JPH0222516A - Flow sensor - Google Patents

Flow sensor

Info

Publication number
JPH0222516A
JPH0222516A JP63173152A JP17315288A JPH0222516A JP H0222516 A JPH0222516 A JP H0222516A JP 63173152 A JP63173152 A JP 63173152A JP 17315288 A JP17315288 A JP 17315288A JP H0222516 A JPH0222516 A JP H0222516A
Authority
JP
Japan
Prior art keywords
resistance
flow sensor
resistor
resistance adjustment
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63173152A
Other languages
Japanese (ja)
Inventor
Akihito Jinda
章仁 陣田
Junichi Tanaka
潤一 田中
Nobuyuki Tanaka
信幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63173152A priority Critical patent/JPH0222516A/en
Publication of JPH0222516A publication Critical patent/JPH0222516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To hold the temperature in an element constant and to eliminate variance in output characteristics due to resistance adjustment by providing a resistance adjustment zone in the center of the heating part of a resistance body. CONSTITUTION:A flow sensor element 3 is arranged in a flow passage tube and the resistance body 2 is applied with a voltage so that a flow velocity detection part is a constant temperature higher than the temperature of fluid. Then the flow velocity of the fluid is found from heating value absorbed by the passage of the fluid in the flow passage tube. At this time, the resistance adjustment zone in the flow sensor element 3 is arranged in the center of the heating part 5 of the resistance body 2, so the temperature distribution in the element becomes constant without reference to whether or not the resistance adjustment is made and the variance in output characteristics due to the resistance adjustment can be eliminated. Further, variance among elements is eliminated and the flow velocity can be detected symmetrically about the flow direction without reference to whether the fluid flows to the element from the right or left.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、絶縁基板上に形成した抵抗体に、抵抗調整帯
を設けた熱式フローセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thermal flow sensor in which a resistance adjustment band is provided on a resistor formed on an insulating substrate.

〈従来技術〉 従来より一般に使用されている熱式のフローセンサとし
ては、次のような種類のものがある。
<Prior Art> There are the following types of thermal flow sensors that have been commonly used.

その第一は、流路用主管にバイパス流路用の測路管な設
け、この測路管へヒーターを連結し、測路管を加熱した
際の流れにより測路管の流れ方向に生じる温度分布から
流量を検知する方式を用いた流量計である。この流量計
は精度が良く、半導体ガスの流量コントローラー等とし
て広く用いられているが、構造上小型化や量産に不向き
で高価であるため、用途が限定されてしまうという欠点
がある。
The first is to install a bypass channel pipe in the main channel pipe, connect a heater to this channel pipe, and heat the channel pipe to generate a temperature in the flow direction of the channel pipe due to the flow. This is a flowmeter that uses a method to detect flow rate from distribution. This flowmeter has good accuracy and is widely used as a flow rate controller for semiconductor gas, etc., but its structure makes it unsuitable for miniaturization and mass production, and it is expensive, so its uses are limited.

第二には、流体中に発熱素子を設け、その発熱素子を利
用して発熱素子から周囲の流体に伝達される熱量の変化
を検出し、検出値より流木を測定する方式を用いたフロ
ーセンサがある。この方式を用いたフローセンサには、
従来シリコンチップ上に形成されたトランシ゛スタを利
用して構成されたフローセンサがある。このフローセン
サは、シリコンプロセス技術を利用しているので量産性
に優れるが、その反面、素子間の温度特性のバラツキが
大きく、また高温下での使用が困難であるなどの欠、α
を有している。
The second is a flow sensor that uses a method in which a heating element is installed in the fluid, and the change in the amount of heat transferred from the heating element to the surrounding fluid is detected, and the driftwood is measured from the detected value. There is. Flow sensors using this method include:
2. Description of the Related Art Conventionally, there is a flow sensor constructed using a transistor formed on a silicon chip. This flow sensor uses silicon process technology and is therefore highly suitable for mass production. However, on the other hand, it has drawbacks such as large variations in temperature characteristics between elements and difficulty in using it at high temperatures.
have.

さらに、上記方式で、発熱素子に白金やタングステンな
どの高融点金属製抵抗線を用いたものがあるが、これら
は抵抗値が小さく素子間のバラツキも大きいので発熱温
度の制御性や温度測定の精度が悪い。また、細線を用い
るため、加工が困難で量産性に欠けるなどの欠点がある
Furthermore, some of the above methods use resistance wires made of high-melting point metals such as platinum or tungsten for the heating elements, but these have small resistance values and large variations between elements, making it difficult to control the heating temperature and to measure the temperature. Accuracy is poor. Furthermore, since thin wires are used, there are drawbacks such as difficulty in processing and lack of mass production.

さらにまた、抵抗線の代わりに絶縁基板上に薄膜化され
た抵抗体を用いる熱膜式フローセンサは、小型化が可能
で、−枚の基板内に多数の素子を並べて製作することが
できるので、量産性にも優れている。また、この構造に
おいて薄膜製作時の膜厚のバラツキにより素子間の抵抗
値にバラツキが生じるが、抵抗調整帯を設け、レーザー
カッターなどにより抵抗値を調整して素子間の抵抗値の
バラツキを抑えていた。
Furthermore, a thermal film flow sensor that uses a thin resistor on an insulating substrate instead of a resistance wire can be made smaller and can be manufactured by arranging a large number of elements on a single substrate. , it is also excellent in mass production. In addition, in this structure, variations in resistance value between elements occur due to variations in film thickness during thin film fabrication, but by providing a resistance adjustment band and adjusting the resistance value with a laser cutter etc., variation in resistance value between elements is suppressed. was.

