JPS60230019A - Gas flow rate detector - Google Patents

Gas flow rate detector

Info

Publication number
JPS60230019A
JPS60230019A JP59085114A JP8511484A JPS60230019A JP S60230019 A JPS60230019 A JP S60230019A JP 59085114 A JP59085114 A JP 59085114A JP 8511484 A JP8511484 A JP 8511484A JP S60230019 A JPS60230019 A JP S60230019A
Authority
JP
Japan
Prior art keywords
detection element
gas flow
heat
flow rate
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59085114A
Other languages
Japanese (ja)
Other versions
JPH06100485B2 (en
Inventor
Takehisa Yaegashi
八重樫 武久
Michihiro Ohashi
大橋 通宏
Kazuhiko Shiratani
和彦 白谷
Kaneo Imamura
今村 兼雄
Kazuaki Koyanagi
小柳 和明
Hirofumi Ono
弘文 小野
Masayuki Kamo
加茂 政行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Toyota Motor Corp
S Tec Inc
Original Assignee
Aisan Industry Co Ltd
Toyota Motor Corp
S Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Toyota Motor Corp, S Tec Inc filed Critical Aisan Industry Co Ltd
Priority to JP59085114A priority Critical patent/JPH06100485B2/en
Publication of JPS60230019A publication Critical patent/JPS60230019A/en
Publication of JPH06100485B2 publication Critical patent/JPH06100485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects

Abstract

PURPOSE:To detect accurately and sensitively a flow rate to the variation in flow rate by arranging thin flat plate type detecting elements for the flow rate and gas temperature in a gas flow passage. CONSTITUTION:When the thin flat plate type flow rate detecting element 4 and thin flat plate type gas temperature detecting element 5 are arranged in the gas flow passage 2, the element 4 is arranged extending in parallel to the axial line X of the flow passage 2 and along a line X. Further, the element 5 is aranged in parallel to the line X slantingly below the upstream side of the element in the direction F of the gas flow. Consequently, the gas flow disturbed by the lead wire 10 of the element 5 never reaches the element 4.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガス流量検出装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a gas flow rate detection device.

従来技術 ガス流量、例えば内燃機関の吸入空気量を検出するため
に熱線風速計の原理を応用したガス流量検出装置が特開
昭55−103421号公報に記載されているように公
知である。このガス流量検出装置では自己加熱せしめら
れる測定抵抗を担持した平板状支持体をガス流通路の軸
線上に配置し、この測定抵抗支持体のまっすぐ前方に補
償抵抗を担持した平板状支持体を配置し、測定抵抗と補
償抵抗の温度差が等しくなるように測定抵抗に供給され
る、加熱用電流を調整して測定抵抗を加熱するのに必要
な電流値からガス流速を検出するようにしている。
BACKGROUND OF THE INVENTION A gas flow rate detection device applying the principle of a hot wire anemometer to detect a gas flow rate, for example, the intake air amount of an internal combustion engine, is known as described in Japanese Patent Laid-Open No. 103421/1983. In this gas flow rate detection device, a flat support carrying a self-heating measuring resistor is arranged on the axis of the gas flow path, and a flat supporting body carrying a compensation resistor is arranged straight ahead of the measuring resistor supporting body. Then, the heating current supplied to the measuring resistor is adjusted so that the temperature difference between the measuring resistor and the compensation resistor is equal, and the gas flow rate is detected from the current value required to heat the measuring resistor. .

