JPH04343023A - Flowrate sensor - Google Patents

Flowrate sensor

Info

Publication number
JPH04343023A
JPH04343023A JP3143910A JP14391091A JPH04343023A JP H04343023 A JPH04343023 A JP H04343023A JP 3143910 A JP3143910 A JP 3143910A JP 14391091 A JP14391091 A JP 14391091A JP H04343023 A JPH04343023 A JP H04343023A
Authority
JP
Japan
Prior art keywords
insulating film
fluid
temperature
heater
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3143910A
Other languages
Japanese (ja)
Inventor
Yozo Hirata
平田 陽三
Keiichi Miyamoto
宮本 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP3143910A priority Critical patent/JPH04343023A/en
Publication of JPH04343023A publication Critical patent/JPH04343023A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the thermal response characteristic of a sensor and to reduce the heat loss of a heater thereby to save power consumption. CONSTITUTION:A heater 3, a temperature sensitive resistance body 4 at the upperstream side and a temperature sensitive resistance body 5 at the downstream side are coated with a lower insulating film 2 and an upper insulating film 6. The lower insulating film 2 is formed of material of small thermal conductivity, so that the heat loss of the heater 3 is decreased and the consuming power is reduced. Moreover, since the upper insulating film 6 is made of material of large thermal conductivity, the movement of the heat of a fluid to be measured is accurately detected.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は流量センサに係り、特に
極めて微量な流体の流量を計測する場合に用いて好適な
流量センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow rate sensor, and more particularly to a flow rate sensor suitable for use in measuring extremely small amounts of fluid flow.

【0002】0002

【従来の技術】従来、微量な流体の流量を計測する流量
センサとしては、例えば特開昭60−142268号公
報記載のものが提案されている。該公報記載の流量セン
サは、ヒータ・熱感知センサ等からなる流量計測を行う
主要部の上面及び下面をともに同一物質の薄い絶縁膜で
被覆した構成となっている。
2. Description of the Related Art Conventionally, as a flow rate sensor for measuring the flow rate of a small amount of fluid, the one described in, for example, Japanese Patent Application Laid-open No. 142268/1983 has been proposed. The flow rate sensor described in this publication has a structure in which the upper and lower surfaces of the main part that measures the flow rate, which includes a heater, a heat sensing sensor, etc., are covered with a thin insulating film made of the same material.

【0003】0003

【発明が解決しようとする課題】ところで、前述した従
来技術においては次のような問題があった。即ち、前記
流量センサの流量計測部の上下両面を被覆する絶縁膜は
ともに同一物質から構成されているが、両絶縁膜として
例えば熱伝導率の大きい物質を使用した場合には、流体
の流れに応じた流体の温度を的確に検知することができ
ず、この結果、流体の流量を正確に計測することができ
ないという不具合が発生する。他方、両絶縁膜として例
えば熱伝導率の小さい物質を使用した場合には、ヒータ
における熱損失が大きくなり消費電力が増加するという
不具合が発生する。
However, the above-mentioned prior art has the following problems. In other words, the insulating films covering both the upper and lower surfaces of the flow rate measuring section of the flow rate sensor are made of the same material, but if a material with high thermal conductivity is used as both insulating films, for example, the flow of the fluid will be affected. The temperature of the corresponding fluid cannot be detected accurately, and as a result, a problem arises in that the flow rate of the fluid cannot be accurately measured. On the other hand, if a material with low thermal conductivity is used for both insulating films, for example, a problem occurs in that heat loss in the heater increases and power consumption increases.

【0004】本発明は前記課題を解決するもので、流量
計測部の上面及び下面を被覆する絶縁膜として熱伝導率
が異なる物質を使用することにより、熱応答性を向上さ
せると共に、ヒータの熱損失を減少させ消費電力を低減
させることを達成した流量センサの提供を目的とする。
The present invention solves the above problems by using materials with different thermal conductivities as the insulating films covering the upper and lower surfaces of the flow rate measuring section, thereby improving the thermal response and reducing the heat generated by the heater. The object of the present invention is to provide a flow sensor that achieves reduced loss and reduced power consumption.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明は、基板と、該基板の上面に設けられ計測対象流
体を加熱する加熱手段と、該基板の上面に設けられ前記
加熱手段により加熱された計測対象流体の温度を抵抗値
として検出する感温手段と、前記加熱手段及び前記感温
手段の上部を被覆する上部絶縁膜と、前記加熱手段及び
前記感温手段の下部を被覆する下部絶縁膜とを具備して
なる流量センサにおいて、前記上部絶縁膜と前記下部絶
縁膜とを、互いに熱伝導率が異なる物質から構成したこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a substrate, a heating means provided on the upper surface of the substrate for heating a fluid to be measured, and a heating means provided on the upper surface of the substrate. a temperature sensing means for detecting the temperature of a heated fluid to be measured as a resistance value; an upper insulating film covering an upper part of the heating means and the temperature sensing means; and a lower part of the heating means and the temperature sensing means. A flow rate sensor comprising a lower insulating film is characterized in that the upper insulating film and the lower insulating film are made of materials having different thermal conductivities.