上記抵抗体に抵抗調整帯を設ける方式で、抵抗調整帯を
抵抗体の発熱部の端部に配置した発熱素子(フローセン
サ素子)の例を第6図(a)(b)に示す。
FIGS. 6(a) and 6(b) show an example of a heat generating element (flow sensor element) in which a resistance adjusting band is provided on the resistor, and the resistance adjusting band is arranged at the end of the heat generating portion of the resistor.

第6図(、)は抵抗調整帯に抵抗調整を行っていない場
合の横断平面図、第6図(b)は同じく抵抗調整を最大
に行っている場合の横断平面図である。
6(a) is a cross-sectional plan view when the resistance adjustment band is not adjusted in resistance, and FIG. 6(b) is a cross-sectional plan view when the resistance adjustment band is adjusted to the maximum.

また、抵抗体として発熱抵抗体と、発熱抵抗体の発熱温
度を検知しながら発熱抵抗体に電圧を加える発熱温度測
温抵抗体とが基板上に形成され、発熱抵抗体および発熱
温度測温抵抗体各々の発熱部の端部に抵抗体調整帯を配
置した発熱素子(フローセンサ素子)の例を第7図(、
)(b)に示す。第7図(a)は抵抗調整帯に抵抗調整
を行っていない場合の横断平面図、第7図(b)は同じ
く抵抗調整を最大に行っている場合の横断平面図である
In addition, a heating resistor and a heating temperature resistance thermometer that applies a voltage to the heating resistor while detecting the heating temperature of the heating resistor are formed on the substrate, and the heating resistor and the heating temperature resistance thermometer are formed on the substrate. Figure 7 shows an example of a heat generating element (flow sensor element) in which a resistor adjustment band is arranged at the end of each heat generating part.
) (b). FIG. 7(a) is a cross-sectional plan view when the resistance adjustment band is not adjusted in resistance, and FIG. 7(b) is a cross-sectional plan view when the resistance adjustment band is adjusted to the maximum.

図示の如く、発熱抵抗体2aの発熱部5aの端部に配置
された第一抵抗調整帯4aと発熱温度測温抵抗体2bの
発熱部5bの端部に配置された第二抵抗調整帯4bとが
基板1の両端に互いに対向するよう設けられている。
As shown in the figure, a first resistance adjustment band 4a is placed at the end of the heat generating portion 5a of the heat generating resistor 2a, and a second resistance adjusting band 4b is placed at the end of the heat generating portion 5b of the heat generating temperature sensing resistor 2b. are provided at both ends of the substrate 1 so as to face each other.

く 発明が解決しようとする問題点 〉しかし、素子を
流路管内に設置し、一方向から流体を流し、流速と消費
電力を測定すると、第6図(a)(b)に示す従来のフ
ローセンサ素子3では、抵抗調整帯4に抵抗調整を行う
と素子3内の温度分布が異なるため、第8図の如く、抵
抗調整を行つでいない場合の出力特性Aと抵抗調整を最
大に行っている場合の出力特性Bとに誤差が見られる。
Problems to be Solved by the Invention 〉 However, when an element is installed in a flow pipe, fluid is caused to flow from one direction, and the flow velocity and power consumption are measured, the conventional flow shown in Fig. 6 (a) and (b) is In the sensor element 3, if the resistance adjustment band 4 is adjusted, the temperature distribution inside the element 3 will be different, so as shown in Figure 8, the output characteristic A when the resistance adjustment is not performed and the resistance adjustment is maximized. An error can be seen in the output characteristic B when the

また同様に、第7図(a)(b)に示す従来のフローセ
ンサ素子3でも、第8図の如き出力特性に誤差が見られ
る。
Similarly, in the conventional flow sensor element 3 shown in FIGS. 7(a) and 7(b), errors are observed in the output characteristics as shown in FIG. 8.

さらに、素子を流路管内に設置し、流体の流れ方向に対
する素子の出力特性を測定すると、第6図(b)に示す
従来のフローセンサ素子3では、素子3内の温度分布が
変化するため、第9図の如く、流体が素子3に対して左
側(抵抗調整帯4側)から流れる場合の出力特性りと右
側(抵抗調整帯4と逆側)から流れる場合の出力特性R
とに誤差が見られる。
Furthermore, when the element is installed in a flow pipe and the output characteristics of the element are measured with respect to the fluid flow direction, in the conventional flow sensor element 3 shown in FIG. 6(b), the temperature distribution inside the element 3 changes. As shown in FIG. 9, the output characteristics R when fluid flows from the left side (resistance adjustment band 4 side) of element 3 and the output characteristics R when fluid flows from the right side (opposite side to resistance adjustment band 4)
Errors can be seen.

また同様に、第7図(b)に示す従来のフローセンサ素
子3でも、第9図の如く、流体が素子3に対して左側(
第一抵抗調整帯4a側)から流れる場合の出力特性りと
右側(第二抵抗調整帯4b側)から流れる場合の出力特
性Rとに誤差が見られる。
Similarly, in the conventional flow sensor element 3 shown in FIG. 7(b), as shown in FIG.
An error can be seen in the output characteristic R when flowing from the first resistance adjustment band 4a side) and the output characteristic R when flowing from the right side (second resistance adjustment band 4b side).

したがって、従来の抵抗線の代わりに絶縁基板上に薄膜
化された抵抗体を用いる熱膜式フローセンサでは、抵抗
調整帯の配置が悪いと抵抗調整を行ったときに素子内の
温度分布が異なるため、抵抗体から流体に伝わる熱量が
変化し出力特性にバラツキが生じていた。
Therefore, in a hot film flow sensor that uses a thin resistor on an insulating substrate instead of a conventional resistance wire, if the resistance adjustment band is poorly placed, the temperature distribution inside the element will vary when the resistance is adjusted. As a result, the amount of heat transferred from the resistor to the fluid changes, causing variations in output characteristics.