しかしながらこのガス流量検出装置ではまず第1に補償
抵抗支持体が測定抵抗支持体のまっすぐ前方に配置され
ているので補償抵抗支持体によって乱されたガス流が測
定抵抗支持体の測定抵抗表面を流れる。その結果、乱れ
の程度に応じて測定抵抗の冷却度合が変化するので測定
抵抗に供給される電流値がガス流速に正確に対応しな(
なり、斯くしてガス流速を正確に検出できないという問
題がある。
However, in this gas flow detection device, first of all, the compensating resistance support is arranged directly in front of the measuring resistance support, so that the gas flow disturbed by the compensating resistance support flows over the measuring resistance surface of the measuring resistance support. . As a result, the degree of cooling of the measuring resistor changes depending on the degree of turbulence, so the current value supplied to the measuring resistor does not correspond accurately to the gas flow velocity (
Therefore, there is a problem that the gas flow velocity cannot be detected accurately.

第2にこのガス流量検出装置では測定抵抗が加熱ヒータ
を兼ねているのでガス流速を正確に検出できないという
問題がある。mち、測定抵抗として要求される特性は温
度変化に対する感度が敏感なこと、即ち抵抗の温度係数
が大きいことである。
Secondly, in this gas flow rate detection device, the measurement resistor also serves as a heater, so there is a problem that the gas flow rate cannot be detected accurately. The characteristics required of a measuring resistor are sensitivity to temperature changes, that is, a large temperature coefficient of resistance.

しかしながら抵抗の温度係数を大きくすると温度変化に
対する抵抗値の変化が大きくなり、測定抵抗に供給され
る加熱用電流値、即ちガス流量検出装置の出力信号は多
(のリップルを含むことになるので感度とノイズのレベ
ルの比、いわゆるS/N比が低下する。従って測定抵抗
としては抵抗温度係数の大きな抵抗を用いることができ
ず、斯くして流速変化に対して良好な感度が得られない
という問題がある。
However, if the temperature coefficient of the resistor is increased, the change in resistance value due to temperature changes will increase, and the heating current value supplied to the measuring resistor, that is, the output signal of the gas flow rate detection device, will include ripples due to the sensitivity. The so-called signal-to-noise ratio (S/N ratio) decreases.Therefore, a resistor with a large temperature coefficient of resistance cannot be used as a measuring resistor, and thus good sensitivity to changes in flow velocity cannot be obtained. There's a problem.

発明の目的 本発明の目的は流速変化に対して敏感であり、しかも流
速を正確に検出することのできるガス流量検出装置を提
供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a gas flow rate detection device that is sensitive to changes in flow velocity and can accurately detect flow velocity.

発明の構成 本発明の構成は、ガス流通路内に薄肉平板状の流速検出
用素子と薄肉平板状のガス温検出用素子とをガス流通路
の軸線と平行に配置し、ガス流通路の軸線に沿ってみた
流速検出用素子とガス温検〒 1 出用素子の投影像が互に重合しないようにガス温検
出用素子を流速検出用素子の斜め上流に配置したことに
ある。
Structure of the Invention The structure of the present invention is such that a thin flat plate-shaped flow velocity detection element and a thin flat plate-shaped gas temperature detection element are arranged in parallel to the axis of the gas flow passage. Flow velocity detection element and gas temperature detection as seen along the flow velocity detection element 1 The gas temperature detection element is arranged diagonally upstream of the flow velocity detection element so that the projected images of the output element do not overlap with each other.

実施例 2 第1図および第2図を参照すると、1はガス流通管、2
はガス流通路、3は非導電性断熱性の合成樹脂材料から
なる検出素子ホルダを夫々示す。
Example 2 Referring to FIGS. 1 and 2, 1 is a gas flow pipe, 2
Reference numeral 3 indicates a gas flow passage, and 3 indicates a detection element holder made of a non-conductive and heat-insulating synthetic resin material.

