JPS61269307A - Cvd device - Google Patents

Cvd device

Info

Publication number
JPS61269307A
JPS61269307A JP11047585A JP11047585A JPS61269307A JP S61269307 A JPS61269307 A JP S61269307A JP 11047585 A JP11047585 A JP 11047585A JP 11047585 A JP11047585 A JP 11047585A JP S61269307 A JPS61269307 A JP S61269307A
Authority
JP
Japan
Prior art keywords
nozzle
gas
reaction gas
temperature
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11047585A
Other languages
Japanese (ja)
Other versions
JPH0713946B2 (en
Inventor
Ryokichi Takahashi
亮吉 高橋
Hideo Sunami
英夫 角南
Hironori Inoue
洋典 井上
Takaya Suzuki
誉也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60110475A priority Critical patent/JPH0713946B2/en
Publication of JPS61269307A publication Critical patent/JPS61269307A/en
Publication of JPH0713946B2 publication Critical patent/JPH0713946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To control the thickness of films on plural substrates with higher accuracy by providing a means to preheat reaction gas entering into a nozzle tube so as to make the distributed amount of flow at each hole of nozzles suitable. CONSTITUTION:A multi-porous nozzle tube 8 and a construction of multiple-unit tubes through which reaction gas and cooling gas are flown. A preheating means 10 is provided to preheat the reaction gas to be supplied to the nozzle tube 8. Then, the reaction gas is injected into a substrate reaction chamber on each stage with the nozzle tube 8 through piping. The reaction gas is discharged through a suction pipe 9. Cooling gas is supplied through piping 6. The preheating temperature is controlled at a constant value with the preheating means 10, thereby providing suitable distribution amount of flow at each holes of the nozzle, with highly accurately controlled thickness of films on plural substrates.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はエピタクシを含むCVD装置の反応ガスを均一
に散布する二重管型ガス冷却式多孔ノズル管を具備し、
ノズル管内で反応ガスが温度勾配を有する場合に好適な
ガス流量分配を行なうエピタクシを含むCVD装置に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention comprises a double-pipe gas-cooled porous nozzle pipe for uniformly distributing reaction gas of a CVD apparatus including epitaxy,
The present invention relates to a CVD apparatus including epitaxy that performs suitable gas flow distribution when a reaction gas has a temperature gradient within a nozzle pipe.

〔発明の背景〕[Background of the invention]

エピタクシを含むCVD装置は、近年半導体製品の多量
生産を背景に、高スループツトかつ高精度膜厚の性能が
要求されている。多数枚の基板を同時に処理する場合、
各基板上の膜厚を制御するためには、基板上に供給する
反応ガスの流量、濃度を一定にする必要がある。多孔ノ
ズル管を用いて反応ガスを散布する場合、ノズル管から
噴出する多孔からの流量を均一にすること、また濃度変
化を避けるためノズル管内での析出を抑制しなければな
らない。とくに室温で供給される反応ガスが、反応器内
で徐々に高温に加熱される温度助走域にある場合、温度
変化の影響を受けてノズル管多孔からの噴出流量が不均
一になり易いにこに温度分布を持つ多孔ノズル管からの
各孔噴出流量を均一化する技術的問題が生じている。
CVD equipment including epitaxy is required to have high throughput and high precision film thickness performance against the backdrop of mass production of semiconductor products in recent years. When processing multiple boards at the same time,
In order to control the film thickness on each substrate, it is necessary to keep the flow rate and concentration of the reaction gas supplied onto the substrate constant. When dispersing reactive gas using a porous nozzle pipe, it is necessary to make the flow rate uniform from the porous holes ejected from the nozzle pipe, and to suppress precipitation within the nozzle pipe to avoid concentration changes. In particular, when the reactant gas supplied at room temperature is in the temperature run-up region where it is gradually heated to a high temperature in the reactor, the flow rate ejected from the nozzle tube porous hole is likely to become uneven due to the influence of temperature changes. There is a technical problem in equalizing the flow rate of each hole ejected from a multi-hole nozzle pipe with a temperature distribution.