また、素子に対して一側から流体が流れる場合と池側か
ら流体が流れる場合とでは、出力特性に著しい誤差が生
じるという欠点を有していた。
Furthermore, there is a drawback that a significant error occurs in the output characteristics between when fluid flows from one side of the element and when fluid flows from the pond side.

そこで、本発明は、上記問題点に鑑み、−枚の基板上に
多数のフローセンサ素子を並べて製作するとき、抵抗調
整帯に抵抗調整を行っても、素子内の温度分布が一定に
なり、素子間の出力特性にバラツキを抑えることができ
、しかも流路管内に配置した場合でも、素子の出力特性
に方向依存性を持たないで配管等への設置が簡単となる
フローセンサの提供を目的とするものである。
In view of the above-mentioned problems, the present invention has been developed so that when a large number of flow sensor elements are arranged and manufactured on one substrate, the temperature distribution within the element remains constant even if the resistance is adjusted in the resistance adjustment band. The purpose of the present invention is to provide a flow sensor that can suppress variations in output characteristics between elements, and that can be easily installed in piping, etc., without directional dependence in the output characteristics of the elements even when placed in a flow pipe. That is.

〈 問題点を解決するための手段 〉 本発明による問題点解決手段は、第1図(a)(b)、
第2図(a)(b)の如く、絶縁基板1と該絶縁基板1
上に形成され温度変化に対して抵抗値が変化する抵抗体
2とを有するフローセンサ素子3を備え、該フローセン
サ素子3内の抵抗体2を発熱させ、流体の通過によって
奪われる熱量の変化に基き前記流体の流速を求めるフロ
ーセンサにおいて、前記抵抗体2に抵抗調整帯4が設け
られ、該抵抗調整帯4が前記抵抗体2の発熱部5の中央
に配置されたものである。
<Means for solving the problems> The means for solving the problems according to the present invention are as shown in FIGS. 1(a) and (b),
As shown in FIGS. 2(a) and (b), the insulating substrate 1 and the insulating substrate 1
A flow sensor element 3 having a resistor 2 formed on the top of the flow sensor element 2 whose resistance value changes with respect to temperature changes, and causing the resistor 2 in the flow sensor element 3 to generate heat to change the amount of heat removed by passage of the fluid. In the flow sensor that determines the flow velocity of the fluid based on the above, the resistor 2 is provided with a resistance adjustment band 4, and the resistance adjustment band 4 is disposed at the center of the heat generating portion 5 of the resistor 2.

〈作用〉 上記問題点解決手段において、フローセンサ素子3を流
路管内に配置し、流速検知部分が流体温度に対して一定
温度高くなるように抵抗体2に電圧を加える。そして、
流路管内の流体の通過によって奪われる熱量に基いて、
流体の流速が求められる。
<Operation> In the above-mentioned means for solving the problem, the flow sensor element 3 is placed in the flow pipe, and a voltage is applied to the resistor 2 so that the flow rate detection portion becomes a certain temperature higher than the fluid temperature. and,
Based on the amount of heat removed by the passage of fluid in the flow pipe,
The flow velocity of the fluid is determined.

このとき、フローセンサ素子3内の抵抗調整帯4を抵抗
体2の発熱部5の中央に配置しているので、抵抗調整の
有無によらず素子内の温度分布が一定となり、抵抗調整
による出力特性のバラツキをなくすことができる。また
、素子間でのバラツキがなくなり、しかも素子に対して
流体が左右どちら側から流れても左右対称に流速を検知
することができる。
At this time, since the resistance adjustment band 4 in the flow sensor element 3 is placed in the center of the heat generating part 5 of the resistor 2, the temperature distribution within the element is constant regardless of whether resistance adjustment is performed, and the output due to resistance adjustment is It is possible to eliminate variations in characteristics. Further, there is no variation between elements, and the flow velocity can be detected symmetrically regardless of whether the fluid flows from the left or right side of the element.

〈実施例〉 以下、本発明の実施例について図面により説明する。第
1図6)は本発明第一実施例においてフローセンサ素子
の抵抗調整帯に抵抗調整を行っていない場合の横断平面
図、第1図(b)は同じく抵抗調整を最大に行った場合
の横断平面図である。
<Examples> Examples of the present invention will be described below with reference to the drawings. Fig. 1 (6) is a cross-sectional plan view when no resistance adjustment is made to the resistance adjustment band of the flow sensor element in the first embodiment of the present invention, and Fig. 1 (b) is a cross-sectional plan view when the resistance adjustment band is adjusted to the maximum. FIG.

図示の如く、本発明は、絶縁基板1と該絶縁基板1上に
形成され温度変化に対して抵抗値が変化する抵抗体2と
を有するフローセンサ素子3を備え、該71ニアーセン
サ素子3内の抵抗体2を発熱させ、流体の通過によって
奪われる熱量の変化に基き前記流体の流速を求める熱式
フローセンサにおいて、前記抵抗体2に抵抗調整帯4が
設けられ、該抵抗調整帯4が前記抵抗体2の発熱部5の
中央に配置されたものである。
As shown in the figure, the present invention includes a flow sensor element 3 having an insulating substrate 1 and a resistor 2 formed on the insulating substrate 1 and having a resistance value that changes with temperature changes. In a thermal flow sensor that generates heat in a resistor 2 and determines the flow velocity of the fluid based on a change in the amount of heat removed by the passage of the fluid, the resistor 2 is provided with a resistance adjustment band 4, and the resistance adjustment band 4 is It is arranged at the center of the heat generating part 5 of the resistor 2.

前記絶縁基板1は、第1図(a)(b)の如く、基板材
料としてガラス等の熱伝導率の小さい熱絶縁材料を用い
、長方形に形成されている。
As shown in FIGS. 1(a) and 1(b), the insulating substrate 1 is formed into a rectangular shape using a thermally insulating material with low thermal conductivity such as glass as the substrate material.

