JPS6126823A - Thermal type flow rate detecting sensor - Google Patents

Thermal type flow rate detecting sensor

Info

Publication number
JPS6126823A
JPS6126823A JP14994384A JP14994384A JPS6126823A JP S6126823 A JPS6126823 A JP S6126823A JP 14994384 A JP14994384 A JP 14994384A JP 14994384 A JP14994384 A JP 14994384A JP S6126823 A JPS6126823 A JP S6126823A
Authority
JP
Japan
Prior art keywords
flow rate
heat
temperature
resistive film
spiral groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14994384A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Mikio Bessho
別所 三樹生
Hiroshi Sato
博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14994384A priority Critical patent/JPS6126823A/en
Publication of JPS6126823A publication Critical patent/JPS6126823A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the sensitivety of the sensor and increase its accuracy by setting the both-end distance of a spiral groove formed by laser beam machining to >=90% of the length of an insulating pipe. CONSTITUTION:A temperature dependent resistance film is vapor-deposited on the external surface of the cylindrical insulating pipe 1 made of ceramic including its flanl. Then, the spiral groove 3 is formed uniformly by laser beam machining. In this case, the both-end distance of the spiral groove 3 is set to >=90% of the length of the insulating pipe 1. Consequently, the sensitivity of the sensor is improved, the accuracy is high, and superior responsibility is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は温度依存性抵抗膜と流体間の熱伝達を利用し
て流量を検出する感熱形流量検出用センサに関するもの
である8 〔従来技術〕 第1図は例えば特(用昭56、−106159号公報に
示さhた従来の感熱形流量検出用センサを示す斜視図で
あり、図において、(1)はアルミナ製の円筒形絶縁管
、(2)けこの絶縁管[11の外表面上に塗付した温度
依存性抵抗膜で、例えば白金抵抗膜、+3) ld白金
抵抗膜(2)Kレーザトリマを用いて均−巾でらせん状
に設けた溝で、溝の部分に白金抵抗膜が残留しないよう
に上記レーザ加工で作成さねたもので、上記感熱形流量
検出用センザが所望の抵抗値を有するように形成されて
いる。(4)は上記絶縁管il+の両端から差し込んで
固定した電極端子、(5)はガラスコート膜、+61 
tri上記′屯極端子に接続したリード線である。ここ
で、上記溝(3)を設けた部分は上記絶縁管(1)の長
さの70係以上としている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat-sensitive flow rate detection sensor that detects a flow rate using heat transfer between a temperature-dependent resistive film and a fluid8 [Prior Art] FIG. 1 is a perspective view showing a conventional heat-sensitive flow rate detection sensor disclosed in, for example, Japanese Patent Publication No. 56-106159. In the figure, (1) is an alumina cylindrical insulation tube; 2) Temperature-dependent resistive film coated on the outer surface of the insulating tube [11, for example, platinum resistive film, +3) LD platinum resistive film (2) Disposed spirally with uniform width using a K laser trimmer. The grooves are formed by laser machining so that no platinum resistive film remains in the grooves, and the heat-sensitive flow rate detection sensor is formed to have a desired resistance value. (4) is an electrode terminal inserted and fixed from both ends of the insulating tube il+, (5) is a glass coated film, +61
This is the lead wire connected to the above-mentioned terminal. Here, the portion where the groove (3) is provided is at least 70 times the length of the insulating tube (1).

以上のように構成さねた感熱形流量検出用センサは流路
中に流れ方向に対して垂直VCなるよう設置される。
The heat-sensitive flow rate detection sensor configured as described above is installed in the flow path so as to be perpendicular to the flow direction.

