JPH0334653Y2 - - Google Patents

Info

Publication number
JPH0334653Y2
JPH0334653Y2 JP10734686U JP10734686U JPH0334653Y2 JP H0334653 Y2 JPH0334653 Y2 JP H0334653Y2 JP 10734686 U JP10734686 U JP 10734686U JP 10734686 U JP10734686 U JP 10734686U JP H0334653 Y2 JPH0334653 Y2 JP H0334653Y2
Authority
JP
Japan
Prior art keywords
temperature
measured
fluid
temperature sensor
flow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10734686U
Other languages
Japanese (ja)
Other versions
JPS6314119U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10734686U priority Critical patent/JPH0334653Y2/ja
Publication of JPS6314119U publication Critical patent/JPS6314119U/ja
Application granted granted Critical
Publication of JPH0334653Y2 publication Critical patent/JPH0334653Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、被測定流体の流量を外気の影響をう
けることなく正確に測定することができるように
した熱式質量流量計に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thermal mass flowmeter that can accurately measure the flow rate of a fluid to be measured without being affected by outside air.

従来の技術及び考案が解決しようとする問題点 従来の熱式質量流量計は、被測定流体が流れる
流通細管の上流側と下流側の外周に巻き付けた金
属抵抗線に夫々電流を流して加熱し、被測定流体
を流すことによつて各金属抵抗線から奪われる熱
量の差による上流側と下流側の金属抵抗線の間に
温度の差が生じて抵抗値に差が生じ、この抵抗値
の差が被測定流体の流速が変わることによつて変
化することから、両金属抵抗線の間の出力電圧を
検出し、この検出値から被測定流体の流量を測定
するようになつていたが、このような熱式質量流
量計は、金属抵抗線が外気に曝されていて被測定
流体だけでなく周囲の空気によつても熱が奪われ
るため、金属抵抗線の抵抗値の変化が外気の影響
をうけることとなつて被測定流体の流量を正確に
測定することができなかつた。この対策として、
金属抵抗線の周りを真空にしたり、断熱材で覆う
ことによつて外気に熱が奪われるのを防ぐように
したものがあるが、真空にした場合には装置が複
雑となつて製造コストが高くなり、断熱材で覆つ
た場合には断熱材自体も加熱されて全体の熱容量
が大きくなつて応答性が低下する不具合があり、
また、流通細管の内部にフインを設けて被測定流
体に伝達する熱量を大きくすることにより相対的
に外気に伝達する熱量を小さくすることも提案さ
れたが、このようにすると製造コストが高くなる
という不具合があつた。
Problems to be solved by conventional techniques and ideas Conventional thermal mass flowmeters heat the metal resistance wires that are wound around the upstream and downstream sides of the flow tube through which the fluid to be measured flows. , due to the difference in the amount of heat removed from each metal resistance wire by flowing the fluid to be measured, a difference in temperature occurs between the upstream and downstream metal resistance wires, resulting in a difference in resistance value. Since the difference changes as the flow velocity of the fluid to be measured changes, the output voltage between the two metal resistance wires was detected and the flow rate of the fluid to be measured was measured from this detected value. In such a thermal mass flowmeter, the metal resistance wire is exposed to the outside air and heat is taken away not only by the fluid being measured but also by the surrounding air, so changes in the resistance value of the metal resistance wire are caused by changes in the outside air. As a result, the flow rate of the fluid to be measured could not be accurately measured. As a countermeasure for this,
Some devices are designed to prevent heat from being taken away by the outside air by creating a vacuum around the metal resistance wire or covering it with an insulating material, but creating a vacuum increases the complexity of the device and increases manufacturing costs. If it is covered with an insulating material, the insulating material itself will be heated, increasing the overall heat capacity and reducing the response.
It has also been proposed to relatively reduce the amount of heat transferred to the outside air by providing fins inside the flow tube to increase the amount of heat transferred to the fluid to be measured, but this method would increase manufacturing costs. There was a problem.

