JPS59147221A - Semiconductor type flow rate detecting apparatus - Google Patents

Semiconductor type flow rate detecting apparatus

Info

Publication number
JPS59147221A
JPS59147221A JP58020842A JP2084283A JPS59147221A JP S59147221 A JPS59147221 A JP S59147221A JP 58020842 A JP58020842 A JP 58020842A JP 2084283 A JP2084283 A JP 2084283A JP S59147221 A JPS59147221 A JP S59147221A
Authority
JP
Japan
Prior art keywords
semiconductor
flow rate
casing
detection device
rate detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020842A
Other languages
Japanese (ja)
Inventor
Kazuhiko Miura
和彦 三浦
Tadashi Hattori
正 服部
Yukio Iwasaki
幸雄 岩崎
Tokio Kohama
時男 小浜
Kenji Kanehara
賢治 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58020842A priority Critical patent/JPS59147221A/en
Publication of JPS59147221A publication Critical patent/JPS59147221A/en
Priority to US06/843,922 priority patent/US4677850A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters

Abstract

PURPOSE:To contrive to enhance the durability and response of the titled apparatus, by supporting a first semiconductor chip to which a temp. detecting element is formed and a second semiconductor chip having a heater and a temp. detecting element formed thereto in close vicinity to a casing. CONSTITUTION:For example, four projected support parts 24 are formed to the notch part of a substrate 23 and chips 21, 22 are exposed to an air stream at this part. The substrate 23 is supported in a state received in a casing 112 which is, in turn, constituted of a projected upper casing 25A and a recessed lower casing 25B. The inflow port 112A of the casing 112 is formed into a bell mouth shape so as to allow the air stream to flow into a passage 111 without disturbing the flow thereof into said passage 111. The inner surface X of the upper casing 25A is formed into a structure protruded to a semiconductor chip side so as to obliquely blow the air stream to the chip 22. By this mechanism, a flow rate can be detected with high accuracy without applying the influence of the upstream side chip 21 to the downstream side chip 22.

Description

【発明の詳細な説明】 この発明は、例えばエンジンの吸入空気流量を測定する
ものとして有用な半導体式流量検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor flow rate detection device useful, for example, for measuring the intake air flow rate of an engine.

従来、トーマスメータあるいは熱線式流量計のように白
金抵抗線を用いた流量針が公知であるが、流体にさらさ
れる測定素子が線(ワイヤー)であるために振動、衝撃
等により断線しゃずいという問題がある。
Conventionally, flow needles using platinum resistance wire, such as Thomas meters or hot wire flowmeters, have been known, but since the measuring element exposed to the fluid is a wire, the wires are prone to breakage due to vibrations, shocks, etc. There's a problem.

また、セラミック基板のような絶縁体−にに抵抗体膜を
蒸着あるいは印刷する構造の流量針も提案され”Cいる
。これは測定素子が膜体であるため振動等に対しCは強
いが、抵抗体膜を蒸着法あるいは印刷法により形成して
いるためにWX細な加工ができず、測定素子の形状を大
きくする必要があってこのために熱容量が増大して応答
性が悪化するという問題がある。
In addition, a flow needle with a structure in which a resistor film is deposited or printed on an insulator such as a ceramic substrate has been proposed.This is because the measuring element is a film, so C is strong against vibrations, etc. Since the resistor film is formed by vapor deposition or printing, fine WX processing is not possible, and the shape of the measuring element must be enlarged, which increases heat capacity and deteriorates responsiveness. There is.

この発明は、−1−記従来の欠点を解消するためになさ
れたもので、振動等に対する耐久性、応答性のすぐれた
流量検出装置を提供することを目的とする。
The present invention has been made in order to eliminate the drawbacks of the prior art described in -1- above, and an object of the present invention is to provide a flow rate detection device that has excellent durability and responsiveness to vibrations, etc.

