JPS6126824A - Thermal type flow rate detecting sensor - Google Patents

Thermal type flow rate detecting sensor

Info

Publication number
JPS6126824A
JPS6126824A JP14994484A JP14994484A JPS6126824A JP S6126824 A JPS6126824 A JP S6126824A JP 14994484 A JP14994484 A JP 14994484A JP 14994484 A JP14994484 A JP 14994484A JP S6126824 A JPS6126824 A JP S6126824A
Authority
JP
Japan
Prior art keywords
flow rate
sensor
insulating pipe
heat
trimming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14994484A
Other languages
Japanese (ja)
Inventor
Koji Tanimoto
考司 谷本
Mikio Bessho
別所 三樹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14994484A priority Critical patent/JPS6126824A/en
Publication of JPS6126824A publication Critical patent/JPS6126824A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve the responsibility of the sensor and reduce variance in time constant by forming trimming grooves in an insulating pipe lengthwise. CONSTITUTION:A temperature dependent resistance film 2 is vapor-deposited on the external surface of the cemamic-made cylindrical insulating pipe 1. Then, platinum wires 3 are inserted into said insulating pipe from both end opening parts and platimum paste 4 is stuck and sintered to fix the wires. Further, the trimming grooves 5 are formed in the platinum thin film 2 alternately in a comb shape up to positions about 0.1mm. way from both ends in the lengthwise direction of the sensor by using a laser trimmer. Thus, the trimming grooves 5 are provided to the insulating pipe 1 lengthwise, so the insulating pipe 1 is easily trimmed almost to both end parts, so superior responsibility is obtained while the sensitivity and accuracy of the sensor are improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は温度依存性抵抗膜と流体間の熱伝達を利用し
て流量を検出する感熱形流量検出用センサに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat-sensitive flow rate detection sensor that detects a flow rate using heat transfer between a temperature-dependent resistive film and a fluid.

〔従来技術〕[Prior art]

従来の感熱形流量検出用センサとして第1図に示すもの
があった。図において、(1)はセラミック又は石英な
どから成る円筒形絶縁管、(2)はこの絶縁管(1)の
外表面上に形成した温度依存性抵抗膜でこの場合白金抵
抗膜、(3)は上記絶縁管(1)の両端開口部から挿入
し、固定したリード、(4)はこのリード(3)と絶縁
管(1)とを接続するための白金ペースト、(5)は感
熱形流量検出用セ/すの抵抗値が所望の値になるように
レーザを用いてらせん状に形成したトリミング溝で、溝
の部分に温度依存性抵抗膜が残留しないように作成され
ている。(6)は上記白金抵抗膜(2)及びトリミング
溝(5)の上に設けたAl2Oい又は5i02から成る
コーテイング膜である。
A conventional heat-sensitive flow rate detection sensor is shown in FIG. In the figure, (1) is a cylindrical insulating tube made of ceramic or quartz, etc., (2) is a temperature-dependent resistive film formed on the outer surface of this insulating tube (1), in this case a platinum resistive film, and (3) is a platinum resistive film. (4) is a platinum paste for connecting this lead (3) and the insulating tube (1), (5) is a heat-sensitive flow rate. The trimming groove is formed in a spiral shape using a laser so that the resistance value of the detection cell becomes a desired value, and is created so that no temperature-dependent resistance film remains in the groove portion. (6) is a coating film made of Al2O or 5i02 provided on the platinum resistive film (2) and the trimming groove (5).

以上の様に形成された感熱形流量検出用センサに通電し
て流体温度よりも高い温度に加熱しておく。これに流体
が当るとその流速および流量に応じた熱量が上記センサ
からうばわれ、その時の流量Qと熱ti+には次のキン
グの関係式が成立することが一般に知られている。
The heat-sensitive flow rate detection sensor formed as described above is energized and heated to a temperature higher than the fluid temperature. It is generally known that when a fluid hits this, the flow rate and amount of heat corresponding to the flow rate are taken away from the sensor, and the following King's relational expression holds between the flow rate Q and the heat ti+ at that time.