【0006】[0006]

【作用】本発明によれば、上部絶縁膜と下部絶縁膜とを
互いに熱伝導率が異なる物質から構成しているため、加
熱手段の熱損失を減少させ消費電力を低減させることが
できる。また、感温手段における熱応答を迅速化するこ
とができるため、計測対象流体の熱移動を的確に検知す
ることができる。これにより、流量センサの性能を大幅
に向上させることが可能となる。
According to the present invention, since the upper insulating film and the lower insulating film are made of materials having different thermal conductivities, it is possible to reduce heat loss of the heating means and reduce power consumption. Furthermore, since the thermal response in the temperature sensing means can be made faster, the heat transfer of the fluid to be measured can be accurately detected. This makes it possible to significantly improve the performance of the flow sensor.

【0007】[0007]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1・図2は本実施例の流量センサの構成図であ
り、板厚が例えば200〜400μmとされた半導体基
板1の上面中央部には、膜厚が例えば400nmとされ
た下部絶縁膜2が形成されており、該下部絶縁膜2の上
面には、計測対象流体を加熱する厚さが例えば80nm
とされたヒータ3と、該ヒータ3の一側(図1の矢印で
示す流体の流れ方向上流側)に配置され厚さが例えば8
0nmとされた上流側感温抵抗体4と、該ヒータ3の他
側(図1の矢印で示す流体の流れ方向下流側)に配置さ
れ厚さが例えば80nmとされた下流側感温抵抗体5と
が形成されている。即ち、前記ヒータ3・上流側感温抵
抗体4・下流側感温抵抗体5は、下部絶縁膜2及び上部
絶縁膜6により被覆される構成とされている。更に、前
記ヒータ3・上流側感温抵抗体4・下流側感温抵抗体5
の上面には、膜厚が例えば400nmとされた上部絶縁
膜6が形成されている。更にまた、前記ヒータ3・上流
側感温抵抗体4・下流側感温抵抗体5から構成される流
量計測部の下方の基板1の中央部には、空間部7が形成
されている。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. 1 and 2 are configuration diagrams of the flow rate sensor of this embodiment, in which a lower insulating film 2 with a thickness of, for example, 400 nm is provided at the center of the upper surface of a semiconductor substrate 1 with a thickness of, for example, 200 to 400 μm. is formed on the upper surface of the lower insulating film 2, and the thickness for heating the fluid to be measured is, for example, 80 nm.
The heater 3 is arranged on one side (the upstream side in the fluid flow direction indicated by the arrow in FIG. 1) and has a thickness of, for example, 8.
An upstream temperature-sensitive resistor 4 with a thickness of 0 nm, and a downstream temperature-sensitive resistor with a thickness of, for example, 80 nm, which is disposed on the other side of the heater 3 (downstream in the fluid flow direction indicated by the arrow in FIG. 1). 5 is formed. That is, the heater 3, the upstream temperature-sensitive resistor 4, and the downstream temperature-sensitive resistor 5 are covered with the lower insulating film 2 and the upper insulating film 6. Furthermore, the heater 3, the upstream temperature sensitive resistor 4, and the downstream temperature sensitive resistor 5
An upper insulating film 6 having a thickness of, for example, 400 nm is formed on the upper surface. Furthermore, a space 7 is formed in the center of the substrate 1 below the flow rate measurement section composed of the heater 3, the upstream temperature-sensitive resistor 4, and the downstream temperature-sensitive resistor 5.