この目的は本発明によれば、温度検出素子が形成された
第1の半導体デツプと、ヒータ及び温度検出素子が形成
された第2の1−導体ヂノブとをゲージングに近接し−
ζ支持させる構成とすることにより達成される。
This purpose, according to the present invention, is to bring the first semiconductor depth in which the temperature detection element is formed and the second one-conductor depth in which the heater and the temperature detection element are formed into close proximity to each other for gauging.
This is achieved by using a configuration that supports ζ.

以下、この発明を図に示す実施例について説明する。Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図は、この発明になる半導体式流量検出装置を備え
た燃料噴射火花点火式エンジンの一例を示す。エンジン
lは、燃焼用空気をエアクリーナ2および吸入導管3を
経て吸気弁4の開弁時に燃焼室5へ吸入する。燃料は吸
入導管3に設置された電磁式燃料噴射弁6から噴射供給
される。吸入空気流量は吸入導管3に設けられたスロッ
トル弁7を開閉操作することにより制御され、燃料噴射
量は電子制御ユニット8によって噴射弁6の開弁時間を
変えることにより、基本的には吸入空気流量に見合った
量、必要に応じてこれに補正を加えた量に制御される。
FIG. 1 shows an example of a fuel injection spark ignition engine equipped with a semiconductor flow rate detection device according to the present invention. The engine 1 sucks combustion air into the combustion chamber 5 through the air cleaner 2 and the intake conduit 3 when the intake valve 4 is opened. Fuel is injected and supplied from an electromagnetic fuel injection valve 6 installed in the intake conduit 3. The intake air flow rate is controlled by opening and closing the throttle valve 7 provided in the intake conduit 3, and the fuel injection amount is basically controlled by changing the opening time of the injection valve 6 using the electronic control unit 8. The amount is controlled to match the flow rate, with corrections added as necessary.

上記エアクリーナ2の直下流には整流格子9が設けられ
る。この格子9は吸入空気の流れを整流し、流量検出装
置による流量測定の測定精度を向上させる役目をなす。
A rectifying grid 9 is provided immediately downstream of the air cleaner 2. This grid 9 serves to rectify the flow of intake air and improve the accuracy of flow rate measurement by the flow rate detection device.

このようなエンジン1の吸入系において、半導体式流量
検出装置10はスロッI・ルブ「7と整流格子9との間
で吸入導管3に設置されている。この装W’t I O
はエンジンIの吸入空気流量を測定し、それに応じた電
気信号を制御コ、ニット8に入力するもので、ヒンザ部
11と回路部12よりなり、センタ部11は吸入導管3
内に配置され′ζいる。
In the intake system of the engine 1, a semiconductor flow rate detection device 10 is installed in the intake conduit 3 between the slot I-lube 7 and the rectifier grid 9.
1 measures the intake air flow rate of the engine I and inputs an electric signal corresponding to the intake air flow rate to the control unit 8. It consists of a hinge section 11 and a circuit section 12, and the center section 11 is connected to the intake conduit 3.
It is located within ′ζ.

次にこの検出装置IOを吸入導管2に取り付けた状態を
示す第2図により説明する。センサ部11と回路部12
よりなる半導体式流量検出器10はネジlO1〜104
により吸入導管3に固定される。
Next, the detection device IO will be explained with reference to FIG. 2, which shows a state in which the detection device IO is attached to the suction conduit 2. Sensor section 11 and circuit section 12
The semiconductor flow rate detector 10 consists of screws lO1 to 104.
is fixed to the suction conduit 3 by.

センサ部11はハウジングの中に流体の流れと平行に流
体通路Illを有し、その中心位置多こ流量検出するた
めの半導体デツプが設置しである。
The sensor section 11 has a fluid passageway Ill in parallel with the flow of fluid in the housing, and a semiconductor dip for detecting the flow rate is installed at the central position of the fluid passage Ill.