前記抵抗体2は、前記絶縁基板1上に白金等の抵抗温度
係数の大きな金属薄膜を真空蒸着法、スパッタリング法
、あるいはプラズマCVD法等により堆積された後、エ
ツチング技術によりパターニングして形成されている。
The resistor 2 is formed by depositing a metal thin film having a large resistance temperature coefficient, such as platinum, on the insulating substrate 1 by vacuum evaporation, sputtering, plasma CVD, or the like, and then patterning the film by etching. There is.

該抵抗体2の抵抗パターンは、前記抵抗調整帯4を中心
に左右対称に設けられている。そして抵抗パターンの上
側には、流体の流れ方向に長方形パルス状にパターニン
グされた前記発熱部5が設けられている。さらに、抵抗
パターンの両端部には、抵抗パターンの体形補整のため
のパッド6が設けられている。
The resistance pattern of the resistor 2 is provided symmetrically with respect to the resistance adjustment band 4 . Above the resistance pattern, the heat generating portion 5 is provided which is patterned in a rectangular pulse shape in the fluid flow direction. Furthermore, pads 6 are provided at both ends of the resistor pattern for adjusting the body shape of the resistor pattern.

前記抵抗調整帯4では、素子3間の抵抗値のバラツキを
抑えるためレーザーカッター等により抵抗値が調整され
ている。
In the resistance adjustment band 4, the resistance value is adjusted using a laser cutter or the like in order to suppress variations in resistance value between the elements 3.

上記の如く構r&されるフローセンサ素子3は、抵抗体
2が絶縁基板1上に白金等の抵抗温度係数の大きな金属
薄膜を真空蒸着法、スパッタリング法、あるいはプラズ
マCVD法等により堆積された後、エツチング技術によ
りパターニングして形成される。このフローセンサ素子
3を第3図の如く、流路管8内に配置し、流速検知部分
が流体温度に対して一定温度高くなるように抵抗体2に
電圧を加える。そして、流路管8内の流体の通過によっ
て奪われる熱量に基いて、流体の流速が求められる。こ
のとき、フローセンサ素子3を抵抗体2に加えた電圧V
outより求められる抵抗体2の消費電圧Pと流速Vの
関係は、 P = Vout”/ Rh=(A +Bf ) ’Δ
′Fとして表される。なお、Rhは抵抗体2の抵抗値、
A及びBは定数、ΔTはフローセンサ素子3の発熱温度
と流体温度との差である。ここで△Tが一定であれば、
抵抗体2の消′ft電力Pは流速の平方根6に比例する
ため電圧VouLあるいは消費電力Pにより流速を求め
ることができる。
The flow sensor element 3 constructed as described above is obtained by depositing a resistor 2 on an insulating substrate 1 by depositing a metal thin film such as platinum having a large resistance temperature coefficient by vacuum evaporation, sputtering, plasma CVD, etc. , is formed by patterning using etching technology. As shown in FIG. 3, this flow sensor element 3 is placed in a flow path pipe 8, and a voltage is applied to the resistor 2 so that the flow rate detection portion becomes a certain temperature higher than the fluid temperature. Then, the flow velocity of the fluid is determined based on the amount of heat taken away by the passage of the fluid in the flow path pipe 8. At this time, the voltage V applied to the flow sensor element 3 and the resistor 2
The relationship between the consumption voltage P of the resistor 2 and the flow velocity V, which is determined from out, is as follows: P = Vout''/Rh = (A + Bf) 'Δ
'F. Note that Rh is the resistance value of resistor 2,
A and B are constants, and ΔT is the difference between the heat generation temperature of the flow sensor element 3 and the fluid temperature. Here, if △T is constant,
Since the power P dissipated by the resistor 2 is proportional to the square root 6 of the flow velocity, the flow velocity can be determined from the voltage VouL or the power consumption P.

そこで、第3図に示すように本発明のフローセンサ素子
を流路管8内に設置し、一方向から流体を流し、流速と
消費電力を測定した場合と従来のフローセンサ素子を同
様に設置して一方向から流体を流し流速と消費電力を測
定した場合とを比較すると次のようになる。
Therefore, as shown in Fig. 3, the flow sensor element of the present invention is installed in the flow path pipe 8, and the flow rate and power consumption are measured by flowing fluid from one direction, and the conventional flow sensor element is installed similarly. A comparison of the flow velocity and power consumption measured by flowing fluid from one direction is as follows.

抵抗調整帯4を抵抗体2の発熱部5の端部に配置した第
6図(a)(b)に示す従来のフローセンサ素子3では
、抵抗調整帯4に抵抗調整を行うと素子3内の温度分布
が異なる。このため、第8図の如く、抵抗調整を行って
いない場合の出力特性Aと抵抗調整を最大に行っている
場合の出力特性Bとに誤差が見られる。
In the conventional flow sensor element 3 shown in FIGS. 6(a) and 6(b) in which the resistance adjustment band 4 is arranged at the end of the heat generating part 5 of the resistor 2, when the resistance adjustment band 4 is adjusted, the inside of the element 3 is temperature distribution is different. For this reason, as shown in FIG. 8, there is an error between the output characteristic A when no resistance adjustment is made and the output characteristic B when resistance adjustment is made to the maximum.

一方、抵抗調整帯4を抵抗体2の発熱部5の中央に配置
した第1図(a)(b)に示される本発明のフローセン
サ素子3では、抵抗調整帯4に抵抗調整を行っても素子
3内の温度分布が一定になる。このため、第4図の如く
抵抗調整を行っている場合の出力特性Aと抵抗調整を最
大に行っている場合の出力特性Bとに誤差が見られない
On the other hand, in the flow sensor element 3 of the present invention shown in FIG. Also, the temperature distribution within the element 3 becomes constant. Therefore, no error is observed between the output characteristic A when the resistance is adjusted as shown in FIG. 4 and the output characteristic B when the resistance is adjusted to the maximum.