本発明を内燃機関に適用した場合にはガス流通路2は吸
気通路、或いは吸気通路内に形成されたベンチュリとベ
ンチュリ上流の吸気通路とを連結するバイパス通路を示
す。第1図および第2図に示されるようにガス流通路2
内には薄肉平板状の流速検出用素子4と薄肉平板状のガ
ス温検出用素子5とが配置される。流速検出用素子4は
ガス流通路2の軸線X上において軸線Xに沿って延びる
ように配置される。しかしながらこの流速検出用素子4
は必ずしも軸線X上に配置する必要はなく、軸線Xから
間隔を隔てて配置することもできるがこの場合でも流速
検出用素子4は軸線Xと平行に配置0必要”“6・一方
・”7温検8用8子5 、は矢印Fで示すガスの流れ方
向に対して流速検出用素子4の斜め上流において軸線X
と平行に配置される。即ち、ガス温検出用素子5は軸線
X方向において流速検出用素子4から間隔を隔てて配置
されており、また第8図に示すように軸線Xに沿う流速
検出用素子4の投影像4aとガス温検出用素子5の投影
像5aとが互に重合しないように配置されている。流速
検出用素子4およびガス温検出用素子5はそれらの゛投
影像4a 、 5aが互に重合しないように配置すれば
よいので流速検出用素子4とガス温検出用素子5とを必
ずしも平行に配置する必要がなく、例えば投影像4a 
、 5aが互に直角をなすように流速検出用素子4とガ
ス温検出用素子5を配置することもできる。
When the present invention is applied to an internal combustion engine, the gas flow passage 2 represents an intake passage or a bypass passage that connects a venturi formed in the intake passage and an intake passage upstream of the venturi. As shown in FIGS. 1 and 2, the gas flow passage 2
Inside, a thin flat plate-shaped flow velocity detection element 4 and a thin flat plate-shaped gas temperature detection element 5 are arranged. The flow velocity detection element 4 is arranged on the axis X of the gas flow passage 2 so as to extend along the axis X. However, this flow velocity detection element 4
does not necessarily need to be placed on the axis X, and can be placed at a distance from the axis X, but even in this case, the flow velocity detection element 4 must be placed parallel to the axis X. 8 for temperature measurement 8 5 is located diagonally upstream of the flow velocity detection element 4 with respect to the gas flow direction indicated by arrow F, and is aligned with axis X.
is placed parallel to. That is, the gas temperature detection element 5 is arranged at a distance from the flow velocity detection element 4 in the axis X direction, and as shown in FIG. It is arranged so that the projected image 5a of the gas temperature detection element 5 does not overlap with each other. The flow velocity detection element 4 and the gas temperature detection element 5 need only be arranged so that their projected images 4a and 5a do not overlap each other, so the flow velocity detection element 4 and the gas temperature detection element 5 are not necessarily arranged in parallel. For example, the projected image 4a
, 5a may be arranged at right angles to each other.

第3図は流速検出用素子4およびガス温検出用素子5の
拡大平面図を示す。第3図を参照すると、流速検出用素
子4はシリコンウェハのチップからなる薄肉平板状の基
体6からなり、基体6の表面上には薄膜の加熱抵抗体R
Hと感熱抵抗体R2が形成される。加熱抵抗体R8は感
熱抵抗体Rtを加熱するためだけに使用され、従って加
熱抵抗体RHは抵抗温度係数が極めて小さい材料から形
成されている。一方、感熱抵抗体R2は抵抗変化を検出
するためにのみ使用され、従ってこの感熱抵抗体R2は
抵抗温度係数が極めて大きな材料から形成されている。
FIG. 3 shows an enlarged plan view of the flow rate detection element 4 and the gas temperature detection element 5. Referring to FIG. 3, the flow velocity detecting element 4 consists of a thin flat base 6 made of a silicon wafer chip, and a thin film heating resistor R is disposed on the surface of the base 6.
H and a heat-sensitive resistor R2 are formed. The heating resistor R8 is used only to heat the heat-sensitive resistor Rt, and therefore the heating resistor RH is made of a material with an extremely small temperature coefficient of resistance. On the other hand, the heat-sensitive resistor R2 is used only for detecting changes in resistance, and therefore, the heat-sensitive resistor R2 is made of a material with an extremely large temperature coefficient of resistance.