問題点を解決するための手段 本考案は、上記問題点を解決するための手段と
して、被測定流体が流通する熱伝導率の高い材料
からなる流通細管の外周に熱伝導率の低い材料か
らなる基体を密着して固定し、該基体の前記流通
細管から遠い基準位置にヒータを配置して前記基
準位置を一定の温度に保つて加熱するようにする
とともに、前記基体の前記流通細管に近い位置に
温度センサを外気から遮断して配置し、該温度セ
ンサによつて検出される温度の値から被測定流体
の流量を測定するようにした。
Means for Solving the Problems The present invention, as a means for solving the above-mentioned problems, provides that the outer periphery of the flow tube made of a material with high thermal conductivity through which the fluid to be measured flows is made of a material with low thermal conductivity. The base body is closely fixed, and a heater is arranged at a reference position of the base body far from the flow tube to maintain and heat the reference position at a constant temperature, and at a position of the base body close to the flow tube. A temperature sensor is placed isolated from the outside air, and the flow rate of the fluid to be measured is measured from the temperature value detected by the temperature sensor.

作用及び効果 本考案は上記構成になり、発熱量を調整しつつ
ヒータを発熱させることにより基準位置を一定の
温度に加熱し、流通細管内に基準位置よりも低温
の被測定流体を流通すると、基準位置から基体内
部と流通細管を通つて被測定流体に熱が伝わるこ
とにより、熱伝導率の低い基体の内部には温度セ
ンサに近づくほど低温となる大きい温度勾配が形
成されるとともに、熱伝導率の高い流通細管内部
には外周側から内周側に向つて低温となる小さい
温度勾配が形成され、被測定流体の流速が増した
場合には、流通細管から被測定流体に伝達される
熱量が増して流通細管の内周の温度が低下し、被
測定流体の流速が低くなつた場合には流通細管の
内周の温度が逆に上昇するのであり、流通細管の
内周の温度が変化すると、流通細管から遠い基準
位置の温度が一定に保たれていることから流通細
管内部と基体内部の温度勾配が変化し、基体の熱
伝導率が低く流通細管の熱伝導率が高いため、流
通細管の外周及びその近傍に位置して外気から遮
断された温度センサの温度が流通細管の内周の温
度の変化量とほぼ同じ量だけ変化し、この変化が
被測定流体の流速の変化に対応するため、温度セ
ンサによつて被測定流体の流量を高い精度で測定
することができ、また、基体の基準位置にヒータ
を配置して基準位置を一定温度に加熱するととも
に温度センサを外気から遮断して配置したから、
温度センサを通つて形成される温度勾配が被測定
流体の流速によつてのみ決定され、被測定流体の
流量を外気に影響されることなく正確に測定する
ことができ、これにより、断熱のための装置や加
工が不要となつて製造コストを低く抑えかつ小嵩
にまとめることができる効果がある。
Functions and Effects The present invention has the above-mentioned configuration, and when the reference position is heated to a constant temperature by making the heater generate heat while adjusting the calorific value, and the fluid to be measured that is lower temperature than the reference position is circulated through the flow tube, As heat is transferred from the reference position to the measured fluid through the inside of the base and the flow tube, a large temperature gradient is formed inside the base, which has low thermal conductivity, and the temperature gets lower as it approaches the temperature sensor. A small temperature gradient is formed inside the flow tube where the flow rate is low from the outer circumference to the inner circumference, and when the flow rate of the fluid to be measured increases, the amount of heat transferred from the flow tube to the fluid to be measured increases. increases, the temperature at the inner circumference of the flow tube decreases, and when the flow velocity of the fluid to be measured decreases, the temperature at the inner circumference of the flow tube increases, and the temperature at the inner circumference of the flow tube changes. Then, since the temperature at the reference position far from the flow tube is kept constant, the temperature gradient inside the flow tube and the inside of the base changes. The temperature of the temperature sensor located on and near the outer circumference of the thin tube and isolated from the outside air changes by approximately the same amount as the temperature change on the inner circumference of the flow tube, and this change corresponds to the change in the flow velocity of the fluid to be measured. Therefore, the flow rate of the fluid to be measured can be measured with high accuracy using the temperature sensor.In addition, a heater is placed at the reference position of the base to heat the reference position to a constant temperature, and the temperature sensor is isolated from the outside air. Because I placed it,
The temperature gradient formed through the temperature sensor is determined only by the flow rate of the fluid being measured, making it possible to accurately measure the flow rate of the fluid being measured without being influenced by outside air. Since no equipment or processing is required, manufacturing costs can be kept low and the volume can be reduced.