【0008】ここで、前記下部絶縁膜2は、例えば酸化
シリコン等の熱伝導率が小なる物質から形成されており
(本実施例では熱伝導率を例えば1.4W/m・Kとし
ているが該数値に限定されるものではない)、これによ
りヒータ3の熱損失を減少させ該ヒータ3の消費電力を
低減させるようになっている。また、前記上部絶縁膜6
は、例えば窒化シリコン等の熱伝導率が大なる物質から
形成されており(本実施例では熱伝導率を例えば19W
/m・Kとしているが該数値に限定されるものではない
)、これにより計測対象流体の熱移動を的確に検知する
ことができるようになっている。この場合、エッチング
技術による前記半導体基板1の加工時に際しては、前記
酸化シリコン等から成る下部絶縁膜2はエッチング液(
例えば水酸化カリウム水溶液等)に若干浸されるため、
長時間に渡って下部絶縁膜2をエッチング液にさらして
おいたときに下部絶縁膜2が除去される不具合を防止す
べく、下部絶縁膜2の下層に、エッチング液で酸化シリ
コンよりも侵されにくい窒化シリコンを更に形成するよ
うにすることも可能である。
The lower insulating film 2 is made of a material with low thermal conductivity, such as silicon oxide (in this embodiment, the thermal conductivity is 1.4 W/m·K, for example). (It is not limited to this numerical value), thereby reducing the heat loss of the heater 3 and reducing the power consumption of the heater 3. Further, the upper insulating film 6
is made of a material with high thermal conductivity, such as silicon nitride (in this example, the thermal conductivity is 19W, for example).
/m·K, but is not limited to this value), thereby making it possible to accurately detect the heat transfer of the fluid to be measured. In this case, when processing the semiconductor substrate 1 using etching technology, the lower insulating film 2 made of silicon oxide or the like is removed using an etching solution (
For example, because it is slightly immersed in potassium hydroxide aqueous solution, etc.
In order to prevent the problem of the lower insulating film 2 being removed when the lower insulating film 2 is exposed to an etching solution for a long period of time, the lower layer of the lower insulating film 2 is coated with an etching solution that is more likely to be attacked than silicon oxide. It is also possible to further form silicon nitride, which is difficult to form.

【0009】次に、上記構成による本実施例の流量セン
サの動作について説明する。流量センサによる計測対象
流体の流量計測時において、外部回路(図示略)からヒ
ータ3へ通電して加熱すると共に、該ヒータ3を周囲温
度よりも予め定めた所定値だけ高い温度となるように制
御する。流体の流れが無い場合には、流量センサにおけ
る温度分布はヒータ3を中心として上流側感温抵抗体4
側、及び下流側感温抵抗体5側で対称となる。他方、図
1の矢印で示す方向へ流体の流れが生じた場合には、上
流側感温抵抗体4は冷却される一方、下流側感温抵抗体
5においては図1矢印方向から流れてくる流体を媒体と
してヒータ3からの熱伝導が促進され温度が上昇するた
め、上流側感温抵抗体4と下流側感温抵抗体5との間に
温度差が生ずる。従って、上流側感温抵抗体4と下流側
感温抵抗体5とを例えばホイートストンブリッジ回路へ
接続することにより、両感温抵抗体4・5の温度差を電
圧に変換し、流量に応じた電圧出力を取り出せば、流体
の流量を計測することができる。
Next, the operation of the flow rate sensor of this embodiment having the above configuration will be explained. When the flow rate sensor measures the flow rate of the fluid to be measured, an external circuit (not shown) supplies electricity to the heater 3 to heat it, and controls the heater 3 to have a temperature higher than the ambient temperature by a predetermined value. do. When there is no fluid flow, the temperature distribution in the flow sensor is centered around the heater 3 and the upstream temperature sensing resistor 4.
and the downstream temperature-sensitive resistor 5 side. On the other hand, when fluid flows in the direction shown by the arrow in FIG. 1, the upstream temperature-sensitive resistor 4 is cooled, while the fluid flows in the downstream temperature-sensitive resistor 5 from the direction of the arrow in FIG. Since heat conduction from the heater 3 is promoted using the fluid as a medium and the temperature rises, a temperature difference occurs between the upstream temperature sensitive resistor 4 and the downstream temperature sensitive resistor 5. Therefore, by connecting the upstream temperature-sensitive resistor 4 and the downstream temperature-sensitive resistor 5 to, for example, a Wheatstone bridge circuit, the temperature difference between the two temperature-sensitive resistors 4 and 5 is converted into voltage, and the voltage is adjusted according to the flow rate. By extracting the voltage output, the flow rate of the fluid can be measured.