加熱抵抗体R□の発する熱は一方では基体6を通って熱
伝導により感熱抵抗体R2に伝えられ、他方ではガス流
による熱伝達によって感熱抵抗体R2に伝えられる。従
って、熱伝達による熱の伝達を確保するために加熱抵抗
体R11は感熱抵抗体R2の上流に配置されている。加
熱抵抗体RHの薄肉帯状リード端子7および感熱抵抗体
R2の薄肉帯状リード端子8は第1図および第2図に示
されるように検出素子ホルダ3に固定され、従って流速
検出用素子はこれらのリード端子7,8によって支持さ
れる。一方、第3図に示されるようにガス温検出用素子
5もシリコンウェハのチップからなる薄肉平板状の基体
9からなり、基体9の表面上には薄膜の感熱抵抗体R1
が形成される。この感熱抵抗体R1は抵抗温度係数の大
きな材料から形成される。感熱抵抗体R,の薄肉帯状リ
ード端子10は第1図および第2図に示されるよつに検
出素子ホルダ3に固定され、従ってガス温検出用素子5
はこれらリード端子10によって支持される。
The heat generated by the heating resistor R□ is transferred to the heat-sensitive resistor R2 by thermal conduction through the base 6 on the one hand, and is transferred to the heat-sensitive resistor R2 by heat transfer by the gas flow on the other hand. Therefore, in order to ensure heat transfer by heat transfer, the heating resistor R11 is placed upstream of the heat sensitive resistor R2. The thin strip lead terminal 7 of the heating resistor RH and the thin strip lead terminal 8 of the heat sensitive resistor R2 are fixed to the detection element holder 3 as shown in FIGS. It is supported by lead terminals 7 and 8. On the other hand, as shown in FIG. 3, the gas temperature detection element 5 also consists of a thin plate-shaped base 9 made of a silicon wafer chip, and a thin film heat-sensitive resistor R1 is disposed on the surface of the base 9.
is formed. This heat-sensitive resistor R1 is made of a material with a large temperature coefficient of resistance. The thin strip-shaped lead terminal 10 of the heat-sensitive resistor R is fixed to the detection element holder 3 as shown in FIGS. 1 and 2, and therefore the gas temperature detection element 5
is supported by these lead terminals 10.

第4図は流速検出用素子4の断面図を示す。第4図を参
照するとシリコンからなる基体6上にSiO□からなる
絶縁層11が形成され、この絶縁層11上に薄膜の加熱
抵抗体RHと薄膜の感熱抵抗体R2とが形成される。こ
れら加熱抵抗体RHおよび感熱抵抗体R2は更にSin
、からなる保護層12によって覆われる。ガス温検出用
素子5も流速検出用素子4と同様な断面構造をなしてお
り、従ってガス温検出用素子5の断面構造については説
明を省略する。
FIG. 4 shows a cross-sectional view of the flow velocity detection element 4. Referring to FIG. 4, an insulating layer 11 made of SiO□ is formed on a substrate 6 made of silicon, and a thin film heating resistor RH and a thin film heat sensitive resistor R2 are formed on this insulating layer 11. These heating resistor RH and heat sensitive resistor R2 are further
is covered with a protective layer 12 consisting of . The gas temperature detecting element 5 also has the same cross-sectional structure as the flow rate detecting element 4, and therefore the description of the cross-sectional structure of the gas temperature detecting element 5 will be omitted.