上記問題点を解決する手段はいくつか考えられる。例え
ば各ノズル孔から均一流量を得るようにガス流れ方向に
ノズル多孔径を変化させることも一つの方法であるが、
ノズル材質の石英を精度良く加工することは芝しい。以
下、より詳しくこの種の装置について説明する。
There are several possible ways to solve the above problems. For example, one method is to vary the nozzle pore diameter in the gas flow direction so as to obtain a uniform flow rate from each nozzle hole.
It is important to accurately process the quartz material for the nozzle. This type of device will be explained in more detail below.

一般に、エピタクシを含むCVD (化学気相成長)は
反応ガスを高温に加熱することにより行なわれる。原理
的には反応ガスの化学平衡により説明−され、これにつ
いては多くの論文があるが、最も早く出された論文とし
てアール・エフ・レヴア−(R,F、 Lever)に
よるアイ・ビー・エムリサーチ・オブ・ディヴエロブメ
ント(I BMRes、 Develop) 8巻46
0頁(1972年)のシリコンエピタクシに関する論文
がある。これを模式的に表現すると第3図のようになり
、供給濃度が過飽和曲線と交叉する温度以下では固体面
上への反応ガスの析出はないが、その温度以上になると
シリコン基板のみならず反応器などの固体面上への析出
や気相熱分解が起る。基板以外への析出が起ると反応ガ
ス濃度が変化し、基板上へのCVD膜厚分布が劣化した
り、またガス流路の閉塞が起ったりする。
Generally, CVD (chemical vapor deposition) including epitaxy is performed by heating a reaction gas to a high temperature. In principle, it is explained by the chemical equilibrium of reactive gases, and there are many papers on this subject, but the earliest paper was published by R.F. Lever in IBM. Research of Development (IBMRes, Develop) Volume 8 46
There is a paper on silicon epitaxy on page 0 (1972). This can be expressed schematically as shown in Figure 3. Below the temperature at which the supply concentration intersects the supersaturation curve, no reaction gas is deposited on the solid surface, but above that temperature, reactions occur not only on the silicon substrate but also on the solid surface. Precipitation on solid surfaces such as containers and gas phase thermal decomposition occur. If deposition occurs on a surface other than the substrate, the concentration of the reaction gas changes, resulting in deterioration of the CVD film thickness distribution on the substrate or clogging of the gas flow path.

ビー・イー・ディール(B、E、 Deal)は反応ガ
スの供給をノズルを通して行なった際、ノズル管内での
反応ガスの高温析出を避けるためノズル管を二重構造に
してN2ガスによる冷却を行なっている(ジャーナル・
オブ・エレクトロ・ケミカル・ソサイエティ (J 、
 Electro chew、  Soc。
B-E-Deal (B, E, Deal) uses a double structure of the nozzle tube and cools it with N2 gas to avoid high-temperature precipitation of the reaction gas inside the nozzle tube when the reaction gas is supplied through the nozzle. (Journal・
of Electrochemical Society (J,
Electro chew, Soc.

)109管6号514頁(1962年))。また、特開
昭55−24424号において、遠藤らは多数枚基板の
近傍まで延長した複合管構造のノズルを用い、ディール
と同様にノズル管内に流れる反応ガスのガス冷却を提案
している。しかし、これらの上記ノズルはいずれも単孔
ノズルである。
) 109, No. 6, p. 514 (1962)). Furthermore, in Japanese Patent Application Laid-open No. 55-24424, Endo et al. proposed gas cooling of the reaction gas flowing in the nozzle tube, similar to Diehl, using a nozzle with a composite tube structure extending to the vicinity of multiple substrates. However, all of these nozzles are single-hole nozzles.