実施例 以下、本考案の一実施例を添付図面に基づいて
説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings.

第1図において、1は、電気的な絶縁性を有
し、かつ、熱伝導率が低い石英、ガラス、サフア
イア等の無機材料からなり平滑な表面と均一な厚
さを有する方形の基体であつて、その上面1aに
は、薄帯板状をなし電気抵抗が大きい金属製の発
熱体3を一定のパターンに沿つて付着してリード
線4により図示しない電源に接続することにより
ヒータ2が形成されているとともに、発熱体3に
沿つて金属製の抵抗体6を配置してリード線7に
より図示しない温度検出装置に接続することによ
り第1の温度センサ5が形成され、ヒータ2の発
熱体3に通電すると同時に第1の温度センサ5の
抵抗体6の電気抵抗値から上面1aの温度を検出
してこの検出値に応じて通電量を調整することに
より上面1aを任意の温度に加熱することができ
るようになつており、基体1の下面1bには、上
面1aのヒータ2の発熱体3よりも幅の狭い薄板
状をなす金属製の抵抗体9を発熱体3に対応する
パターンに沿つて付着してリード線10により図
示しない温度検出装置に接続することにより第2
の温度センサ8が形成されて、抵抗体9の電気抵
抗値から下面1bの温度が検出されるようになつ
ており、このヒータ2、第1の温度センサ5、第
2の温度センサ8が形成された基体1は、被測定
流体が流通する流通細管11に固定されている。
この流通細管11は、熱伝導率の高い肉薄のステ
ンレス鋼からなり、横断面形状が、第2図に示す
ように、上下に直線部を有する長円形をなしてい
て、その直線部において外周に平坦面12,12
が形成され、上側の平担面12には、基体1の下
面1bが、熱伝導率が流通細管11と略同じ材料
からなる接着剤13によつて互いに平行に対応す
るように接着されており、第2の温度センサ8の
抵抗体9が接着剤13に囲まれて外気から遮断さ
れている。
In FIG. 1, 1 is a rectangular base body made of an inorganic material such as quartz, glass, or sapphire, which has electrical insulation properties and low thermal conductivity, and has a smooth surface and a uniform thickness. A heater 2 is formed on the upper surface 1a by attaching a metal heating element 3 having a thin strip shape and high electrical resistance along a certain pattern and connecting it to a power source (not shown) through a lead wire 4. A first temperature sensor 5 is formed by arranging a metal resistor 6 along the heating element 3 and connecting it to a temperature detection device (not shown) via a lead wire 7. 3, the temperature of the upper surface 1a is detected from the electrical resistance value of the resistor 6 of the first temperature sensor 5, and the amount of current is adjusted according to this detected value, thereby heating the upper surface 1a to a desired temperature. On the lower surface 1b of the base 1, a thin metal resistor 9 having a width narrower than the heating element 3 of the heater 2 on the upper surface 1a is arranged in a pattern corresponding to the heating element 3. A second
A temperature sensor 8 is formed to detect the temperature of the lower surface 1b from the electrical resistance value of the resistor 9, and the heater 2, the first temperature sensor 5, and the second temperature sensor 8 are formed. The base body 1 is fixed to a flow tube 11 through which a fluid to be measured flows.
The flow tube 11 is made of thin-walled stainless steel with high thermal conductivity, and has an oval cross-sectional shape with straight sections at the top and bottom, as shown in FIG. flat surface 12, 12
are formed, and the lower surface 1b of the base 1 is bonded to the upper flat surface 12 so as to correspond parallel to each other with an adhesive 13 made of a material having substantially the same thermal conductivity as the flow tube 11. , the resistor 9 of the second temperature sensor 8 is surrounded by an adhesive 13 and shielded from the outside air.

次に、本実施例の作動を説明する。 Next, the operation of this embodiment will be explained.