第5図は第3図に示す流速検出用素子4とガス温検出用
素子5の検出回路を示す。第5図を参照すると加熱抵抗
体R,の一端は固定抵抗R8を介して接地され、“加熱
抵抗体RHの他端はトランジスタTrのエミツタに接続
される。また一対の固1 定抵抗rl+rZが設けられ
、これら固定抵抗rl+r2と感熱抵抗体R+ 、Rt
によりブリッジ回路が形成される。固定抵抗rl+rf
fiの接続点PはコンパレータCの一方の入力端子に接
続され、感熱抵抗体Rt、Rzの接続点Qはコンパレー
タCの他方の入力端子に接続される。また、コンパレー
タCの出力端子はトランジスタT、のべ一′スに接続さ
れる。感熱抵抗体R+、Rzは前述したように抵抗温度
係数の大きな材料から形成されており、感熱抵抗体R2
の温度が感熱抵抗体R1の温度よりも一定温度Δtだけ
高いときに接続点P、Qの電圧が等しくなるように感熱
抵抗体R,,R,,r、、r。
FIG. 5 shows a detection circuit for the flow rate detection element 4 and the gas temperature detection element 5 shown in FIG. Referring to FIG. 5, one end of the heating resistor R is grounded via a fixed resistor R8, and the other end of the heating resistor RH is connected to the emitter of the transistor Tr. These fixed resistors rl+r2 and heat-sensitive resistors R+, Rt
A bridge circuit is formed. Fixed resistance rl+rf
The connection point P of fi is connected to one input terminal of the comparator C, and the connection point Q of the heat sensitive resistors Rt and Rz is connected to the other input terminal of the comparator C. Further, the output terminal of the comparator C is connected to the base of the transistor T. As mentioned above, the heat-sensitive resistors R+ and Rz are made of a material with a large temperature coefficient of resistance, and the heat-sensitive resistor R2
The heat-sensitive resistors R,, R,, r, , r so that the voltages at the connection points P and Q become equal when the temperature of the heat-sensitive resistor R1 is higher than the temperature of the heat-sensitive resistor R1 by a constant temperature Δt.

の抵抗値が定められている。従って感熱抵抗体R+。The resistance value is determined. Therefore, the heat-sensitive resistor R+.

R1の温度差がΔtよりも小さくなると接続点Qの電圧
は接続点Pの電圧よりも高くなり、その結果コンパレー
タCの出力電圧は高レベルとなる。
When the temperature difference of R1 becomes smaller than Δt, the voltage at the connection point Q becomes higher than the voltage at the connection point P, and as a result, the output voltage of the comparator C becomes a high level.

コンパレータCの出力電圧が高レベルになるとトランジ
スタTrはオンとなり、加熱抵抗体Ri+に電力が供給
されるために感熱抵抗体R2の温度が上昇する。次いで
感熱抵抗体R1,Rzの温度差がΔtに等しくなるとコ
ンパレータCの出力電圧は低レベルになり、その結果ト
ランジスタTrがオフとなるために加熱抵抗体RHへの
電力の供給が停止される。このように加熱抵抗体R,へ
の電力の供給を制御することによって感粋抵填体R+、
Rzの温度差Δtが一定に保持される。
When the output voltage of the comparator C becomes a high level, the transistor Tr is turned on, and power is supplied to the heating resistor Ri+, so that the temperature of the heat-sensitive resistor R2 rises. Next, when the temperature difference between the heat-sensitive resistors R1 and Rz becomes equal to Δt, the output voltage of the comparator C becomes a low level, and as a result, the transistor Tr is turned off, so that the supply of power to the heating resistor RH is stopped. By controlling the supply of power to the heating resistor R, in this way, the sensitive resistor R+,
The temperature difference Δt of Rz is kept constant.

一方、直径dの白金線を流速νの流体内に配置し、白金
線を加熱したときに流体によって持ち去られる熱量Hは
次のり、V、Kingの式によ゛つて表わされる。
On the other hand, when a platinum wire with a diameter d is placed in a fluid with a flow velocity ν and the platinum wire is heated, the amount of heat H carried away by the fluid is expressed by the following equation of V and King.