【0010】この場合、前記ヒータ3・上流側感温抵抗
体4・下流側感温抵抗体5から構成される流量計測部は
、膜厚が例えば400nmといった非常に薄い下部絶縁
膜2及び上部絶縁膜6によって被覆されていると共に、
該流量計測部の下方の基板1に形成された空間部7によ
って熱絶縁されており、更に、前記下部絶縁膜2は、例
えば酸化シリコン等の熱伝導率が小なる物質から形成さ
れているため、熱損失を減少させることができ、この結
果ヒータ3に対する供給電力を低減させることができる
。また、前記上部絶縁膜6は、例えば窒化シリコン等の
熱伝導率が大なる物質から形成されているため、計測対
象流体の熱移動を的確に検知することができ、上流側感
温抵抗体4・下流側感温抵抗体5における熱応答を迅速
化することができる。これにより、流量センサの性能を
大幅に向上させることが可能となる。
In this case, the flow rate measuring section composed of the heater 3, the upstream temperature-sensitive resistor 4, and the downstream temperature-sensitive resistor 5 consists of a lower insulating film 2 and an upper insulating film having a very thin film thickness of, for example, 400 nm. covered with a membrane 6, and
It is thermally insulated by a space 7 formed in the substrate 1 below the flow rate measuring section, and furthermore, the lower insulating film 2 is made of a material with low thermal conductivity, such as silicon oxide. , heat loss can be reduced, and as a result, the power supplied to the heater 3 can be reduced. Further, since the upper insulating film 6 is formed of a material with high thermal conductivity such as silicon nitride, it is possible to accurately detect the heat transfer of the fluid to be measured, and the upstream temperature-sensitive resistor 4 - It is possible to speed up the thermal response in the downstream temperature-sensitive resistor 5. This makes it possible to significantly improve the performance of the flow sensor.

【0011】[0011]

【発明の効果】以上説明したように本発明によれば、基
板と、該基板の上面に設けられ計測対象流体を加熱する
加熱手段と、該基板の上面に設けられ前記加熱手段によ
り加熱された計測対象流体の温度を抵抗値として検出す
る感温手段と、前記加熱手段及び前記感温手段の上部を
被覆する上部絶縁膜と、前記加熱手段及び前記感温手段
の下部を被覆する下部絶縁膜とを具備してなる流量セン
サにおいて、前記上部絶縁膜と前記下部絶縁膜とを、互
いに熱伝導率が異なる物質から構成したので、下記各項
の効果を奏することができる。■加熱手段・感温手段の
上部を被覆する上部絶縁膜と、下部を被覆する下部絶縁
膜とを互いに熱伝導率が異なる物質から構成しているた
め、加熱手段の熱損失を減少させ消費電力を低減させる
ことができる。また、感温手段における熱応答を迅速化
することができるため、計測対象流体の熱移動を的確に
検知することができる。これにより、流量センサの性能
を大幅に向上させることが可能となる。■上記により、
従来の如く同一物質で構成した上部及び下部絶縁膜とし
て熱伝導率の大きい物質を使用した際に流れに応じた流
体の温度を的確に検知できないという不具合や、上部及
び下部絶縁膜として熱伝導率の小さい物質を使用した際
に加熱手段における熱損失が大きくなり消費電力が増加
するという不具合を解消することができる。
[Effects of the Invention] As explained above, according to the present invention, there is provided a substrate, a heating means provided on the upper surface of the substrate for heating the fluid to be measured, and a fluid heated by the heating means provided on the upper surface of the substrate. a temperature sensing means for detecting the temperature of the fluid to be measured as a resistance value; an upper insulating film covering the upper part of the heating means and the temperature sensing means; and a lower insulating film covering the lower part of the heating means and the temperature sensing means. In the flow rate sensor comprising the above, since the upper insulating film and the lower insulating film are made of materials having mutually different thermal conductivities, the following effects can be achieved. ■The upper insulating film that covers the upper part of the heating means/temperature-sensing means and the lower insulating film that covers the lower part are made of materials with different thermal conductivities, reducing heat loss in the heating means and power consumption. can be reduced. Furthermore, since the thermal response in the temperature sensing means can be made faster, the heat transfer of the fluid to be measured can be accurately detected. This makes it possible to significantly improve the performance of the flow sensor. ■Due to the above,
When a material with high thermal conductivity is used as the upper and lower insulating films made of the same material as in the past, there are problems such as the inability to accurately detect the temperature of the fluid according to the flow, and the problem that the upper and lower insulating films have high thermal conductivity. It is possible to solve the problem that heat loss in the heating means becomes large and power consumption increases when a substance with a small value is used.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の流量センサの斜視図である。FIG. 1 is a perspective view of a flow sensor according to an embodiment of the present invention.