また、第3図に示すようにフローセンサ素子3を流路管
8内に配置したときの流体の流れ方向に対する本発明の
フローセンサ素子の出力特性と従来のフローセンサ素子
の出力特性とを比較すると次のようになる。
Further, as shown in FIG. 3, the output characteristics of the flow sensor element of the present invention and the output characteristics of the conventional flow sensor element are compared with respect to the fluid flow direction when the flow sensor element 3 is arranged in the flow path pipe 8. Then it becomes as follows.

第6図(b)に示す従来のフローセンサ素子3では、素
子3内の温度分布が変化するため、第9図の如く、流体
がフローセンサ素子3に対して左側(抵抗調整帯4側)
から流れる場合の出力特性りと右側(抵抗調整帯4と逆
側)から流れる場合の出力特性Rとに誤差が見られる。
In the conventional flow sensor element 3 shown in FIG. 6(b), since the temperature distribution inside the element 3 changes, the fluid flows to the left side (resistance adjustment band 4 side) with respect to the flow sensor element 3, as shown in FIG.
There is an error in the output characteristic R when the flow is from the right side (opposite side to the resistance adjustment band 4).

一方、第1図(b)に示す本発明のフローセンサ素子3
では、素子3内の温度分布が一定になるため、第5図の
如く、流体がフローセンサ素子3に対して左側から流れ
る場合の出力特性りと右側から流れる場合の出力特性R
とに誤差が見られない。
On the other hand, the flow sensor element 3 of the present invention shown in FIG. 1(b)
Since the temperature distribution inside the element 3 is constant, the output characteristics R when the fluid flows from the left side of the flow sensor element 3 and the output characteristics R when the fluid flows from the right side as shown in Fig. 5.
No errors can be seen.

すなわち、本発明のフローセンサの如く、フローセンサ
素子3内の抵抗調整帯4を抵抗体2の発熱部5の中央に
配置すると、抵抗調整の有無によらず素子内の温度分布
が一定となり、抵抗調整による出力特性のバラツキをな
くすごとができる。
That is, when the resistance adjustment band 4 in the flow sensor element 3 is arranged in the center of the heat generating part 5 of the resistor 2 as in the flow sensor of the present invention, the temperature distribution in the element becomes constant regardless of whether resistance adjustment is performed or not. It is possible to eliminate variations in output characteristics due to resistance adjustment.

また、素子間でのバラツキがなくなり、しかも素子に対
して流体が左右どちら側から流れても左右対称に流速を
検知することができる。
In addition, there is no variation between elements, and the flow velocity can be detected symmetrically no matter which side the fluid flows from the left or right side of the element.

したがって、−枚の基板内に多数のフローセンサ素子を
並べて製作するとき、抵抗調整帯に抵抗調整を行うでも
素子内の温度分布が変化しないため、素子間の出力特性
のバラツキを抑えることができる。しかも、流路管内に
配置した場合でも素子の出力特性に方向依存性を持たな
いため、配管等への設置が簡単になる。
Therefore, when manufacturing a large number of flow sensor elements side by side on one board, the temperature distribution within the element does not change even if the resistance adjustment band is adjusted, so it is possible to suppress variations in output characteristics between elements. . Moreover, since the output characteristics of the element do not have directional dependence even when placed in a flow pipe, installation in a pipe or the like becomes easy.

次に、本発明の第二実施例について図面により説明する
。第2図(、)は本発明第二実施例においてフローセン
サ素子の抵抗調整帯に抵抗調整を行っていない場合の横
断平面図、第2図(b)は同じく抵抗調整を最大に行っ
た場合の横断平面図である。
Next, a second embodiment of the present invention will be described with reference to the drawings. Figure 2 (,) is a cross-sectional plan view of the case where no resistance adjustment is made to the resistance adjustment band of the flow sensor element in the second embodiment of the present invention, and Figure 2 (b) is a cross-sectional view when the resistance adjustment band is adjusted to the maximum. FIG.

図示の如く、本発明第二実施例のフローセンサでは、抵
抗体2として発熱抵抗体2aと該発熱抵抗体2aの発熱
温度を検知しながら発熱抵抗体2aに電圧を加える発熱
温度測温抵抗体2bとが前記絶縁基板1上に形成されて
いる。該発熱温度測温抵抗体2bは、発熱抵抗体2aの
内側にパターニングされて設けられている。
As shown in the figure, in the flow sensor of the second embodiment of the present invention, a heat generating resistor 2a is used as the resistor 2, and a heat generating temperature measuring resistor which applies a voltage to the heat generating resistor 2a while detecting the heat generating temperature of the heat generating resistor 2a. 2b are formed on the insulating substrate 1. The heat generating temperature measuring resistor 2b is provided in a patterned manner inside the heat generating resistor 2a.

そして、前記発熱抵抗体2aの発熱部5aの中央に配置
された第一抵抗調整帯4aと、前記発熱温度測温抵抗体
2bの発熱部5bの中央に配置された第二抵抗調整帯4
bとを備えている。その池の構成は第一実施例と同様で
ある。
A first resistance adjustment band 4a is arranged at the center of the heat generating part 5a of the heat generating resistor 2a, and a second resistance adjustment band 4 is arranged at the center of the heat generating part 5b of the heat generating temperature measuring resistor 2b.
b. The configuration of the pond is the same as that of the first embodiment.

