flow state as a sheath liquid, and a sample such as a cell suspension is caused to flow in the center of the flow of the sheath liquid, and at least two laser beams are applied to the sample in the flow cell part. Multiple irradiation beam systems that irradiate different parts of the flow, and photodetectors installed corresponding to each laser beam irradiation position to detect optical information such as scattered light and fluorescence from the sample due to each laser beam irradiation. system, and a processing display system that electrically processes and obtains a plurality of necessary optical information regarding the same sample based on the signal from the photodetection system and taking into account the time difference between the laser beam irradiation positions of the sample stream. A flow cytometer equipped with a plurality of irradiation beams, characterized by comprising:
JP60112363A 1985-05-25 1985-05-25 Flow sight meter Pending JPS61270639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60112363A JPS61270639A (en) 1985-05-25 1985-05-25 Flow sight meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112363A JPS61270639A (en) 1985-05-25 1985-05-25 Flow sight meter

Publications (1)

Publication Number Publication Date
JPS61270639A true JPS61270639A (en) 1986-11-29

Family

ID=14584812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112363A Pending JPS61270639A (en) 1985-05-25 1985-05-25 Flow sight meter

Country Status (1)

Country Link
JP (1) JPS61270639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500402A (en) * 1986-02-12 1988-02-12 コンバッション エンヂニアリング インコ−ポレ−テッド On-site particle size measuring device
JP2007198790A (en) * 2006-01-24 2007-08-09 Sharp Corp Analysis method and analysis device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360287A (en) * 1976-10-28 1978-05-30 Coulter Electronics Method of and apparatus for analyzing particle
JPS55106340A (en) * 1979-02-09 1980-08-15 Toshiba Corp Grain size measuring device
US4243318A (en) * 1977-07-16 1981-01-06 Deutsches Krebsforschungszentrum Fluorescence analysis of stained particles
JPS5979834A (en) * 1982-10-29 1984-05-09 Japan Spectroscopic Co Apparatus for separating minute particle
JPS59174737A (en) * 1983-03-25 1984-10-03 Toshiba Corp Device for measuring diameter of particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360287A (en) * 1976-10-28 1978-05-30 Coulter Electronics Method of and apparatus for analyzing particle
US4243318A (en) * 1977-07-16 1981-01-06 Deutsches Krebsforschungszentrum Fluorescence analysis of stained particles
JPS55106340A (en) * 1979-02-09 1980-08-15 Toshiba Corp Grain size measuring device
JPS5979834A (en) * 1982-10-29 1984-05-09 Japan Spectroscopic Co Apparatus for separating minute particle
JPS59174737A (en) * 1983-03-25 1984-10-03 Toshiba Corp Device for measuring diameter of particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500402A (en) * 1986-02-12 1988-02-12 コンバッション エンヂニアリング インコ−ポレ−テッド On-site particle size measuring device
JPH0434096B2 (en) * 1986-02-12 1992-06-04 Combustion Eng
JP2007198790A (en) * 2006-01-24 2007-08-09 Sharp Corp Analysis method and analysis device

Similar Documents

Publication Publication Date Title
KR100315992B1 (en) Particle analyzer
US8885153B2 (en) Differentiation of flow cytometry pulses and applications
US4021117A (en) Process for automatic counting and measurement of particles
US7835000B2 (en) System and method for measuring particles in a sample stream of a flow cytometer or the like
EP0696731A2 (en) Cytoanalyzer
US3897155A (en) Atomic fluorescence spectrometer
EP0008874B1 (en) Method and apparatus for discriminating red blood cells from platelets
US20120274925A1 (en) Axial light loss sensor system for flow cytometery
US4444500A (en) Device for measuring particles in a fluid
JPS61270639A (en) Flow sight meter
JPS6151569A (en) Cell identifying device
JPS61283848A (en) Flow site meter
JPS6321556A (en) Dna base sequence determining apparatus
JPS6236542A (en) Particle analyzer
JPH0792076A (en) Grain analyzing device
JP2636051B2 (en) Particle measurement method and device
JPS63201554A (en) Particle analyzing device
JPH0786455B2 (en) Particle measuring method and apparatus
JPH0921740A (en) Method and apparatus for determining particle judging criterion and particle analyzer employing it
JP3265080B2 (en) Pulse signal measurement method
JP2720069B2 (en) Flow cell analyzer
JP3261493B2 (en) Capillary light detection sensor, optical measurement device using the same, and method for measuring fine particles in suspension
JP2000046723A (en) Method for inspecting function of platelet
JP4105888B2 (en) Particle size distribution measuring device
JPS63231244A (en) Cell analysis instrument