近年、多数枚の基板を同時に処理することを目的とした
高スループツト・エピタクシ装置が考案されている(ヴ
イ・ニス・パン(V、S、Ban)によるジャーナル・
オブ・クリスタル・グロウス(J 、 Crystal
 Growth) 45巻97頁(1978年))。
In recent years, high-throughput epitaxy equipment has been devised for the purpose of processing a large number of substrates simultaneously (Journal by V.N.S. Ban).
Of Crystal Growth (J, Crystal
Growth) Vol. 45, p. 97 (1978)).

ここでは新鮮な反応ガスを各基板毎に散布するため、多
孔ノズルが用いられている。また、本発明者らも多数枚
基板を同時に処理する電気炉式ホットウォール・エピタ
クシ装置において、ノズル管内での反応ガスの析出を避
けるため反応管主流にソースガスを流通させ、多孔ノズ
ルからはドーピングガスのみを流通させている(特開昭
59−19316号)。
Here, a porous nozzle is used to spray fresh reactive gas onto each substrate. In addition, in an electric furnace type hot wall epitaxy apparatus that processes multiple substrates simultaneously, the present inventors also conducted a source gas flow through the main stream of the reaction tube to avoid the precipitation of reaction gas in the nozzle tube, and doping was carried out from the porous nozzle. Only gas is distributed (Japanese Patent Application Laid-open No. 19316/1983).

しかし、多孔ノズルでは、ガス流れ方向に向って圧力損
失があり、番孔からのノズル噴出流量が不均一になり易
いので、とくにCVD膜厚の高精度化が叫ばれている現
今、まず反応ガスを多孔ノズルから均一に噴出させるこ
とが一つの基本技術となる。
However, with multi-hole nozzles, there is a pressure loss in the gas flow direction, and the flow rate of the nozzle ejected from the hole tends to be uneven. One of the basic technologies is to uniformly eject it from a multi-hole nozzle.

多孔ノズルからの流量分配については、既に実験および
理論研究があり、便覧にも記載がある(化学工学便覧(
改訂4版)129頁丸善(昭和53年))。後述のため
に引用すると1層流のとき圧力損失は また。ノズル流量 ここでD=ノズル管直径、u=ノズル管内の流体の流速
、n=ノズル孔間隔、μ=粘性係数、gc=重力換算係
数、ζb=屈折の分岐損失係数、ζS=直進部の分岐損
失係数、n=ノズル孔の数、Qi=ミニノズル体流体流
量rl=ノズル孔直径、un=ノズル孔流体流速、P=
ノズル管内圧力、P0=ノズル孔出口の流体圧力、C=
流量係数である。
There have already been experiments and theoretical studies on flow distribution from multi-hole nozzles, and there is also a description in the handbook (Chemical Engineering Handbook).
(Revised 4th edition) 129 pages Maruzen (1978)). To quote for later discussion, the pressure drop is also when there is a one-layer flow. Nozzle flow rate, where D = nozzle pipe diameter, u = flow rate of fluid in the nozzle pipe, n = nozzle hole interval, μ = viscosity coefficient, gc = gravity conversion coefficient, ζb = branching loss coefficient of refraction, ζS = branching of straight section Loss factor, n = number of nozzle holes, Qi = mini nozzle body fluid flow rate rl = nozzle hole diameter, un = nozzle hole fluid flow rate, P =
Nozzle pipe internal pressure, P0 = fluid pressure at nozzle hole exit, C =
is the flow coefficient.

一般にノズル管内でガス流れ方向に圧力損失があるため
、下流に向って噴出量が減少する。しかし、ノズル管径
、ノズル孔径、流体の種類によっては逆の現象すなわち
、下流に向って噴出量が増大する現象も起る。しかしノ
ズル管径をできるだけ大きく、またノズル孔径をできる
だけ小さくすると圧力損失は全圧に比べて小となり、等
温系の下では均一分配が期待できる。
Generally, there is a pressure loss in the gas flow direction within the nozzle pipe, so the amount of ejection decreases downstream. However, depending on the nozzle pipe diameter, nozzle hole diameter, and type of fluid, the opposite phenomenon may occur, that is, the ejection amount increases toward the downstream. However, if the nozzle pipe diameter is made as large as possible and the nozzle hole diameter is made as small as possible, the pressure loss will be small compared to the total pressure, and uniform distribution can be expected in an isothermal system.