基体1の上面1aは外気に曝されていてヒータ
2で加熱されると周囲の空気に熱を奪われるが、
ヒータ2の発熱体3への通電量を調整することに
より上面1aを所定の一定温度に保ち、この状態
で流通細管11内に上面1aよりも低い一定温度
の被測定流体を流すと、基体1、接着剤13、流
通細管11、被測定流体の順に熱が伝わり、第3
図のグラフに実線で示すように、熱伝導率が低く
て熱の移動が遅い基体1の内部には、上面1aか
ら第2の温度センサ8が位置する下面1bに向つ
て温度が大きく下がる温度勾配Aが形成されると
ともに、熱伝導率が高くて熱の移動が速い接着剤
13と流通細管11の内部には、基体1の温度勾
配Aに連続し、かつ、接着剤13の基体1の下面
1bに接する面から流通細管11の内周に向つて
温度が僅かに下がる温度勾配Bが形成され、被測
定流体の流速が大きくなつた場合には、流通細管
11の内周面から被測定流体に伝達される熱量が
多くなつて流通細管11の内周面の温度が下がる
とともに基体1の下面1bの温度も下がり、上面
1aの温度が一定に保たれているために両温度勾
配A、Bが第3図のグラフに一点鎖線で示すよう
に変化し、逆に、被測定流体の流速が小さくなつ
た場合には、被測定流体に伝達される熱量が小さ
くなつて両温度勾配A、Bが同グラフに二点鎖線
で示すように変化するが、基体1の熱伝導率が低
く接着剤13と流通細管11の熱伝導率が高いた
めに、基体1の下面1bの温度変化は流通細管1
1の内周面の温度変化より僅かに小さいだけであ
り、外気から遮断された第2の温度センサ8によ
つて検出される下面1bの温度は流通細管11の
内周面の温度にほぼ等しく、かつ、流通細管11
の内周面の温度の変化に対応して変化するので、
第2の温度センサ8によつて検出される温度は被
測定流体の流速に対応して変化し、この検出され
た温度から被測定流体の流量が測定される。
The upper surface 1a of the base 1 is exposed to the outside air and when heated by the heater 2, heat is taken away by the surrounding air.
By adjusting the amount of electricity applied to the heating element 3 of the heater 2, the upper surface 1a is kept at a predetermined constant temperature, and in this state, when the fluid to be measured at a constant temperature lower than the upper surface 1a is flowed into the flow tube 11, the base 1 , the adhesive 13, the flow tube 11, and the fluid to be measured.
As shown by the solid line in the graph of the figure, inside the base 1, which has low thermal conductivity and slow heat transfer, there is a temperature that decreases significantly from the upper surface 1a toward the lower surface 1b where the second temperature sensor 8 is located. At the same time as the gradient A is formed, the adhesive 13 with high thermal conductivity and rapid heat transfer and the inside of the flow tube 11 are continuous with the temperature gradient A of the base 1 and have a temperature gradient of the adhesive 13 of the base 1. A temperature gradient B is formed in which the temperature slightly decreases from the surface in contact with the lower surface 1b toward the inner circumference of the flow tube 11, and when the flow velocity of the fluid to be measured increases, As the amount of heat transferred to the fluid increases, the temperature of the inner peripheral surface of the flow tube 11 decreases, and the temperature of the lower surface 1b of the base 1 also decreases, and since the temperature of the upper surface 1a is kept constant, both temperature gradients A, If B changes as shown by the dashed-dotted line in the graph of FIG. 3, and conversely, the flow velocity of the fluid to be measured decreases, the amount of heat transferred to the fluid to be measured decreases, and the temperature gradient A, B changes as shown by the two-dot chain line in the same graph, but because the thermal conductivity of the base 1 is low and the thermal conductivity of the adhesive 13 and the flow tube 11 is high, the temperature change on the lower surface 1b of the base 1 is caused by the flow. tubule 1
1, and the temperature of the lower surface 1b detected by the second temperature sensor 8 isolated from the outside air is almost equal to the temperature of the inner peripheral surface of the flow tube 11. , and the flow tube 11
changes in response to changes in the temperature of the inner circumferential surface of the
The temperature detected by the second temperature sensor 8 changes in accordance with the flow rate of the fluid to be measured, and the flow rate of the fluid to be measured is measured from this detected temperature.