H= (A+Br、 ) (TH−Ta )ことでA、
Bは定数、TH−Thはセンサと流体との温度差である
。よって上記温度差を一定に保持し、熱量H又はそれに
相当した加熱電流を検出することにより流量又は流速が
測定できる。
H= (A+Br, ) (TH-Ta), so A,
B is a constant and TH-Th is the temperature difference between the sensor and the fluid. Therefore, the flow rate or flow velocity can be measured by keeping the temperature difference constant and detecting the amount of heat H or the heating current corresponding to it.

第1図に示すように従来の感熱形流量検出用センサはト
リミング溝がらせん状に施されているため、絶縁管両端
部又は一方端にトリミング溝の施されていない部分が残
存しやすい構造となっており、以下の様な欠点を有して
いた。即ち、加熱電流による発熱部はトリミング溝の施
されているセンサの中央部分であるため、センナの両端
部においては流量変化に対して感度が低く、また、その
部分の有する熱容量によってセンサの応答が遅れるとい
う欠点があった。
As shown in Figure 1, conventional heat-sensitive flow rate detection sensors have trimming grooves formed in a spiral shape, so the structure tends to leave parts without trimming grooves at both ends or one end of the insulation tube. It had the following drawbacks. In other words, since the part that generates heat due to the heating current is the central part of the sensor where the trimming groove is provided, the sensitivity to changes in flow rate is low at both ends of the sensor, and the response of the sensor is affected by the heat capacity of that part. It had the disadvantage of being late.

従来の感熱式流量検出センサは以上の様にらせん状にト
リミングされているので抵抗値によってはセンサの端付
近にトリミング溝の施されない部分が残り、応答性が悪
く、時定数もセンサによってばらつくなどの欠点があっ
た。
Conventional heat-sensitive flow rate detection sensors are trimmed in a spiral shape as described above, so depending on the resistance value, a portion without the trimming groove may remain near the end of the sensor, resulting in poor response and time constant variation depending on the sensor. There was a drawback.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、絶縁管の長手方向に沿ってトリミ
ング溝を作成することによシ、応答性にすぐれ、時定数
のばらつきも小さい感熱形流量検出用セ/すを提供する
ものである。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method, and by creating trimming grooves along the longitudinal direction of the insulating tube, it has excellent responsiveness and small variation in time constant. The present invention provides a heat-sensitive flow rate detection device.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、(1)は外径1mn、内径0.6■長さ3
.2埠のセラミック製の円筒形絶縁管、(2)はこの絶
縁管(1)の外表面上に蒸着によ多形成した厚さ約20
00 Xの白金薄膜で温度依存性抵抗膜をなす0(3〕
ば、径0.3 tanの白金線で上記絶縁管(1)の両
端開口部より挿入し、白金ペースト(4)を付着、焼結
させて固定している。(5)は上記白金薄膜(2)にレ
ーザトリマを用いてセンサの長手方向に両端から約0.
1闇の部位までクシ形に交互に設けたトリミング溝で、
溝の部分に上記白金薄膜が残留しないようにレーザ/J
11工され、センサが所望の抵抗値を有するように形成
される。(6)は白金薄膜(2)上に被覆した非晶質ガ
ラスのコーテイング膜である。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, (1) has an outer diameter of 1 mm, an inner diameter of 0.6 mm, and a length of 3 mm.
.. A cylindrical ceramic insulating tube (2) with a thickness of approximately 20 mm is formed by vapor deposition on the outer surface of the insulating tube (1).
Temperature-dependent resistance film made of platinum thin film of 0 (3)
For example, a platinum wire with a diameter of 0.3 tan is inserted through the openings at both ends of the insulating tube (1), and a platinum paste (4) is attached and sintered to fix it. (5) Approximately 0.0 mm is applied to the platinum thin film (2) from both ends in the longitudinal direction of the sensor using a laser trimmer.
1. Trimming grooves alternately provided in a comb shape up to the dark area,
Laser/J is applied so that the platinum thin film does not remain in the groove.
11 steps are performed to form the sensor to have a desired resistance value. (6) is a coating film of amorphous glass coated on the platinum thin film (2).

なお、上記のようなセンナは、その長手方向が流体の流
れ方向に対してほぼ直角、又は平行となるように配設さ
れるもので、その動作方法については従来の装置と同様
であるため説明を省略する。
The above-mentioned senna is arranged so that its longitudinal direction is approximately perpendicular or parallel to the flow direction of the fluid, and its operating method is the same as that of conventional devices, so it will not be explained here. omitted.