しかしながら、CVD装置などでは室温の反応ガスが反
応器に供給されるので、ノズル管内で反応ガスの温度が
変化し、いわゆる温度助走域が発生する。(2)式に示
されるようにノズル孔流量はガスの密度ρの関数である
ため、ノズル管内の圧力が均一に近い状態下でも温度分
布による不均一な分配状態が起り易い。実際ノズル管径
8mm、ノズル孔211I11、ノズル孔数19のノズ
ル管に5〜20Q/ff1inのソースガスを流通させ
たところ、常温の下では5%の精度で分配流量が得られ
たが、ノズル管内で常温から500℃まで加熱された場
合には、分配精度は30%に劣化した。
However, in a CVD apparatus or the like, a reaction gas at room temperature is supplied to a reactor, so the temperature of the reaction gas changes within the nozzle pipe, and a so-called temperature run-up region occurs. As shown in equation (2), the nozzle hole flow rate is a function of the gas density ρ, so even under conditions where the pressure inside the nozzle pipe is nearly uniform, an uneven distribution state due to temperature distribution is likely to occur. In fact, when a source gas of 5 to 20 Q/ff1 inch was passed through a nozzle pipe with a nozzle diameter of 8 mm, nozzle holes 211I11, and nozzle holes number 19, the distributed flow rate was obtained with an accuracy of 5% at room temperature, but the nozzle When the tube was heated from room temperature to 500° C., the distribution accuracy deteriorated to 30%.

一方、ガス冷却式二重管構造の場合、冷却ガス及び反応
ガスの温度分布は、壁温、流量などにより変化する。基
本的には二重管空熱交換器と同様な伝熱形態であるが、
本題のような多孔ノズルでは、流体の質量速度がノズル
管内で異なるところが相異点となる。理論的に表現する
と次式のような熱収支に関する基礎式になる。
On the other hand, in the case of a gas-cooled double-tube structure, the temperature distribution of the cooling gas and reaction gas changes depending on the wall temperature, flow rate, etc. Basically, the heat transfer form is similar to that of a double tube air heat exchanger, but
A multi-hole nozzle like the one in question is different in that the mass velocity of the fluid is different within the nozzle pipe. Expressed theoretically, the basic equation for heat balance is as follows.

冷却ガス 反応ガス ここで、W′=冷却ガスの質量速度、W n =ノズル
管内のガス質量速度、T’=冷却ガス温度、T=反対ガ
ス温度、T、=二重管外管の壁温、r′=外管の内径、
r=内管の内径、h’=外管環状路内の伝熱係数、U=
内管の内側と外側の総括伝熱係数である。
Cooling Gas Reactant Gas where W' = Mass velocity of the cooling gas, W n = Gas mass velocity in the nozzle tube, T' = Cooling gas temperature, T = Opposite gas temperature, T, = Wall temperature of the double outer tube. , r'=inner diameter of outer tube,
r=inner diameter of inner tube, h'=heat transfer coefficient in outer tube annular path, U=
This is the overall heat transfer coefficient between the inside and outside of the inner tube.

また出入する全体の熱収支は 壁からの伝熱量=冷却ガスが持去る熱量十ノズル多孔か
ら噴出したガスの持去る顕熱すなわち で示される。
The total heat balance in and out is expressed as the amount of heat transferred from the wall = the amount of heat removed by the cooling gas + the sensible heat removed by the gas ejected from the nozzle orifices.

上記の関係を満足しながら温度分布が形成されるが、冷
却ガスによってできるだけ均一な温度分布が形成される
ことが問題解決のポイントになる。
The temperature distribution is formed while satisfying the above relationship, and the key to solving the problem is to form a temperature distribution as uniform as possible using the cooling gas.