本実施例においては、流通細管11の内周面の
温度は、一定温度に保たれる基体1の上面1aよ
りも温度が高くなることがないため、流通細管1
1内を流れる被測定流体が異常高温となる恐れが
ない。
In this embodiment, the temperature of the inner circumferential surface of the flow tube 11 does not become higher than the upper surface 1a of the base 1, which is kept at a constant temperature.
There is no risk that the fluid to be measured flowing through the chamber becomes abnormally high temperature.

同じく本実施例においては、流通細管11の横
断面形状を長円形にしたから、平坦面12が形成
されることにより基体1が確実に固定されるよう
になつているとともに、横断面形状が円形である
場合に比べて被測定流体が流通する横断面積が小
さくなつて流量が同じでも流速が増すため、流通
細管11から伝達される熱量が多くなつて外気の
影響をうけ難くなる利点がある。
Similarly, in this embodiment, since the cross-sectional shape of the flow tube 11 is oval, the base body 1 is reliably fixed by forming the flat surface 12, and the cross-sectional shape is circular. Compared to the case where the flow rate is the same, the cross-sectional area through which the fluid to be measured flows is smaller and the flow rate is increased even if the flow rate is the same, so the amount of heat transferred from the flow capillary tube 11 increases and there is an advantage that it is less susceptible to the influence of outside air.

上記実施例においては、被測定流体の温度が一
定である場合について説明したが、流速が一定で
も被測定流体の温度が高いと流通細管11から伝
達される熱量が少なくなり、逆に温度が低いと伝
達される熱量が多くなつて、第2の温度センサ8
によつて検出される温度の値が変わるため、被測
定流体の温度が変動する場合には、流通細管11
の基体1よりも上流側に図示しない補償用温度セ
ンサを設けて被測定流体の熱が伝達される前の温
度の検出し、この検出値によつて第2の温度セン
サ8からの検出値を補償するか、または、発熱体
3の温度を補償することにより温度が変化する被
測定流体の流量が正確に測定される。
In the above embodiment, the case where the temperature of the fluid to be measured is constant has been described, but even if the flow rate is constant, if the temperature of the fluid to be measured is high, the amount of heat transferred from the flow tube 11 will be small, and conversely, the temperature will be low. As the amount of heat transferred increases, the second temperature sensor 8
When the temperature of the fluid to be measured changes because the temperature value detected by
A compensating temperature sensor (not shown) is provided upstream of the base 1 to detect the temperature of the fluid to be measured before the heat is transferred, and the detected value from the second temperature sensor 8 is determined based on this detected value. By compensating or compensating the temperature of the heating element 3, the flow rate of the fluid to be measured whose temperature changes can be accurately measured.

同じく上記実施例においては、基体1の上面1
aを一定温度に保つのに、上面1aの温度をヒー
タ2に沿つて配置した第1の温度センサ5で検出
してこの検出値によりヒータ2の発熱量を調整す
るようにしたが、これに替えて、第1の温度セン
サ5を用いずにヒータ2の温度を一定に保つこと
によつて上面1aの温度を一定に保つようにして
もよく、そのためには、第4図に示すように、ヒ
ータ2をブリツジ回路のブリツジの一辺に組み込
むことにより、ヒータ2の温度が変化してその抵
抗値が変化するとブリツジの出力電圧が変化し、
この出力電圧の変化に対応して差動増幅器20の
出力電圧が増幅されてブリツジの入力端に印加さ
れるようにすればよく、これによりヒータ2を流
れる電流が変化してヒータ2の抵抗加熱による発
熱量が調整され、ヒータ2の温度が常に一定に保
たれるように自動制御が行なわれる。
Similarly, in the above embodiment, the upper surface 1 of the base 1
In order to maintain the temperature of the heater 2 at a constant temperature, the temperature of the upper surface 1a is detected by the first temperature sensor 5 disposed along the heater 2, and the amount of heat generated by the heater 2 is adjusted based on this detected value. Alternatively, the temperature of the upper surface 1a may be kept constant by keeping the temperature of the heater 2 constant without using the first temperature sensor 5. To do this, as shown in FIG. By incorporating the heater 2 on one side of the bridge of the bridge circuit, when the temperature of the heater 2 changes and its resistance value changes, the output voltage of the bridge changes,
In response to this change in output voltage, the output voltage of the differential amplifier 20 may be amplified and applied to the input terminal of the bridge, and as a result, the current flowing through the heater 2 changes, causing resistance heating of the heater 2. The amount of heat generated by the heater 2 is adjusted, and automatic control is performed so that the temperature of the heater 2 is always kept constant.