センサ部11は2列のピンを有するデュアルインライン
パッケージ形式のケーシング112を有しており、セン
サ部11はICテスタ等により評価選別された後半導体
チップの信号を出力する2列のビン114を2 III
のソケット121に挿入し、振動等によりはずれないよ
う接着固定される。
The sensor section 11 has a dual inline package type casing 112 having two rows of pins, and the sensor section 11 has two rows of bins 114 that output semiconductor chip signals after being evaluated and sorted by an IC tester or the like. III
It is inserted into the socket 121 and fixed with adhesive so that it will not come off due to vibration or the like.

回路部12は半導体チップの出力信号を処理して、流量
を表す信号をコネクタ11.3より出力する。
The circuit section 12 processes the output signal of the semiconductor chip and outputs a signal representing the flow rate from the connector 11.3.

なお、ソケット121はセンサ部11の流路111を通
過する流れが、吸入導管3の壁面の境界層の影響を受け
ることなく、吸入導管3の流量を代表できる位置になる
よう吸入導管3の中に突出している。また、流れが乱れ
て圧力損失が増大するのを防ぐため、ソケッ)121の
流れ方向の先端を鋭角にしである。
The socket 121 is located in the suction conduit 3 so that the flow passing through the flow path 111 of the sensor section 11 can represent the flow rate of the suction conduit 3 without being affected by the boundary layer on the wall of the suction conduit 3. It stands out. In addition, in order to prevent flow disturbance and increase in pressure loss, the tip of the socket 121 in the flow direction is made at an acute angle.

センサ部11の構造を示すff13図において、21は
シリコン基板上に温度検出素子が作られている、上流側
に設置されたff51の半導体デツプ、12はシリコン
基板上にヒータ素子、温度検出素子が作られている、下
流側に第1のデツプ21と近接して設置された第2の半
導体デツプである。
In the FF13 diagram showing the structure of the sensor section 11, 21 is the semiconductor depth of FF51 installed on the upstream side, in which a temperature detection element is formed on a silicon substrate, and 12 is a semiconductor depth in which a heater element and a temperature detection element are formed on a silicon substrate. This is a second semiconductor depth, which is fabricated, and which is installed downstream and adjacent to the first depth 21.

23はセラミック基板であり、リードピン114とデツ
プ21.22を電気的に接続するよう導体ペーストが印
刷焼成されていて、リードピン114、デツプ21.2
2がフリノブヂソプバンプ法によりハンダ付されている
Reference numeral 23 designates a ceramic substrate, on which a conductive paste is printed and fired to electrically connect the lead pins 114 and the depths 21.22.
2 is soldered using the Furinobutsu bump method.

なお、基板23にはその切欠き部分に4個の突出した支
持部24が形成されており、この部分でデツプ21.2
2を空気流にさらすように配置している。これにより、
セラミック基板23のうち半導体デツプを固定し、信号
を取り出すのに必要な部分だけが流体通路11に位置す
る構造となり、第2の半導体デツプ22のヒータの熱の
セラミック基板21に奪われる量と、セラミック基板か
ら気体へ熱伝達される量をより少なくし、ヒータの消f
I!電力をより少なくしている。基板23は、例えばP
PSよりなるケーシング112に納められ支持されるが
、ケーシング112は凸形状の」二部ケーシング25八
と凹形状の下部ケーシング25Bとから構成されている
Note that the substrate 23 has four protruding support portions 24 formed in its cutout portion, and these portions support the depth 21.2.
2 is placed so as to be exposed to the air flow. This results in
The structure is such that only the portion of the ceramic substrate 23 that is necessary for fixing the semiconductor depth and extracting the signal is located in the fluid passage 11, and the amount of heat from the heater of the second semiconductor depth 22 that is taken away by the ceramic substrate 21, Reduces the amount of heat transferred from the ceramic substrate to the gas, and reduces the amount of heat transferred from the ceramic substrate to the gas
I! It uses less electricity. The substrate 23 is made of, for example, P
It is housed and supported in a casing 112 made of PS, and the casing 112 is composed of a convex two-part casing 258 and a concave lower casing 25B.