またノズル管内のガス温度の上限が析出温度を越えない
こと、余りノズル管内のガス温度を低くすると、基板面
の反応速度が不均一になるなどの恐れがあるので、下限
があり、ノズル噴出ガスの温度を適度に調整するような
冷却ガスの流量条件が問題になる。
In addition, the upper limit of the gas temperature in the nozzle tube must not exceed the deposition temperature, and if the gas temperature in the nozzle tube is lowered too much, the reaction rate on the substrate surface may become uneven, so there is a lower limit, and the nozzle ejected gas The problem is the flow rate conditions for the cooling gas that will appropriately adjust the temperature of the cooling gas.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多数枚の基板を同時に処理し、室温の
反応ガスが多孔ノズルによって反応器内に分配されるエ
ピタクシを含むCVD装置において。
The object of the present invention is to process a large number of substrates simultaneously in a CVD apparatus including epitaxy, in which a room temperature reactant gas is distributed into the reactor by a multi-hole nozzle.

各ノズル孔から反応ガスを均一な量噴出させ、したがっ
て多数枚基板上の各膜厚を均一にすることができる装置
を提供することにある。
It is an object of the present invention to provide an apparatus capable of ejecting a uniform amount of reaction gas from each nozzle hole, thereby making the thickness of each film uniform on a large number of substrates.

〔発明の概要〕[Summary of the invention]

ノズル管内で反応ガスが徐々に加熱され、温度勾配を持
つと、ノズル管径あるいはノズル孔径をガス流れ方向に
順次変え、かつ管内圧力を一定にしても各ノズル孔から
の噴出量は均一に分配されない。また二重管空ガス冷却
方式の多孔ノズルにおいてガス冷却流量を変えても均一
なノズル管内反応ガスの温度分布は形成されずノズル流
量の分配率は第4図に示すように悪い。図をよく見ると
室温のガスが加熱される部分において分配率が低下する
ので1本発明者らは反応ガスがノズル管に入る前にガス
を予熱して温度を上げることが一つの方法であることを
予測した。そこで、第5図に示すようにノズル管入口の
温度をいろいろ変化させると、ノズル番孔の分配流量が
良好となることが判明した。予熱温度は高い方が良いが
析出温度が上限である。また第6図に示すように冷却ガ
ス流量を多くすると、良好条件はノズル孔径の大きい方
に向くことが判った。ノズル孔は加工精度を考えると大
きい方が望ましい。またノズル孔が細径であるとノズル
管内の圧力が上昇し、液体の状態で充填しである例えば
5iH2CEL、のような低蒸気圧の反応ガスを使用す
る場合にはノズル管圧力に制限があるので、この場合も
ノズル孔径の大きな方が望ましい。
When the reaction gas is gradually heated in the nozzle pipe and there is a temperature gradient, the amount of ejection from each nozzle hole will be uniformly distributed even if the nozzle pipe diameter or nozzle hole diameter is sequentially changed in the gas flow direction and the pressure inside the pipe is kept constant. Not done. Furthermore, even if the gas cooling flow rate is changed in a multi-hole nozzle of the double-pipe air cooling type, a uniform temperature distribution of the reactant gas within the nozzle tube is not formed, and the distribution ratio of the nozzle flow rate is poor as shown in FIG. If you look closely at the diagram, you can see that the distribution ratio decreases in the part where the gas at room temperature is heated.1 The inventors have found that one method is to preheat the gas and raise its temperature before the reaction gas enters the nozzle pipe. I predicted that. Therefore, it has been found that by varying the temperature at the nozzle pipe inlet as shown in FIG. 5, the distribution flow rate of the nozzle hole can be improved. The higher the preheating temperature, the better, but the upper limit is the precipitation temperature. Furthermore, as shown in FIG. 6, it has been found that when the cooling gas flow rate is increased, favorable conditions tend toward the larger nozzle hole diameter. The larger the nozzle hole is, the better, considering the machining accuracy. In addition, if the nozzle hole is small, the pressure inside the nozzle pipe increases, and when using a low vapor pressure reaction gas such as 5iH2CEL, which is filled in a liquid state, there is a limit to the nozzle pipe pressure. Therefore, in this case as well, a larger nozzle hole diameter is desirable.