次に動作について説明する。流れの中に置かれた発熱抵
抗体と流体との間の熱伝達量にと質量流量Qとの間には
次の関係があることが一般に知られている。
Next, the operation will be explained. It is generally known that the following relationship exists between the amount of heat transfer between a heating resistor placed in a flow and a fluid and the mass flow rate Q.

x=A(C!l +c2rq )”(TH−Ta ) 
       filここで、A :発熱抵抗体と流体
の接触面積TH:発熱抵抗体の温度 Ta:流体の温度 C1、(!2 :定数 また、発熱抵抗体における発熱量Pけ p=Ru■2f21 ここで、RH二発熱抵抗体の抵抗値 工 :発熱抵抗体の加熱電流゛・ で与えられる。発熱抵抗体の発熱量と熱伝達量が平衡状
態にあるとき、次の関係が成り立つ。
x=A(C!l+c2rq)”(TH-Ta)
filHere, A: Area of contact between the heat generating resistor and the fluid TH: Temperature of the heat generating resistor Ta: Temperature of the fluid C1, (!2: Constant Also, the amount of heat generated by the heat generating resistor Pkep=Ru■2f21 Here, , RH The resistance value of the heating resistor is given by the heating current of the heating resistor: When the amount of heat generated by the heating resistor and the amount of heat transfer are in equilibrium, the following relationship holds.

H 流tQvxのみの関数として検出する[け、(2)式に
おいてTu−Ta、すなわち発熱抵抗体と周囲流体の温
度差が一定であることが望ましく、このような定温度差
測定法は時定数を小さくでAる長所があり、今日広く用
いられている。
H is detected as a function only of the flow tQvx [In Equation (2), it is desirable that the temperature difference between Tu-Ta, that is, the heating resistor and the surrounding fluid, be constant; such a constant temperature difference measurement method requires a time constant. It has the advantage of being small and is widely used today.

第1図に示したように発熱抵抗体をなす白金抵抗膜は該
中心部をレーザートリミングしているため、中心軸方向
に抵抗分布を有し、電極端子部における抵抗値は中心s
Vc比べ非常に小さい。よって(2)式で表わさね、る
発熱量Pけトリミングさねた部分における発熱量と考え
られ、筐た(1)式で与えられる発熱抵抗体と流体との
接触面積は、上記トリミング部分と流体との接触面積に
近似できる。
As shown in Fig. 1, the platinum resistive film forming the heat generating resistor has its central part laser-trimmed, so it has a resistance distribution in the direction of the central axis, and the resistance value at the electrode terminal part is at the center s.
Very small compared to Vc. Therefore, the amount of heat generated by the equation (2) is considered to be the amount of heat generated in the trimmed portion, and the contact area between the heating resistor and the fluid given by the equation (1) is equal to the amount of heat generated in the trimmed portion. It can be approximated to the contact area with the fluid.

従来の感熱形流量検出用センサはレーザートリミングの
溝の両端間距離がMe管の長さの70チ〜90%であり
、温度依存性抵抗膜の大きさの割に上記実効接触面積が
小さいため、例えば市極喘子付近の流速変化に対しては
感度が低くなる構造となっていた。
In conventional heat-sensitive flow rate detection sensors, the distance between both ends of the laser-trimmed groove is 70 inches to 90% of the length of the Me tube, and the effective contact area is small compared to the size of the temperature-dependent resistive film. For example, the structure had a low sensitivity to changes in flow velocity near the city pole.

捷だ、急激な流量増加があった時、温度依存性抵抗膜の
トリミング部における発熱量は直接流体に伝達されると
共に電極端子部を介しても流体の方へ流れるため、電極
端子部の熱容量に相当する時間遅れが存在する。
When there is a sudden increase in flow rate, the heat generated at the trimming part of the temperature-dependent resistive film is directly transferred to the fluid and also flows toward the fluid through the electrode terminal, so the heat capacity of the electrode terminal increases. There is a time delay corresponding to .

従来の感熱形流量検出用センサは以上のように構成さね
ているので、流体との実効接触面積か小さく、そのため
感度が低い、時定数が大きいなどの欠点があった。
Since the conventional heat-sensitive flow rate detection sensor is constructed as described above, the effective contact area with the fluid is small, resulting in drawbacks such as low sensitivity and large time constant.