上記の如く構成されるフローセンサ素子3は、第一実施
例と同様発熱抵抗体2aと発熱温度測温抵抗体2bとが
絶縁基板1上に白金等の抵抗温度係数の大トな金属薄膜
を真空蒸着法、スパッタリング法、あるいはプラズマC
VD法等により堆積された後、エツチングI支術により
パターニングして形成される。このフローセンサ素子3
を第3図に示すように流路管8内に配置し、流速検知部
分が流体温度に対して一定温度高くなるように発熱温度
測温抵抗体2bで発熱温度を検知しながら発熱抵抗体2
aに電圧を加える。そして、流路管8内の流体の通過に
よって奪われる熱量に基いて、流体の流速が求められる
In the flow sensor element 3 configured as described above, the heat generating resistor 2a and the heat generating temperature measuring resistor 2b are made of a metal thin film such as platinum having a large resistance temperature coefficient on the insulating substrate 1, as in the first embodiment. Vacuum evaporation method, sputtering method, or plasma C
After being deposited by a VD method or the like, it is patterned by an etching I technique. This flow sensor element 3
is placed in the flow pipe 8 as shown in FIG.
Apply voltage to a. Then, the flow velocity of the fluid is determined based on the amount of heat taken away by the passage of the fluid in the flow path pipe 8.

このとき、発熱抵抗体に加えた電圧Voutより求めら
れる発熱抵抗体2aの消費電力Pと流速Vの関係は、第
一実施例と同様 P:=Vout2/Rh=(A+BC)−△Tとして表
される。なお、Rhは発熱抵抗体2aの抵抗値、A及び
Bは定数、ΔTはフローセンサ素子3の発熱温度と流体
温度との差である。ここでΔTが一定であれば、発熱抵
抗体2aの消費電力Pは流速の平方根Fに比例するため
電圧Vout或は消費電力Pにより流速を求めることが
できる2そこで、第一実施例と同様に本発明のフローセ
ンサ素子と従来のフローセンサ素子とを第3図に示す流
路管8内に設置し、一方向から流体を流し流速と消費電
力を測定して比較すると次のようになる。
At this time, the relationship between the power consumption P of the heating resistor 2a and the flow velocity V, which is determined from the voltage Vout applied to the heating resistor, is expressed as P:=Vout2/Rh=(A+BC)−△T, as in the first embodiment. be done. Note that Rh is the resistance value of the heating resistor 2a, A and B are constants, and ΔT is the difference between the heating temperature of the flow sensor element 3 and the fluid temperature. Here, if ΔT is constant, the power consumption P of the heating resistor 2a is proportional to the square root F of the flow velocity, so the flow velocity can be determined from the voltage Vout or the power consumption P2.Therefore, similarly to the first embodiment, The flow sensor element of the present invention and the conventional flow sensor element are installed in the flow path pipe 8 shown in FIG. 3, and a fluid is flowed from one direction, and the flow velocity and power consumption are measured and compared.

第一抵抗調整帯4aと第二抵抗調整帯4bとを基板1の
両端に互いに対向するよう配置した第7図(a)(b)
に示す従来のフローセンサ素子3では、抵抗調整を行う
と素子3素子内の温度分布が異なる。
FIGS. 7(a) and 7(b) show that the first resistance adjustment band 4a and the second resistance adjustment band 4b are arranged at both ends of the substrate 1 so as to face each other.
In the conventional flow sensor element 3 shown in FIG. 3, the temperature distribution within the three elements differs when resistance is adjusted.

このため、第8図の如く、抵抗調整を行っていない場合
の出力特性Aと抵抗調整を最大に行っている場合の出力
特性Bとに誤差が見られる。
For this reason, as shown in FIG. 8, there is an error between the output characteristic A when no resistance adjustment is made and the output characteristic B when resistance adjustment is made to the maximum.

一方、第一抵抗調整帯4aを発熱抵抗体2aの発熱部5
aの中央に配置し第二抵抗調整帯4bを発熱温度測温抵
抗体2bの発熱部5bの中央に配置した第2図(a)(
b)に示す本発明のフローセンサ素子3では、抵抗調整
を行っても素子3内の温度分布が一定になる。このため
、第4図の如く、抵抗調整を行っている場合の出力特性
Aと抵抗調整を最大に行っている場合の出力特性Bとに
誤差が見られない。
On the other hand, the first resistance adjustment band 4a is connected to the heat generating portion 5 of the heat generating resistor 2a.
Fig. 2(a) in which the second resistance adjustment band 4b is arranged in the center of the heat generating part 5b of the heat generating temperature measuring resistor 2b.
In the flow sensor element 3 of the present invention shown in b), the temperature distribution within the element 3 remains constant even when the resistance is adjusted. Therefore, as shown in FIG. 4, no error is observed between the output characteristic A when the resistance is adjusted and the output characteristic B when the resistance is adjusted to the maximum.

また、第一実施例と同様に第3図に示すようにフローセ
ンサ素子3を流路管8内に設置し、流体の流れ方向に対
する本発明のフローセンサ素子の出力特性と従来のフロ
ーセンサ素子3の出力特性とを比較すると次のようにな
る。
Further, as in the first embodiment, the flow sensor element 3 is installed in the flow path pipe 8 as shown in FIG. 3, and the output characteristics of the flow sensor element of the present invention and the conventional flow sensor element with respect to the fluid flow direction are A comparison with the output characteristics of No. 3 is as follows.

第7図(b)に示す従来のフローセンサ素子3では、素
子3内の温度分布が変化するため、第9図の如く、流体
が素子3に対して左側(第一抵抗調整帯4a)から流れ
る場合の出力特性りと右側(第二抵抗調整帯4b)から
流れる場合の出力特性Rとに誤差が見られる。
In the conventional flow sensor element 3 shown in FIG. 7(b), since the temperature distribution inside the element 3 changes, the fluid flows from the left side (first resistance adjustment zone 4a) with respect to the element 3, as shown in FIG. An error can be seen between the output characteristic R when the current flows and the output characteristic R when the current flows from the right side (second resistance adjustment band 4b).