冷却ガスとしては例えばN2.N2などが用いられる。As the cooling gas, for example, N2. N2 etc. are used.

第7図に示すように冷却能率の良いN2の使用は好適で
あるが、この場合石英製ノズル管から反応系へのリーク
を極力押えるため充分なリークテストが必要である。
As shown in FIG. 7, it is preferable to use N2, which has good cooling efficiency, but in this case, a sufficient leak test is required to suppress leakage from the quartz nozzle tube to the reaction system as much as possible.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を第1図および第2図により説明
する。第1図は本発明の一実施例の多段ウェハ回転式の
常圧ホットウォール型シリコン・エピタキシャル装置の
反応器構造を示す図、第2図は第1図に示した装置の系
統図である。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing the reactor structure of a multi-stage wafer rotating atmospheric pressure hot wall type silicon epitaxial apparatus according to an embodiment of the present invention, and FIG. 2 is a system diagram of the apparatus shown in FIG.

1は石英製ベルジャで、その中に加熱用サセプタ2が置
かれ、多数枚基板4の反応温度1100℃を均一な温度
雰囲気に作り上げている6また基板4上に均一な膜厚の
膜を形成するため、多数枚基板は一つにまとめた治具5
に収められ、反応器内で回転する構造になっている。シ
リコン・ソースガスである5iCn4あるいはS i 
HZ CO2、キャリヤーガスH2及びドーピングガス
PH,などの反応ガスは、配管を通り、多孔ノズル管8
により各段の基板反応室へ噴出する。反応ガスは吸引管
9を経て排出される。多孔ノズル管8は二重管式ガス冷
却ノズル構造になっており、冷却用N2が配管6により
供給される。反応ガスがノズル管に到達する前に予熱ヒ
ータ10があり、予熱温度600℃は精密温度計で計測
され一定の高温にコントロールされる。また反応ガスの
流量によっては、冷却ガスもまた予熱ヒーター11によ
って加熱することもある。
1 is a quartz bell jar, in which a heating susceptor 2 is placed to create a uniform temperature atmosphere at a reaction temperature of 1100° C. for a large number of substrates 4. 6. A film with a uniform thickness is also formed on the substrates 4. In order to
The structure is such that it is housed in a reactor and rotates within the reactor. Silicon source gas 5iCn4 or Si
Reactive gases such as HZ CO2, carrier gas H2 and doping gas PH pass through the piping and enter the porous nozzle pipe 8.
The liquid is ejected into the substrate reaction chambers of each stage. The reaction gas is discharged via suction pipe 9. The porous nozzle pipe 8 has a double-pipe gas cooling nozzle structure, and cooling N2 is supplied through the pipe 6. There is a preheater 10 before the reaction gas reaches the nozzle pipe, and the preheating temperature of 600° C. is measured with a precision thermometer and controlled to a constant high temperature. Depending on the flow rate of the reaction gas, the cooling gas may also be heated by the preheating heater 11.

12は反応ガス導入管、13は高周波発振機、14は徘
ガス洗浄器、15は調節器付き温度計である。反応時間
は20分で膜厚10uInのシリコン膜を多数枚基板上
に同時に形成した。
12 is a reaction gas introduction pipe, 13 is a high frequency oscillator, 14 is a wandering gas scrubber, and 15 is a thermometer with a regulator. The reaction time was 20 minutes, and silicon films with a film thickness of 10 μIn were simultaneously formed on multiple substrates.