ケーシング112の流入口112Aは、通路111内へ
流れが乱れることなく流入するようベルマウス形状とな
っている。
The inlet 112A of the casing 112 has a bellmouth shape so that the flow can flow into the passage 111 without disturbance.

また、第1の11シ導体デツプ21の影響による境界層
で、m2のユ1′導体チソゾ22への流れがよどむのを
防ぐために、上部ハウジング25への内面X(iffl
路111の−E部)をチップ22に流れが斜めから当る
よう半導体デツプ側に突出する構造にしである。このよ
うな構造にすることにより、上流側デツプ21の影響を
下流側チップ22が受けることなく精度良く流量検出で
きる。
In addition, in order to prevent the flow of m2 to the unit 1' conductor depth 22 from stagnation due to the boundary layer due to the influence of the first 11 conductor depth 21, the inner surface X (iffl
The -E section of the channel 111 is structured to protrude toward the semiconductor depth so that the flow hits the chip 22 obliquely. With this structure, the flow rate can be accurately detected without the downstream chip 22 being affected by the upstream depth 21.

次に半導体デツプ21.22の構成について説明する。Next, the configuration of the semiconductor depths 21 and 22 will be explained.

半導体の温度検出素子としては、ダイオードまたはトラ
ンジスタを形成し、その順方向電圧が温度に対し2.0
〜2.5mV/’Cのリニアな特性を持つことを利用し
て温度検出するものと、拡散法により形成した拡散抵抗
の抵抗値が温度により変化することを利用して温度検出
するものと2通りの方法が考えられるが、この実施例で
はダイオードにより温度検出素子を形成している。上流
側半導体チップ21を示す第4図において、斜線部分は
アルミ電極の部分である。31は温度検出素子でシリコ
ン基板30にN型不純物、P型不純物を拡散した後アル
ミ電極を蒸着して形成したダイオードからなりダイオー
ドを511I直列に接続し“Cその温度111性を10
〜12.5 mV/℃と高感度なものにしζいる。
As a semiconductor temperature detection element, a diode or a transistor is formed, and its forward voltage is 2.0 with respect to temperature.
There are two types: one that detects temperature by utilizing the linear characteristic of ~2.5mV/'C, and the other that detects temperature by utilizing the fact that the resistance value of the diffused resistor formed by the diffusion method changes with temperature. Although any method can be considered, in this embodiment, the temperature detection element is formed by a diode. In FIG. 4 showing the upstream semiconductor chip 21, the shaded area is the aluminum electrode. Reference numeral 31 denotes a temperature detection element, which is a diode formed by diffusing N-type impurities and P-type impurities into a silicon substrate 30 and then depositing an aluminum electrode.
It has a high sensitivity of ~12.5 mV/°C.

32〜3°5はフリップデツプバンプの部分でハンダに
よりもり」二っζおり、セラミック基板23と4点で接
触固定するものである。なおこのフリップデツプ法によ
るチップ固定法は4点の点接触となるため、通常半導体
で使用される合金法に比ベヂノプの熱容量を小さくする
ことができる。
32 to 3° 5 is a portion of the flip dip bump, which is filled with solder and is fixed in contact with the ceramic substrate 23 at four points. Note that since the chip fixing method using the flip-dip method involves four point contacts, the heat capacity of the base plate can be reduced compared to the alloy method normally used for semiconductors.

下流側半導体デツプ22を示す第5図において、41は
温度検出素子で、素子31と同様な方法でシリコン基板
40に形成された5個のダイオードからなる。42は拡
散抵抗よりなるヒータである。
In FIG. 5 showing the downstream semiconductor depth 22, numeral 41 is a temperature sensing element, which is composed of five diodes formed on a silicon substrate 40 in the same manner as the element 31. 42 is a heater made of a diffused resistor.