一方、第2図(b)に示す本発明のフローセンサ素子3
では、素子3内の温度分布が一定になるため、第5図の
如く、流体がフローセンサ素子3に対して左側から流れ
る場合の出力特性りと右側から流れる場合の出力特性R
とに誤差が見られない。
On the other hand, the flow sensor element 3 of the present invention shown in FIG. 2(b)
Since the temperature distribution inside the element 3 is constant, the output characteristics R when the fluid flows from the left side of the flow sensor element 3 and the output characteristics R when the fluid flows from the right side as shown in Fig. 5.
No errors can be seen.

したがって、第一抵抗調整帯4aを発熱抵抗体2aの発
熱部5aの中央に配置し、第二抵抗調整帯4bを発熱温
度測温抵抗体2bの発熱部5bの中央に配置しても第一
実施例と同様の効果が得られる。
Therefore, even if the first resistance adjustment band 4a is arranged in the center of the heat generating part 5a of the heat generating resistor 2a and the second resistance adjusting band 4b is arranged in the center of the heat generating part 5b of the heat generating temperature measuring resistor 2b, the Effects similar to those of the embodiment can be obtained.

従来のフローセンサを示す第6図(a)(b)および第
7図(a)(b)は、実施例と同一の番号を付している
FIGS. 6(a) and 7(b) and FIGS. 7(a) and 7(b) showing conventional flow sensors are given the same numbers as in the embodiment.

なお、本発明は、上記実施例に限定されるものではなく
、本発明の範囲内で上記実施例に多くの修正および変更
を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above embodiments, and it goes without saying that many modifications and changes can be made to the above embodiments within the scope of the present invention.

例えば、実施例において抵抗体の材料として白金を使用
しているが、白金以外にも抵抗係数の大きい白金合金、
ニッケル、ニッケル合金あるいはサーミスタ等を使用し
ても良い。
For example, although platinum is used as the material for the resistor in the examples, platinum alloys with a large resistance coefficient, platinum alloys other than platinum,
Nickel, nickel alloy, thermistor, etc. may also be used.

〈発明の効果〉 以上の説明から明らかな通り、本発明によると、絶縁基
板と該絶縁基板上に形成され温度変化に対して抵抗値が
変化する抵抗体とを有するフローセンサ素子を備え、該
フローセンサ素子内の抵抗体を発熱させ、流体の通過に
よって奪われる熱量の変化に基き前記流体の流速を求め
るフローセンサにおいて、前記抵抗体に抵抗調整帯が設
けられ、該抵抗調整帯が前記抵抗体の発熱部の中央に配
置されているので、抵抗調整の有無によらず素子内の温
度分布が一定となり、抵抗調整による出力特性のバラツ
キをなくすことができる。また、素子間でのバラツキが
なくなり、しかも素子に対して流体が左右どちら側から
流れでも左右対称に流速を検知することができる。
<Effects of the Invention> As is clear from the above description, according to the present invention, the flow sensor element includes an insulating substrate and a resistor formed on the insulating substrate and whose resistance value changes with respect to temperature changes. In a flow sensor that generates heat in a resistor in a flow sensor element and determines the flow velocity of the fluid based on a change in the amount of heat removed by passage of the fluid, the resistor is provided with a resistance adjustment band, and the resistance adjustment band is connected to the resistance Since it is placed in the center of the heat generating part of the body, the temperature distribution within the element is constant regardless of whether resistance adjustment is performed, and variations in output characteristics due to resistance adjustment can be eliminated. In addition, there is no variation between elements, and the flow velocity can be detected symmetrically regardless of whether the fluid flows from either the left or right side of the element.

したがって、−枚の基板内に多数のフローセンサ素子を
並べて製作するとき、抵抗調整帯に抵抗調整を行っても
素子内の温度分布が変化しないため、素子間の出力特性
のバラツキを抑えることができるといった優れた効果が
ある。しかも、流路管内に配置した場合でも素子の出力
特性に方向依存性を持たないため、配管等への設置が簡
単になるといった優れた効果がある。
Therefore, when manufacturing a large number of flow sensor elements side by side on a single board, the temperature distribution within the element does not change even if the resistance adjustment band is adjusted, making it possible to suppress variations in output characteristics between elements. There are excellent effects that can be achieved. Furthermore, even when placed in a flow pipe, the output characteristics of the device do not have directional dependence, which provides an excellent effect of simplifying installation in piping and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)は本発明第一実施例のフローセンサ素子に
抵抗調整を行っていない場合の横断平面図、@1図(b
)は同じく抵抗調整を最大に行った場合の横断平面図、
第2図(a)は本発明第二実施例のフローセンサ素子に
抵抗調整を行っていない場合の横断平面図、第2図(b
)は同じく抵抗調整を最大に行った場合の横断平面図、
第3図はフローセンサ素子を流路管内に配置した状態を
示す図、第4図は第1図(、)(b)、第5図(a)(
b)に示す本発明のフローセンサ素子の出力特性を示す
図、第5図は第1図(b)、第2図(b)に示す本発明
のフローセンサ素子の出力特性の方向依存性を示す図、
第6図(、)は従来の抵抗体を備えたフローセンサ素子
に抵抗調整を行っていない場合の横断平面図、第6図(
b)は同じく抵抗調整帯を最大に行っている場合の横断
平面図、第7図(、)は従来の発熱抵抗体と発熱温度測
温抵抗体とを備えたフローセンサ素子に抵抗調整を行っ
ていない場合の横断平面図、@7図(b)は同じくその
抵抗調整を最大に行った場合の横断平面図、第8図は第
6図(a)(b)、第7図(a)(b)に示す従来のフ
ローセンサ素子の出力特性を示す図、第9図は第6図(
b)、第7図(b)に示す従来のフローセンサ素子の出
力特性の方向依存性を示す図である。 1:絶縁基板、2:抵抗体、2a:発熱抵抗体、2b:
発熱温度測温抵抗体、3ニア0−センサ素子、4:抵抗
調整帯、4a:第一抵抗調整帯、4b:第二抵抗調整帯
、5:発熱部。 出 願 人  シャープ株式会社・
Figure 1 (, ) is a cross-sectional plan view of the flow sensor element according to the first embodiment of the present invention without resistance adjustment;
) is a cross-sectional plan view when the resistance is adjusted to the maximum,
Fig. 2(a) is a cross-sectional plan view of the flow sensor element according to the second embodiment of the present invention without resistance adjustment; Fig. 2(b)
) is a cross-sectional plan view when the resistance is adjusted to the maximum,
Fig. 3 shows the state in which the flow sensor element is arranged in the flow path pipe, and Fig. 4 shows Fig. 1(,)(b), Fig. 5(a)(
Figure 5 shows the directional dependence of the output characteristics of the flow sensor element of the present invention shown in Figures 1 (b) and 2 (b). The figure shown,
Figure 6(,) is a cross-sectional plan view of a flow sensor element equipped with a conventional resistor without resistance adjustment;
b) is a cross-sectional plan view when the resistance adjustment band is also maximized, and Fig. 7 (,) is a flow sensor element equipped with a conventional heat generating resistor and a heat generating temperature measuring resistor with resistance adjusted. Figure 8 is a cross-sectional plane view when the resistance is adjusted to the maximum, Figure 8 is a cross-sectional plane view when the resistance is not adjusted to the maximum, and Figure 7 (a). (b) is a diagram showing the output characteristics of the conventional flow sensor element, and Figure 9 is similar to Figure 6 (
b) is a diagram showing the directional dependence of the output characteristics of the conventional flow sensor element shown in FIG. 7(b). 1: Insulating substrate, 2: Resistor, 2a: Heat generating resistor, 2b:
Heat generating temperature resistance thermometer, 3 near 0-sensor element, 4: resistance adjustment band, 4a: first resistance adjustment band, 4b: second resistance adjustment band, 5: heat generating section. Applicant: Sharp Corporation