本実施例によれば、S x H2Cnz =0.2 Q
 / win、H2=2011 /win、 P H,
=0.OOI Q / minの反応ガスを、20個の
ノズル孔を有する二重管式ガス冷却ノズルを通して、多
数枚基板がセットされた各段へ分配したところ、予熱せ
ずに室温の反応ガスを供給したとき、全膜厚精度は±1
5%であったが、600℃まで予熱したときには±3%
の膜厚精度が得られた。また予熱の場合にもノズル管内
に析出が見られず、ノズル管内の閉塞がないので取り出
してクリーニングを行う必要がなく連続運転が可能であ
った。
According to this example, S x H2Cnz =0.2 Q
/win, H2=2011 /win, P H,
=0. When the reaction gas at OOI Q/min was distributed to each stage where a large number of substrates were set through a double-pipe gas cooling nozzle with 20 nozzle holes, the reaction gas at room temperature was supplied without preheating. When the total film thickness accuracy is ±1
5%, but when preheated to 600℃, ±3%
A film thickness accuracy of . Further, even in the case of preheating, no precipitation was observed inside the nozzle pipe, and since there was no blockage inside the nozzle pipe, there was no need to take it out for cleaning, and continuous operation was possible.

なお、本発明は上記実施例に限定されることなく、特許
請求の範囲内において、いろいろな変形があり得ること
はいうまでもない。
It goes without saying that the present invention is not limited to the above embodiments, and that various modifications may be made within the scope of the claims.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明はノズル管に入る反応ガス
を予熱する手段を設けたことにより、ノズル番孔の分配
流量を良好にし、多数枚、基板上の膜厚を高精度に制御
することができる効果がある。
As explained above, the present invention provides a means for preheating the reaction gas entering the nozzle pipe, thereby improving the distribution flow rate of the nozzle hole and controlling the film thickness on a large number of substrates with high precision. It has the effect of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の多段ウェハ回転式のシリコ
ン・エピタキシャル装置の構造を示す図、第2図は第1
図の装置の系統図、第3図は温度−濃度曲線で化学平衡
濃度とSio2上への析出を示す過飽和濃度を示す模式
図、第4図は二重管ノズル内のガス温度分布を示し、第
3図により定められる析出温度からノズル管内の析出状
況を示す図、第5図は予熱温度をパラメータに、第6図
はノズル孔径をパラメータとしたノズル孔の分配流量比
と反応ガスの温度分布を示す図、第7図は予熱によりノ
ズル分配流量比が向上した例を示す図である。 1・・・反応器の石英製ベルジャ 2・・・高周波加熱用サセプタ 3・・・高周波コイル   4・・・ウェハ5・・・回
転するウェハ支持台 6・・・冷却ガス導入管  7・・・二重管ノズルの外
管8・・・二重管ノズルの内管で反応ガスのノズル管9
・・・反応ガス排出管  10・・・反応ガス予熱ヒー
タ11・・・冷却ガス予熱ヒータ 12・・・反応ガス導入管  13・・・高周波発振機
14・・・排ガス洗浄器
FIG. 1 is a diagram showing the structure of a multi-stage wafer rotation type silicon epitaxial device according to an embodiment of the present invention, and FIG.
Figure 3 is a schematic diagram of the temperature-concentration curve showing the chemical equilibrium concentration and supersaturation concentration showing precipitation on Sio2, Figure 4 shows the gas temperature distribution in the double tube nozzle, Figure 3 shows the precipitation situation in the nozzle pipe from the deposition temperature determined by the precipitation temperature, Figure 5 shows the distribution flow ratio of the nozzle hole and the temperature distribution of the reactant gas with the preheating temperature as a parameter, and Figure 6 the nozzle hole diameter as a parameter. FIG. 7 is a diagram showing an example in which the nozzle distribution flow rate ratio is improved by preheating. 1... Quartz bell jar of the reactor 2... Susceptor for high frequency heating 3... High frequency coil 4... Wafer 5... Rotating wafer support stand 6... Cooling gas introduction pipe 7... Outer tube 8 of double tube nozzle... Inner tube of double tube nozzle, nozzle tube 9 for reaction gas
... Reaction gas discharge pipe 10 ... Reaction gas preheating heater 11 ... Cooling gas preheating heater 12 ... Reaction gas introduction pipe 13 ... High frequency oscillator 14 ... Exhaust gas cleaning device