【図2】本実施例の図1のA−A線に沿う矢視断面図で
ある。
FIG. 2 is a sectional view taken along line A-A in FIG. 1 of this embodiment.

【符号の説明】[Explanation of symbols]

1  半導体基板 2  下部絶縁膜 3  ヒータ(加熱手段) 4  上流側感温抵抗体(感温手段) 5  下流側感温抵抗体(感温手段) 6  上部絶縁膜 7  空間部 1 Semiconductor substrate 2 Lower insulating film 3 Heater (heating means) 4 Upstream temperature sensing resistor (temperature sensing means) 5 Downstream temperature sensing resistor (temperature sensing means) 6 Upper insulating film 7 Space section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基板と、該基板の上面に設けられ計測
対象流体を加熱する加熱手段と、該基板の上面に設けら
れ前記加熱手段により加熱された計測対象流体の温度を
抵抗値として検出する感温手段と、前記加熱手段及び前
記感温手段の上部を被覆する上部絶縁膜と、前記加熱手
段及び前記感温手段の下部を被覆する下部絶縁膜とを具
備してなる流量センサにおいて、前記上部絶縁膜と前記
下部絶縁膜とを、互いに熱伝導率が異なる物質から構成
したことを特徴とする流量センサ。
1. A substrate, a heating means provided on the upper surface of the substrate to heat a fluid to be measured, and a temperature of the fluid to be measured heated by the heating means provided on the upper surface of the substrate to be detected as a resistance value. A flow rate sensor comprising a temperature sensing means, an upper insulating film covering an upper part of the heating means and the temperature sensing means, and a lower insulating film covering a lower part of the heating means and the temperature sensing means, A flow rate sensor characterized in that the upper insulating film and the lower insulating film are made of materials having different thermal conductivities.
JP3143910A 1991-05-20 1991-05-20 Flowrate sensor Withdrawn JPH04343023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143910A JPH04343023A (en) 1991-05-20 1991-05-20 Flowrate sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143910A JPH04343023A (en) 1991-05-20 1991-05-20 Flowrate sensor

Publications (1)

Publication Number Publication Date
JPH04343023A true JPH04343023A (en) 1992-11-30

Family

ID=15349930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143910A Withdrawn JPH04343023A (en) 1991-05-20 1991-05-20 Flowrate sensor

Country Status (1)

Country Link
JP (1) JPH04343023A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622586A (en) * 1994-01-10 1997-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating device made of thin diamond foil
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622586A (en) * 1994-01-10 1997-04-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating device made of thin diamond foil
JPH11251104A (en) * 1998-02-27 1999-09-17 Hokuriku Electric Ind Co Ltd Heat generating thin-film element sensor and its manufacture
JP2003532099A (en) * 2000-05-04 2003-10-28 ゼンジリオン アクチエンゲゼルシャフト Flow sensor for liquid

Similar Documents

Publication Publication Date Title
JP3175887B2 (en) measuring device
US5050429A (en) Microbridge flow sensor
JP3333712B2 (en) Flow rate detecting element and flow rate sensor using the same
JPH0476412B2 (en)
US4561303A (en) Mass airflow sensor with backflow detection
JP3470881B2 (en) Micro flow sensor
JPH04343023A (en) Flowrate sensor
JP2529895B2 (en) Flow sensor
JP2001165739A (en) Operation method for measurement device
JP2602117B2 (en) Flow sensor
KR100292799B1 (en) Micro Flow / Flow Sensors with Membrane Structure, and Flow / Flow Measurement Methods Using Them
JPH0612493Y2 (en) Micro bridge flow sensor
JP3316740B2 (en) Flow detection element
JPS6385364A (en) Flow velocity detector
JPH0643906B2 (en) Flow sensor
JPH0593732A (en) Flow sensor
JPH04116464A (en) Fluid velocity sensor
JPS60230019A (en) Gas flow rate detector
JP3163558B2 (en) Flow velocity detector
JPH042967A (en) Flow sensor
JPH11281446A (en) Flow rate detecting element and flow rate sensor
JPH04102023A (en) Flow speed sensor
JPH11295127A (en) Flow detecting element and flow sensor, and manufacture of flow detecting element
JPH04343024A (en) Flowrate sensor
JPH11281445A (en) Flow rate detecting element and flow sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806