H=KT+■ロロCτ−【「7T ここでに:流体の熱伝導率 Cv:流体の定容比熱 ρ:原流体密度 T:白金線の温度と流体の温度との温度差 この式を本発明に適用すると温度差Tは感熱抵抗体゛R
,,R,の温度差Δtに等しくなる。また、感熱抵抗体
R+、Rzの温度差Δtを一定に保持するためには流体
によって持ち去られる熱量Hと等しい熱量を感熱抵抗体
R2に加えなければならず、従って熱量Hは加熱抵抗体
RHの発熱量i”R/Jに等しくなる。ここでiは加熱
抵抗体RHを流れる電流値、Rは加熱抵抗体R9の抵抗
値、Jは熱の仕事当量である。従って加熱抵抗体RHと
して抵抗温度係数が極めて小さい抵抗を用いれば上式は
次のように簡単に表わせる。
H=KT+■RoroCτ- ['7T Where: Thermal conductivity of the fluid Cv: Specific heat of constant volume of the fluid ρ: Original fluid density T: Temperature difference between the temperature of the platinum wire and the temperature of the fluid This formula is used in the present invention. When applied to the temperature difference T, the temperature difference T
,,R, is equal to the temperature difference Δt. In addition, in order to keep the temperature difference Δt between the heat-sensitive resistors R+ and Rz constant, it is necessary to add a heat amount equal to the heat amount H carried away by the fluid to the heat-sensitive resistor R2. The amount of heat generated is equal to i''R/J. Here, i is the current value flowing through the heating resistor RH, R is the resistance value of the heating resistor R9, and J is the work equivalent of heat. Therefore, as the heating resistor RH, the resistance If a resistor with an extremely small temperature coefficient is used, the above equation can be easily expressed as follows.

i ” = B f【T+ に こでB、Cは流体の種類や加熱抵抗体RHの抵抗値から
定まる定数である。
i ” = B f [T+ Nikode B and C are constants determined from the type of fluid and the resistance value of the heating resistor RH.

従ってこの式から加熱抵抗体R,に流れる電流を検出す
れば流体の速度νを検出できることがわかる。第5図に
示す実施例では抵抗R8の一端の電圧を検出器りにより
検出することによって加熱抵抗体R1を流れる電流を検
出するようにしてしする。従ってこの検出器りによりガ
ス流通路2内を流れるガスの流速を検出することができ
、従ってガス流通路2内を流れるガス量を検出すること
ができる。
Therefore, it can be seen from this equation that the velocity ν of the fluid can be detected by detecting the current flowing through the heating resistor R. In the embodiment shown in FIG. 5, the current flowing through the heating resistor R1 is detected by detecting the voltage at one end of the resistor R8 using a detector. Therefore, this detector can detect the flow velocity of the gas flowing within the gas flow passage 2, and therefore the amount of gas flowing within the gas flow passage 2.

第1図および第2図に示されるようにガス温検出用素子
5およびそのリード端子10は流速検出RHおよび感熱
抵抗体R2に達することがなく、5は流速検出用素子4
の上流に配置されているので加熱抵抗体R1lの発する
熱がガス温検出用素子5に伝達されることはなく、しか
もガス温検出用素子5は流速検出用素子4から軸線X方
向において間隔を隔てて配置されているので流速検出用
素子4の下面から発する輻射熱がガス温検出用素子5に
達することもないのでガス温検出用素子5の感熱抵抗体
Rtはガス塩に正確に比例して抵抗変化する。従って流
速検出用素子4とガス温検出用素子5によってガス流速
を正確に検出することができる。また、感熱抵抗体R2
と加熱抵抗体RHとを別個に設けた、いわゆる間接加熱
方式を採用しているので感熱抵抗体R2の抵抗温度係数
を大きくすることができ(斯くしてガス流速を感度よ↑ 喝 く検出することができる。
As shown in FIGS. 1 and 2, the gas temperature detection element 5 and its lead terminal 10 do not reach the flow rate detection RH and the heat-sensitive resistor R2, and the gas temperature detection element 5 does not reach the flow rate detection element 4.
Since the heating resistor R1l is disposed upstream of the heating resistor R1l, the heat generated by the heating resistor R1l is not transferred to the gas temperature detecting element 5, and the gas temperature detecting element 5 is spaced apart from the flow velocity detecting element 4 in the axis X direction. Since they are arranged apart from each other, the radiant heat emitted from the bottom surface of the flow rate detection element 4 does not reach the gas temperature detection element 5. Therefore, the heat-sensitive resistor Rt of the gas temperature detection element 5 is accurately proportional to the gas salt. Resistance changes. Therefore, the gas flow rate can be accurately detected by the flow rate detection element 4 and the gas temperature detection element 5. In addition, the heat-sensitive resistor R2
Since a so-called indirect heating method is adopted in which the heat-sensitive resistor R2 and the heating resistor RH are separately provided, the temperature coefficient of resistance of the heat-sensitive resistor R2 can be increased (in this way, the gas flow velocity can be detected with greater sensitivity). be able to.