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板と該絶縁基板上に形成され温度変化に対して抵
抗値が変化する抵抗体とを有するフローセンサ素子を備
え、該フローセンサ素子内の抵抗体を発熱させ、流体の
通過によつて奪われる熱量の変化に基き前記流体の流速
を求めるフローセンサにおいて、前記抵抗体に抵抗調整
帯が設けられ、該抵抗調整帯が前記抵抗体の発熱部の中
央に配置されたことを特徴とするフローセンサ。
A flow sensor element includes an insulating substrate and a resistor formed on the insulating substrate and whose resistance value changes with temperature changes. In the flow sensor that determines the flow velocity of the fluid based on a change in the amount of heat generated, the flow sensor is characterized in that the resistor is provided with a resistance adjustment band, and the resistance adjustment band is disposed at the center of the heat generating part of the resistor. sensor.
JP63173152A 1988-07-11 1988-07-11 Flow sensor Pending JPH0222516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63173152A JPH0222516A (en) 1988-07-11 1988-07-11 Flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63173152A JPH0222516A (en) 1988-07-11 1988-07-11 Flow sensor

Publications (1)

Publication Number Publication Date
JPH0222516A true JPH0222516A (en) 1990-01-25

Family

ID=15955067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63173152A Pending JPH0222516A (en) 1988-07-11 1988-07-11 Flow sensor

Country Status (1)

Country Link
JP (1) JPH0222516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188032A (en) * 1990-11-21 1992-07-06 Mitsubishi Electric Corp Heat sensitive resistor element
WO1995025139A1 (en) * 1994-03-16 1995-09-21 Asahi Kasei Kogyo Kabushiki Kaisha Cross-linking resin composition
US5702272A (en) * 1993-01-10 1997-12-30 Ryosei Electro-Circuit Systems, Ltd. Connecting terminal and method or manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188032A (en) * 1990-11-21 1992-07-06 Mitsubishi Electric Corp Heat sensitive resistor element
US5702272A (en) * 1993-01-10 1997-12-30 Ryosei Electro-Circuit Systems, Ltd. Connecting terminal and method or manufacturing the same
WO1995025139A1 (en) * 1994-03-16 1995-09-21 Asahi Kasei Kogyo Kabushiki Kaisha Cross-linking resin composition

Similar Documents

Publication Publication Date Title
JP3175887B2 (en) measuring device
JP3333712B2 (en) Flow rate detecting element and flow rate sensor using the same
US4633578A (en) Miniature thermal fluid flow sensors and batch methods of making same
US4733559A (en) Thermal fluid flow sensing method and apparatus for sensing flow over a wide range of flow rates
EP0393141A1 (en) Silicon-based mass airflow sensor.
JPH05508915A (en) Thin film air flow sensor using temperature biased resistive element
JPH0810231B2 (en) Flow sensor
TW200401881A (en) Flow sensor
JP3457826B2 (en) Thin film resistor and method of manufacturing the same, flow sensor, humidity sensor, gas sensor, temperature sensor
JP2571720B2 (en) Flowmeter
JPH0222516A (en) Flow sensor
JPS61274222A (en) Flow quantity sensor
JP2001165739A (en) Operation method for measurement device
KR100292799B1 (en) Micro Flow / Flow Sensors with Membrane Structure, and Flow / Flow Measurement Methods Using Them
JP2619735B2 (en) Heat flow sensor
JP3316740B2 (en) Flow detection element
JPS6243522A (en) Flow sensor
JPH11281445A (en) Flow rate detecting element and flow sensor
JPH0584867B2 (en)
JP2002310762A (en) Flow sensor
Hsieh et al. Pyroelectric anemometry: frequency, geometry and gas dependence
JPH0643906B2 (en) Flow sensor
JPH10197306A (en) Flow rate sensor
JPH0493768A (en) Flow velocity sensor
JPH0593732A (en) Flow sensor