以上の様に構成された感熱形流量検出用センサはトリミ
ング溝がセンサの両端近くまで設けられているため、中
心軸方向の単位長さ当妙の抵抗値はリード端子間におい
て全んど均一な分布を示’t’。
In the heat-sensitive flow rate detection sensor configured as described above, the trimming groove is provided close to both ends of the sensor, so the resistance value for a unit length in the central axis direction is completely uniform between the lead terminals. 't' indicates the distribution.

よって通電した際、白金薄膜表面上の発熱分布は長手方
向に対してリード端子まで均一な分布を呈する。
Therefore, when electricity is applied, the heat generation distribution on the surface of the platinum thin film exhibits a uniform distribution in the longitudinal direction up to the lead terminals.

これにより、絶縁管の両端部付近の流速変化に対する感
度が高くなり、実質的な熱伝達面積は増大する。
This increases the sensitivity to changes in flow velocity near both ends of the insulating tube and increases the effective heat transfer area.

次にセンサの過渡特性について説明を付なう。Next, the transient characteristics of the sensor will be explained.

定温度差動作時において急激な流量変化に対する加熱電
流の時間変化を第;つ図に示す。
Figures 1 and 2 show changes in heating current over time in response to sudden changes in flow rate during constant temperature difference operation.

図中Aは従来センサの特性、Bはこの発明の一実施例の
特性である。
In the figure, A is the characteristic of a conventional sensor, and B is a characteristic of an embodiment of the present invention.

従来センサにおいては、発熱量の流体への熱伝達は、セ
ンナ中心部の発熱部から直接流体へ流れる他に、トリミ
ング溝の施工されていない非発熱部を介しても伝わるた
めに、時間遅れが生じていたが、上記実施例においては
、発熱量のほとんど全てが直接流体へ伝わるために、従
来センサに見られたようなセンナの熱容量に相当する時
間遅れが無視できるほど応答性の優れた特性が得られる
ようになった。
In conventional sensors, heat transfer to the fluid occurs not only from the heat generating part in the center of the senna directly to the fluid, but also through non-heat generating parts where trimming grooves have not been installed, resulting in a time delay. However, in the above example, almost all of the calorific value is transmitted directly to the fluid, so the response characteristics are so excellent that the time delay corresponding to the heat capacity of the senna, which was seen in conventional sensors, can be ignored. can now be obtained.

次に絶縁管の長さに対するトリミング溝の長手方向の長
さの率、即ちトリミング率と定温度差法により測定した
時の時定数との関係を第4図に示す0図より、トリミン
グ率が大きい程、時定数は小さくなり、トリミング率9
0%付近までほぼ直線的に変化する。よって感温素子の
トリミング率を90%以上とすることにより、応答性の
すぐれた感熱式流量検出センサが実現できる。
Next, the relationship between the ratio of the longitudinal length of the trimming groove to the length of the insulating tube, that is, the trimming rate, and the time constant when measured by the constant temperature difference method is shown in Figure 4. The larger the time constant, the smaller the time constant, and the trimming rate 9
It changes almost linearly up to around 0%. Therefore, by setting the trimming rate of the temperature sensing element to 90% or more, a thermal flow rate detection sensor with excellent responsiveness can be realized.

なお、上記実施例では絶縁管外表面上に白金薄膜を蒸着
により形成したものを示したが、白金粉末を含むペース
トを塗布したものでもよい。
In the above embodiment, a platinum thin film was formed on the outer surface of the insulating tube by vapor deposition, but a paste containing platinum powder may also be applied.