第6図および第7図に別の実施例を示す。この実施例に
おいても第1図および第2図に示す実施例と同様にガス
温検出用素子5が流速検出用素子4の斜め上流に配置さ
れている。しかしながらこの実施例では流速検出用素子
4とガス温検出用素子5は対応するリード端子7;8.
10によって片持ち支持され、更に加熱抵抗体Rnおよ
び感熱抵抗体R2が形成された基体6の表面と感熱抵抗
体R3が形成された基体9の表面とが互に反対方向外方
に向いているという点で第1図および第2図に示す実施
例とは異なる。
Another embodiment is shown in FIGS. 6 and 7. In this embodiment as well, the gas temperature detection element 5 is arranged diagonally upstream of the flow velocity detection element 4, as in the embodiments shown in FIGS. 1 and 2. However, in this embodiment, the flow rate detection element 4 and the gas temperature detection element 5 have corresponding lead terminals 7;8.
The surface of the base 6, on which the heating resistor Rn and the heat-sensitive resistor R2 are formed, and the surface of the base 9, on which the heat-sensitive resistor R3 is formed, face outward in opposite directions. This differs from the embodiments shown in FIGS. 1 and 2 in this respect.

発明の効果 ガス温検出用素子を流速検出用素子の斜め上流に配置す
ることによってガス温検出用素子により乱されたガス流
が流速検出用素子に達することがなく、斯くしてガスの
流速を正確に検出することができる。また、間接加熱方
式を採用することによってガス流速を感度よく検出する
ことができる。
Effects of the Invention By arranging the gas temperature detection element diagonally upstream of the flow velocity detection element, the gas flow disturbed by the gas temperature detection element does not reach the flow velocity detection element, thus reducing the gas flow velocity. Can be detected accurately. Furthermore, by employing an indirect heating method, the gas flow velocity can be detected with high sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

2・・・ガス流通路、 4・・・流速検出用素子、5・
・・ガス温検出用素子、6.9・・・基体、47、8.
10・・・リード端子、 RM・・・加熱抵抗体、R+
、Rt・・・感熱抵抗体。 第6図 ■ ■ 第8図 第 7171 術部[ ジ
2... Gas flow path, 4... Flow velocity detection element, 5...
... Gas temperature detection element, 6.9... Base, 47, 8.
10...Lead terminal, RM...Heating resistor, R+
, Rt...thermal resistor. Figure 6 ■ ■ Figure 8 7171 Operation area

Claims (1)