なお、基体1の大きさを小さくした場合には、
熱容量が小さくなるため、被測定流体の流速が変
化すると温度勾配Aが迅速に変化し、流量の変化
に対する測定値の変化の遅れが小さくなる利点が
ある。
Note that when the size of the base 1 is reduced,
Since the heat capacity is small, the temperature gradient A changes quickly when the flow rate of the fluid to be measured changes, and there is an advantage that the delay in change of the measured value with respect to the change in the flow rate is reduced.

また、流通細管11から被測定流体に伝達され
る熱量は、流通細管11の横断面形状と大きさ及
び被測定流体の種類と流量によつて変わるが、流
通細管11の外周には、従来のように金属細線が
巻き付けられるのではなく、ヒータ2と第1及び
第2の温度センサ5,8を設置した基体1が固着
されるだけであるため、流通細管11の横断面形
状と大きさを容易に変更することが可能であり、
この横断面形状と大きさとを被測定流体の種類と
流量に応じて変えることによつて、流通細管11
から被測定流体へ伝達される熱量を調節すること
が可能である。
The amount of heat transferred from the flow tube 11 to the fluid to be measured varies depending on the cross-sectional shape and size of the flow tube 11 and the type and flow rate of the fluid to be measured. The thin metal wire is not wound around the base 1 on which the heater 2 and the first and second temperature sensors 5 and 8 are installed, but the cross-sectional shape and size of the flow tube 11 are fixed. can be easily changed,
By changing the cross-sectional shape and size according to the type and flow rate of the fluid to be measured,
It is possible to adjust the amount of heat transferred from the fluid to the fluid to be measured.

なお、基体1として用いることができる材料
は、上記実施例で示したような無機性物質に限ら
ず、窒化物や炭化物等からなるセラミツクや高分
子フイルム等の有機材料でもよい。
Note that the material that can be used as the substrate 1 is not limited to the inorganic substances shown in the above embodiments, but may also be organic materials such as ceramics made of nitrides, carbides, etc., and polymer films.