また、上記実施例では白金薄膜上にトリミング溝をクシ
形に設けたが、センサの長手方向にならジグザグ状に設
けても同様な効果を奏する。
Further, in the above embodiment, the trimming grooves were provided in a comb shape on the platinum thin film, but the same effect can be achieved by providing them in a zigzag shape in the longitudinal direction of the sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によればトリミング溝を絶縁管
の長手方向に沿って設けたので、絶縁管の両端部近傍ま
でトリミングしやすくなり、センサの感度、精度が高く
なると同時に、応答性の優れたものが得られる効果があ
る。
As described above, according to the present invention, since the trimming groove is provided along the longitudinal direction of the insulating tube, it becomes easier to trim the insulating tube to the vicinity of both ends, which increases the sensitivity and accuracy of the sensor, and at the same time improves the response. It has the effect of producing excellent products.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の感熱形流量検出用センサを示す斜視図、
第2図はこの発明の一実施例による感熱形流量検出用セ
ンナを示す斜視図、第3図は従来及びこの発明の一実施
例による感熱形流量検出用センサの過渡特性を示す特性
図、第4図はこの発明の一実施例による感熱形流量検出
用センサのトリミング溝と時定数との関係を示す特性図
である。 (1)・・・絶縁管、(2)・・・温度依存性抵抗膜、
(5)・・・トリミング溝。 なお、図中、同一符号は同−又は相当部分を示す0 第1図 第2図
Fig. 1 is a perspective view showing a conventional heat-sensitive flow rate detection sensor;
FIG. 2 is a perspective view showing a heat-sensitive flow rate detection sensor according to an embodiment of the present invention, FIG. FIG. 4 is a characteristic diagram showing the relationship between the trimming groove and the time constant of a heat-sensitive flow rate detection sensor according to an embodiment of the present invention. (1)...Insulating tube, (2)...Temperature-dependent resistance film,
(5) Trimming groove. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁管の外表面上に温度依存性抵抗膜を形成し、
この温度依存性抵抗膜にトリミング溝を溝の部分に上記
温度依存性抵抗膜が残留しないようにレーザ加工で作成
して所望の抵抗値を有するように形成したものにおいて
、上記トリミング溝が上記絶縁管の長手方向に沿つて作
成されたことを特徴とする感熱形流量検出用センサ。
(1) Forming a temperature-dependent resistance film on the outer surface of the insulating tube,
A trimming groove is formed in the temperature-dependent resistive film by laser processing so that the temperature-dependent resistive film does not remain in the groove portion, and is formed to have a desired resistance value, and the trimming groove is formed in the insulating film. A heat-sensitive flow rate detection sensor characterized by being created along the longitudinal direction of a pipe.
(2)トリミング溝の長手方向の長さを絶縁管の長さの
90%以上としたことを特徴とする特許請求の範囲第1
項記載の感熱形流量検出用センサ。
(2) Claim 1 characterized in that the length of the trimming groove in the longitudinal direction is 90% or more of the length of the insulating tube.
Heat-sensitive flow rate detection sensor as described in .
JP14994484A 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor Pending JPS6126824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14994484A JPS6126824A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14994484A JPS6126824A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Publications (1)

Publication Number Publication Date
JPS6126824A true JPS6126824A (en) 1986-02-06

Family

ID=15485983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14994484A Pending JPS6126824A (en) 1984-07-17 1984-07-17 Thermal type flow rate detecting sensor

Country Status (1)

Country Link
JP (1) JPS6126824A (en)

Similar Documents

Publication Publication Date Title
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
CN102680035B (en) There is the sensor of the heat stability of improvement
US6357294B1 (en) Thermal air flow sensor
JP2944796B2 (en) Thermal mass flowmeter sensor
JPH0145009B2 (en)
JP7443574B2 (en) Heat generating assembly and heating device
US4299125A (en) Air quantity metering apparatus
EP0245092B1 (en) Thermo-sensitive resistor
US5465618A (en) Thermal flow sensor and heat-sensitive resistor therefor
JPH0682057B2 (en) Detection element
JPS6126824A (en) Thermal type flow rate detecting sensor
JP2592333B2 (en) Air flow sensor element and method of manufacturing the same
JPS5965216A (en) Heat type flowmeter
JPH01109221A (en) Heat generating resistance body for thermal flowmeter
JPH0220681Y2 (en)
JPS6126823A (en) Thermal type flow rate detecting sensor
JP3145225B2 (en) Resistor element for thermal flow meter
JPS60218034A (en) Manufacture of sensor for thermal flow rate detection
JPH1183583A (en) Resistor element and air flow measuring device
JPH102774A (en) Heating element
JPH06265390A (en) Thermal air flowmeter
JPS6239306Y2 (en)
JPH0726725U (en) Heating resistor for temperature-sensitive flowmeter
JP3070283B2 (en) Air flow measurement device
JPS60125534A (en) Surface temperature sensor