【特許請求の範囲】[Claims] ガス流通路内に薄肉平板状の流速検出用素子と薄肉平板
状のガス温検出用素子とを該ガス流通路の軸線と平行に
配置し、該ガス流通路の軸線に沿フてみた流速検出用素
子とガス温検出用素子の投影像が互に重合しないように
ガス温検出用素子を流速検出用素子の斜め上流に配置し
たガス流量検出装置。
A thin plate-shaped flow velocity detection element and a thin plate-shaped gas temperature detection element are arranged in parallel to the axis of the gas flow passage, and the flow velocity is detected along the axis of the gas flow passage. A gas flow rate detection device in which a gas temperature detection element is arranged diagonally upstream of a flow rate detection element so that the projected images of the gas temperature detection element and the gas temperature detection element do not overlap with each other.
JP59085114A 1984-04-28 1984-04-28 Gas flow detector Expired - Lifetime JPH06100485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59085114A JPH06100485B2 (en) 1984-04-28 1984-04-28 Gas flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085114A JPH06100485B2 (en) 1984-04-28 1984-04-28 Gas flow detector

Publications (2)

Publication Number Publication Date
JPS60230019A true JPS60230019A (en) 1985-11-15
JPH06100485B2 JPH06100485B2 (en) 1994-12-12

Family

ID=13849597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085114A Expired - Lifetime JPH06100485B2 (en) 1984-04-28 1984-04-28 Gas flow detector

Country Status (1)

Country Link
JP (1) JPH06100485B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250311A (en) * 1986-04-23 1987-10-31 Sharp Corp Flow speed sensor driving system
US4761995A (en) * 1986-05-09 1988-08-09 Nippon Soken, Inc. Direct-heated flow measuring apparatus having improved sensitivity and response speed
US4972702A (en) * 1988-09-02 1990-11-27 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
US5060511A (en) * 1989-03-31 1991-10-29 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
JPH07225158A (en) * 1994-02-15 1995-08-22 Nippondenso Co Ltd Temperature sensor and its mounting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147221A (en) * 1983-02-11 1984-08-23 Nippon Soken Inc Semiconductor type flow rate detecting apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147221A (en) * 1983-02-11 1984-08-23 Nippon Soken Inc Semiconductor type flow rate detecting apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250311A (en) * 1986-04-23 1987-10-31 Sharp Corp Flow speed sensor driving system
JPH0749977B2 (en) * 1986-04-23 1995-05-31 シャープ株式会社 Flow velocity sensor-Drive system
US4761995A (en) * 1986-05-09 1988-08-09 Nippon Soken, Inc. Direct-heated flow measuring apparatus having improved sensitivity and response speed
US4972702A (en) * 1988-09-02 1990-11-27 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
US5060511A (en) * 1989-03-31 1991-10-29 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
US5105660A (en) * 1989-03-31 1992-04-21 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
US5140854A (en) * 1989-03-31 1992-08-25 Aisan Kogyo Kabushiki Kaisha Intake air quantity measuring apparatus
JPH07225158A (en) * 1994-02-15 1995-08-22 Nippondenso Co Ltd Temperature sensor and its mounting method

Also Published As

Publication number Publication date
JPH06100485B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
JP4157034B2 (en) Thermal flow meter
JPS6122889B2 (en)
US4831876A (en) Measurement probe
JP2842729B2 (en) Thermal flow sensor
JPS6156442B2 (en)
JPS60230019A (en) Gas flow rate detector
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JP2529895B2 (en) Flow sensor
JPH05231899A (en) Intake air amount detector
JPH0422268Y2 (en)
JPS6189521A (en) Apparatus for detecting flow amount of gas
JPH0674805A (en) Heat sensing flow rate sensor
JP2002005717A (en) Thermal flow sensor
JPH0428020Y2 (en)
US6250150B1 (en) Sensor employing heating element with low density at the center and high density at the end thereof
JP2908942B2 (en) Thermal flow sensor
JPH07174600A (en) Flow-velocity sensor and flow-velocity measuring apparatus
JPH0552625A (en) Thermal type air flowmeter and engine control device
JPS6165118A (en) Gas flow rate detector and its production
JP3174234B2 (en) Thermal air flow detector
JPH0643906B2 (en) Flow sensor
JPH07286876A (en) Thermal type air flow rate detector
JPH0674804A (en) Heat sensing flow rate sensor
JP3163558B2 (en) Flow velocity detector