〔発明の概要〕[Summary of the invention]

この発E!A汀上記のような従来のものの欠点を除去す
るためになされたもので、レーザ加工により作成したら
せん状の溝の両端間距離が、絶縁管の長さの90%以上
とすることにより、高精度で応答性に優れ7c感熱形流
量検出用センサを提供するものである。
This release E! This was done in order to eliminate the drawbacks of the conventional ones as described above, and by making the distance between both ends of the spiral groove created by laser processing at least 90% of the length of the insulating tube, high The present invention provides a 7C heat-sensitive flow rate detection sensor with excellent accuracy and responsiveness.

〔発明の実柿例〕[Example of invention]

以下、この発明の一実施例を図について説明する0第2
図において、fi+は内径0.3mm、外径0.8mn
n、長さ3mmのセラミックより成る円筒形絶縁管、(
21Vi上記絶縁管の側面も含む外表面上に蒸着によっ
て形成した白金よりなる温度依存性抵抗膜、(3)は溝
巾が数pmのレーザ加工溝で、絶縁管の一端力)らO、
1111mの部位力)ら他端からo 、 1mmの部位
近傍までらせん状に均一に設は戯れている。(6)は外
径0.2〜0.3mmのステンレス鋼力)ら成るリード
線で、上記絶縁管(11の両@開口部より挿入さhてい
る。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
In the figure, fi+ has an inner diameter of 0.3 mm and an outer diameter of 0.8 mm.
n, a cylindrical insulating tube made of ceramic with a length of 3 mm, (
21Vi A temperature-dependent resistance film made of platinum formed by vapor deposition on the outer surface including the side surface of the insulating tube; (3) is a laser-processed groove with a groove width of several pm;
It is uniformly set in a spiral shape from the other end to the vicinity of the part 1 mm from the other end. (6) is a lead wire made of stainless steel with an outer diameter of 0.2 to 0.3 mm, which is inserted through both openings of the insulating tube (11).

(7)は白金ペースト等導電ペーストで焼結により上記
リード線(6)と白金抵抗膜+21 I′i接続さねて
いる。
(7) is connected to the lead wire (6) by platinum resistive film +21 I'i by sintering with a conductive paste such as platinum paste.

(5)げ白金抵抗膜(2)上に被検する厚さ数71mの
ガラスコート膜である。このような発熱抵抗体の抵抗値
は室温で10〜20Ω、温度係数は0.35%/℃であ
る。
(5) A glass coated film with a thickness of several 71 m is to be tested on the platinum resistive film (2). The resistance value of such a heating resistor is 10 to 20Ω at room temperature, and the temperature coefficient is 0.35%/°C.

以上のように構成した発熱抵抗体をブリッジ回路の一辺
に組み込み、他の一片に同種の感温抵抗体を配し、ブリ
ッジ平衡がと看るようにブリッジ印加電圧全制御する。
The heat-generating resistor constructed as described above is incorporated in one side of the bridge circuit, a temperature-sensitive resistor of the same type is placed on the other side, and the voltage applied to the bridge is fully controlled so that the bridge balance is maintained.

発熱抵抗体の抵抗値RHヲ一定、すなわち発熱抵抗体の
温度を一定化して、加熱゛嘔流工を検出することにより
、流量測定を行なうことかできる。
The flow rate can be measured by keeping the resistance value RH of the heat generating resistor constant, that is, the temperature of the heat generating resistor, and detecting the heating leakage.