Claims (1)

【特許請求の範囲】[Claims] 各基板上に反応ガスを流通させる多孔ノズル管を具備し
、多数枚基板上に同時に薄膜を形成するエピタクシを含
むCVD装置において、上記ノズル管が、上記反応ガス
と該反応ガスの冷却ガスとを流通させる複合管構造にな
っており、かつ上記ノズル管に入る反応ガスを予熱する
予熱手段を具備することを特徴とするCVD装置。
In a CVD apparatus including an epitaxy system that is equipped with a porous nozzle pipe that allows a reaction gas to flow over each substrate and forms thin films on multiple substrates at the same time, the nozzle pipe allows the reaction gas to flow through the reaction gas and a cooling gas for the reaction gas. A CVD apparatus characterized in that it has a composite pipe structure for flowing, and is equipped with preheating means for preheating the reaction gas entering the nozzle pipe.
JP60110475A 1985-05-24 1985-05-24 CVD equipment Expired - Lifetime JPH0713946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60110475A JPH0713946B2 (en) 1985-05-24 1985-05-24 CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60110475A JPH0713946B2 (en) 1985-05-24 1985-05-24 CVD equipment

Publications (2)

Publication Number Publication Date
JPS61269307A true JPS61269307A (en) 1986-11-28
JPH0713946B2 JPH0713946B2 (en) 1995-02-15

Family

ID=14536650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60110475A Expired - Lifetime JPH0713946B2 (en) 1985-05-24 1985-05-24 CVD equipment

Country Status (1)

Country Link
JP (1) JPH0713946B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437464U (en) * 1987-07-27 1989-03-07
JPH0737832A (en) * 1993-07-24 1995-02-07 Yamaha Corp Vertical heat-treating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110475A (en) * 1979-02-20 1980-08-25 Nec Corp Image sensor
JPS57484A (en) * 1980-02-07 1982-01-05 Origin Electric Atmospheric gas introducing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110475A (en) * 1979-02-20 1980-08-25 Nec Corp Image sensor
JPS57484A (en) * 1980-02-07 1982-01-05 Origin Electric Atmospheric gas introducing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437464U (en) * 1987-07-27 1989-03-07
JPH0512280Y2 (en) * 1987-07-27 1993-03-29
JPH0737832A (en) * 1993-07-24 1995-02-07 Yamaha Corp Vertical heat-treating device

Also Published As

Publication number Publication date
JPH0713946B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP4778655B2 (en) Method and apparatus for depositing one or more coatings on a substrate
US4619844A (en) Method and apparatus for low pressure chemical vapor deposition
JPS6115322A (en) Homogeneous chemical depositing method and device therefor
EP0164928A2 (en) Vertical hot wall CVD reactor
CN202164350U (en) Metal organic chemical vapor deposition reactor
JPS61269307A (en) Cvd device
JPS63316425A (en) Manufacturing apparatus for semiconductor device
JP2602298B2 (en) Vapor phase growth equipment
JP4677873B2 (en) Deposition equipment
JPS62263629A (en) Vapor growth device
JPS6251919B2 (en)
CN102766851B (en) Metal organic chemical vapor deposition reactor
JPS59159980A (en) Vapor growth device
JPS6168393A (en) Hot wall type epitaxial growth device
CN202164351U (en) Metal organic chemical vapor deposition reactor
CN102766852B (en) MOCVD reactor
JPH08250429A (en) Vapor growth method for semiconductor and its equipment
JPS626682Y2 (en)
JPS60236216A (en) Vapor growth apparatus
JPS63202016A (en) Vapor growth apparatus
JPS59207899A (en) Gaseous phase reactor
JPS62158867A (en) Cvd thin film forming device
JPH02239187A (en) Method and device for vapor growth
JPS62173712A (en) Vapor growth equipment
JPH07193003A (en) Vapor growth device and vapor growth method