また、基体1、ヒータ2の発熱体3、第1の温
度センサ5の抵抗体6及び第2の温度センサ8の
抵抗体9を一体に製造するのにLSI製造用のプロ
セスを利用することができ、この方法によれば、
Si基板の一部または全体をエツチングして薄膜化
し、CVD(化学的蒸着)、熱酸化または窒化の処
理を施したSiO2やSi3N4の膜を形成し、ここに第
2の温度センサ8の抵抗体9を付着した後に、
SiO2やSi3N4からなる熱伝導率の低い膜をCVDに
より厚く推積させ、この上にヒータ2の発熱体3
と第1の温度センサ5の抵抗体6を付着すること
によつて製造される。
Furthermore, an LSI manufacturing process can be used to integrally manufacture the base 1, the heating element 3 of the heater 2, the resistor 6 of the first temperature sensor 5, and the resistor 9 of the second temperature sensor 8. According to this method,
Part or all of the Si substrate is etched to make it thinner, and a SiO 2 or Si 3 N 4 film is formed by CVD (chemical vapor deposition), thermal oxidation, or nitridation, and a second temperature sensor is installed here. After attaching the resistor 9 of 8,
A film with low thermal conductivity made of SiO 2 or Si 3 N 4 is deposited thickly by CVD, and the heating element 3 of the heater 2 is placed on top of this film.
and the resistor 6 of the first temperature sensor 5.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本考案の実施例を示し、第1図は基
体にヒータ、第1の温度センサ及び第2の温度セ
ンサを配置した状態の斜視図、第2図は基体を流
通細管に固着した状態の横断面図、第3図は第2
図の部分拡大図と、基体と流通細管内部の温度勾
配をあらわすグラフとを並べて表わしたもの、第
4図は第1の温度センサを用いずにヒータのみで
基体の上面を一定温度に保つ場合の回路図であ
る。 1……基体、2……ヒータ、5……第1の温度
センサ、8……第2の温度センサ、11……流通
細管。
The accompanying drawings show an embodiment of the present invention, and FIG. 1 is a perspective view of a state in which a heater, a first temperature sensor, and a second temperature sensor are arranged on a base, and FIG. 2 is a state in which the base is fixed to a flow tube. The cross-sectional view of Fig. 3 is the 2nd
A partial enlarged view of the figure and a graph showing the temperature gradient inside the base and the flow tube are shown side by side. Figure 4 shows the case where the top surface of the base is kept at a constant temperature using only the heater without using the first temperature sensor. FIG. DESCRIPTION OF SYMBOLS 1... Base body, 2... Heater, 5... First temperature sensor, 8... Second temperature sensor, 11... Distribution thin tube.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被測定流体が流通する熱伝導率の高い材料から
なる流通細管の外周に熱伝導率の低い材料からな
る基体を密着して固定し、該基体の前記流通細管
から遠い基準位置にヒータを配置して前記基準位
置を一定の温度に保つて加熱するようにするとと
もに、前記基体の前記流通細管に近い位置に温度
センサを外気から遮断して配置し、該温度センサ
によつて検出される温度の値から被測定流体の流
量を測定するようにしたことを特徴とする熱式質
量流量計。
A base body made of a material with low thermal conductivity is closely fixed to the outer periphery of a flow tube made of a material with high thermal conductivity through which the fluid to be measured flows, and a heater is arranged at a reference position of the base body far from the flow thin tube. At the same time, a temperature sensor is placed in a position close to the flow tube on the base body, shielded from the outside air, and the temperature detected by the temperature sensor is heated. A thermal mass flowmeter characterized in that the flow rate of a fluid to be measured is measured from the value.
JP10734686U 1986-07-11 1986-07-11 Expired JPH0334653Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10734686U JPH0334653Y2 (en) 1986-07-11 1986-07-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10734686U JPH0334653Y2 (en) 1986-07-11 1986-07-11

Publications (2)

Publication Number Publication Date
JPS6314119U JPS6314119U (en) 1988-01-29
JPH0334653Y2 true JPH0334653Y2 (en) 1991-07-23

Family

ID=30983545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10734686U Expired JPH0334653Y2 (en) 1986-07-11 1986-07-11

Country Status (1)

Country Link
JP (1) JPH0334653Y2 (en)

Also Published As

Publication number Publication date
JPS6314119U (en) 1988-01-29

Similar Documents

Publication Publication Date Title
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
US5347869A (en) Structure of micro-pirani sensor
JP2002202168A (en) Flow sensor and method for manufacturing the same
JPS59231417A (en) Measuring device for flow of fluid
JP2666163B2 (en) Temperature characteristic correction method for flow velocity sensor
EP0353996B1 (en) A flow sensor
JP3470881B2 (en) Micro flow sensor
JPH0469521A (en) Flowmeter
JPH1038652A (en) Thermal mass flowmeter
JPH0334653Y2 (en)
GB2177212A (en) Flow sensor
JP3083901B2 (en) Atmosphere sensor
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP3668921B2 (en) Flow detection element
US11802784B1 (en) Single heater MEMS-CMOS based flow sensor
JP3316740B2 (en) Flow detection element
JPH0593732A (en) Flow sensor
JPH04218777A (en) Micro flow sensor and manufacture thereof
JPH0222516A (en) Flow sensor
JPH0493768A (en) Flow velocity sensor
JPH04115125A (en) Heat flow-rate sensor
JPS6243522A (en) Flow sensor
JPH04240566A (en) Flow rate direction sensor
JPH04102023A (en) Flow speed sensor
JPH04343023A (en) Flowrate sensor