このような定温度差法による流量測定は、一般に定電流
法と比較して応答性にすぐれ、時定数は感温素子自体の
時定数をフィードバック率で除した値で近似される。し
力)し、このような近似は白金抵抗膜とサポート間が熱
的に絶縁さね、さらにジュール熱が白金抵抗膜表面全体
に均一に分布した時に成立する。
Flow rate measurement using such a constant temperature difference method generally has better responsiveness than the constant current method, and the time constant is approximated by the value obtained by dividing the time constant of the temperature sensing element itself by the feedback rate. This approximation is true when there is no thermal insulation between the platinum resistive film and the support, and when Joule heat is uniformly distributed over the entire surface of the platinum resistive film.

ここで急激な流量増加があった時の加熱゛電流の時間変
化を第3図に示す。図中、人は従来品の過波特性、Bは
この発明の一実施例の過渡特性である。上2実施例にお
いて、白金抵抗膜とリード間の熱抵抗は流体との熱抵抗
に比べて十分大きく、また発熱量も上記抵抗膜とリード
の接続部近傍まで均一な分布を呈するため、発熱量の殆
んどが直接、流体方向に伝達される。よって上述したよ
うに時定数は制御系のフィードバック率で除した価で近
似され、従来品に見らねたような上記抵抗膜のトリミン
グされていない部分の熱容量に相当する時間遅れが無視
できるほど応答性のすぐf′また特性が得られるようK
なった。
FIG. 3 shows the change in heating current over time when there is a sudden increase in flow rate. In the figure, B is the transient characteristic of the conventional product, and B is the transient characteristic of an embodiment of the present invention. In the above two embodiments, the thermal resistance between the platinum resistive film and the lead is sufficiently larger than the thermal resistance with the fluid, and the amount of heat generated is evenly distributed up to the vicinity of the connection between the resistive film and the lead. most of which is transmitted directly in the fluid direction. Therefore, as mentioned above, the time constant is approximated by the value divided by the feedback rate of the control system, and the time delay corresponding to the heat capacity of the untrimmed portion of the resistive film, which was not found in conventional products, can be ignored. In order to obtain the characteristics of response immediately f′ and K
became.

次にトリミング率(絶縁管の長さに対する溝の両端間距
離の率)と定温度差法により測定した時の時定数との関
係ケ第4図に示す。図より、トリミング率が大きい程、
時定数は小さくなり、トリミング率90%付近寸でほぼ
直線的に変化する。よって感温素子のトリミング率を9
0%以上とすることにより、応答性のすぐhfc感熱形
流量検出用セyすが実埃できる。
Next, FIG. 4 shows the relationship between the trimming rate (the ratio of the distance between both ends of the groove to the length of the insulating tube) and the time constant when measured by the constant temperature difference method. From the figure, the higher the trimming rate, the more
The time constant becomes small and changes almost linearly when the trimming rate is around 90%. Therefore, the trimming rate of the temperature sensing element is 9
By setting it to 0% or more, the HFC heat-sensitive type flow rate detection device with quick response can become a real problem.

なお、上記実施例では温度依存性抵抗膜として白金を蒸
着により形成したもの全示したが、白金粉末を含むペー
ストを塗布したもの、また、ニッケル、銅を用いた。も
のでもよい。
In the above embodiments, all the temperature-dependent resistance films were formed by vapor deposition of platinum, but those coated with a paste containing platinum powder were also used, and nickel and copper were also used. It can be anything.

捷た、上記実施例では発熱抵抗体の場合について説明し
たが、温度補償用の感温抵抗体の場合についても上記実
推例と同様の効果を奏する。
In the above embodiment, the case of a heat generating resistor was explained, but the same effect as in the above practical example can be obtained also in the case of a temperature sensitive resistor for temperature compensation.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発IJ[よhば、レーザ加工により
作成したらせん状の溝の両端間距離が、上記絶縁管の長
さの90%以上としたので、感度が向上し、精度の商い
、また応答性のすぐれたものが得られる効果がある。
As mentioned above, since the distance between both ends of the spiral groove created by laser processing is 90% or more of the length of the insulating tube, the sensitivity is improved and the accuracy is improved. , and also has the effect of providing excellent responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の感熱形流量検出用センサを示す斜視図、
第2図はこの発明の一実施例による感熱形流量検出用セ
ンサを示す斜視図、第3図は従来及びこの発明の一実施
例による感熱形流量検出用センサの過渡特性を示す特性
図、第4図はこの発明の一実施例による感熱形流量検出
用センサのトリミング率と時定数との関係を示す特性図
である。 il+・・・絶縁管、(2)・・・温度依存性抵抗膜、
(3)・・・溝なお、図中、同一符号け(ロ)−1又は
相当部分を示す。
Fig. 1 is a perspective view showing a conventional heat-sensitive flow rate detection sensor;
FIG. 2 is a perspective view showing a heat-sensitive flow rate detection sensor according to an embodiment of the present invention, FIG. FIG. 4 is a characteristic diagram showing the relationship between the trimming rate and the time constant of a heat-sensitive flow rate detection sensor according to an embodiment of the present invention. il+...Insulating tube, (2)...Temperature-dependent resistance film,
(3) Groove In the drawings, the same reference numeral (B) -1 or equivalent parts are shown.

Claims (1)

【特許請求の範囲】[Claims] 絶縁管の外表面上に温度依存性抵抗膜を形成し、この温
度依存性抵抗膜に、均一にらせん状の溝を溝の部分に上
記温度依存性抵抗膜が残留しないようにレーザ加工で作
成して所望の抵抗値を有するように形成した感熱形流量
検出用センサにおいて、レーザ加工により作成したらせ
ん状の溝の両端間距離が、上記絶縁管の長さの90%以
上としたことを特徴とする感熱形流量検出用センサ。
A temperature-dependent resistive film is formed on the outer surface of the insulating tube, and a uniform spiral groove is created in the temperature-dependent resistive film by laser processing so that the temperature-dependent resistive film does not remain in the groove. A heat-sensitive flow rate detection sensor formed to have a desired resistance value, characterized in that the distance between both ends of the spiral groove created by laser processing is 90% or more of the length of the insulating tube. A heat-sensitive flow rate detection sensor.
JP14994384A 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor Pending JPS6126823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14994384A JPS6126823A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14994384A JPS6126823A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Publications (1)

Publication Number Publication Date
JPS6126823A true JPS6126823A (en) 1986-02-06

Family

ID=15485961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14994384A Pending JPS6126823A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Country Status (1)

Country Link
JP (1) JPS6126823A (en)

Similar Documents

Publication Publication Date Title
US4686856A (en) Mass flow meter
JPH08201327A (en) Heat conductivity meter
US4279147A (en) Directional heat loss anemometer transducer
EP0353996B1 (en) A flow sensor
JP2842729B2 (en) Thermal flow sensor
US5398549A (en) Flowmeter sensor
US5094105A (en) Optimized convection based mass airflow sensor
US4502339A (en) Thermal pulse emitter or detector element
JPH1038652A (en) Thermal mass flowmeter
JPS6126823A (en) Thermal type flow rate detecting sensor
JP2529895B2 (en) Flow sensor
JP2592333B2 (en) Air flow sensor element and method of manufacturing the same
US5315871A (en) Thermal flowmeter with detecting element supported by supports having engaging portions
US5361634A (en) Heat-sensitive flow rate sensor
JP7156014B2 (en) Thermistor and gas sensor provided with the same
JPS6242368Y2 (en)
RU2126956C1 (en) Heat flowmeter
JPH05215583A (en) Thermal type flow rate sensor
JPH01109221A (en) Heat generating resistance body for thermal flowmeter
JP3118667B2 (en) Absolute humidity sensor
JPS6126824A (en) Thermal type flow rate detecting sensor
JP2646846B2 (en) Temperature-sensitive resistance element
JPH0674803A (en) Heat sensing flow rate sensor
JPS60171421A (en) Thermosensitive type flow rate detection element
JPH03295418A (en) Thermal type mass flowmeter sensor