このヒータ42はシリコン基板40に拡散抵抗で構成す
るごとにより発熱部分形状の自由度を大きくすることが
できる。43〜46はフリップチップバンプ部分である
By constructing the heater 42 with a diffused resistor on the silicon substrate 40, the degree of freedom in the shape of the heat generating portion can be increased. 43 to 46 are flip chip bump portions.

次に第6図により回路部I2の詳細回路について説明す
る。回路部12はセンサ部11の検出信号を処理し、流
量を表す出力信号を出力するもので、バッファ回路12
A、電源回路12B、差動゛増幅回路1201出力回路
121〕、及びオフセット回路12Eからなる。
Next, the detailed circuit of the circuit section I2 will be explained with reference to FIG. The circuit section 12 processes the detection signal of the sensor section 11 and outputs an output signal representing the flow rate.
A, a power supply circuit 12B, a differential amplifier circuit 1201 output circuit 121, and an offset circuit 12E.

バッファ回路12Aは、温度検出素子31.41の温度
係数のバラツキを調整するための可変抵抗器51.52
及び素子31.41の電位を検出するためのボルテージ
フォロワの演算増幅器(以下OPアンプという)53.
54からなる。
The buffer circuit 12A includes variable resistors 51.52 for adjusting variations in the temperature coefficient of the temperature detection element 31.41.
and a voltage follower operational amplifier (hereinafter referred to as OP amplifier) 53 for detecting the potential of the elements 31 and 41.
Consists of 54.

電源回路12Bは、バッテリ電圧vBがら安定化電圧を
発生ずるもので、レギプレーク56、及びコンデンサ5
7.58からなる。
The power supply circuit 12B generates a stabilized voltage from the battery voltage vB, and includes a leg plate 56 and a capacitor 5.
Consists of 7.58.

差動増幅回路12cは、抵抗61〜64、コンデンサ6
5.66、OPアンプ67およびパワートランジスタ6
8.69からなり、空気の温度に依存するダイオード3
1.41の電位を差動増幅し、それに応じてトランジス
タ68.69を駆動してヒータ42へ印加する電圧(電
流)を制御する。なお、コンデンサ65はフィードバッ
ク系に所定の時定薮を持たせるために設けである。
The differential amplifier circuit 12c includes resistors 61 to 64 and a capacitor 6.
5.66, OP amplifier 67 and power transistor 6
Diode 3 consisting of 8.69 and dependent on the temperature of the air
The voltage (current) applied to the heater 42 is controlled by differentially amplifying the potential of 1.41 and driving the transistors 68 and 69 accordingly. Note that the capacitor 65 is provided to provide a predetermined time constant in the feedback system.

出力回路12Dは、電流検出抵抗7o、抵抗71、出力
レベル調整用可変抵抗72、ボルテーシフォロワのOP
アンプ73がらなり、ヒータ42を流れる電流に応じた
電圧をOUT端子から出力する。
The output circuit 12D includes a current detection resistor 7o, a resistor 71, an output level adjustment variable resistor 72, and a voltage follower OP.
An amplifier 73 outputs a voltage corresponding to the current flowing through the heater 42 from an OUT terminal.

オフセット回路12Eは、抵抗75.76、可変抵抗器
77、oPアンプ78、及びトランジスタ79からなり
、抵抗75.77により設定されるオフセント電圧を抵
抗61と抵抗62の接続点に与える。即ち、オフセット
電圧分だけOPアンプ67の反転久方噛子に久方される
電圧を低下させる。
The offset circuit 12E includes a resistor 75.76, a variable resistor 77, an OP amplifier 78, and a transistor 79, and applies an offset voltage set by the resistor 75.77 to the connection point between the resistor 61 and the resistor 62. That is, the voltage applied to the inverting gate of the OP amplifier 67 is reduced by the offset voltage.

上記構成において、下流側の第2半導体デツプ22のヒ
ータ42で電力を消費させると、その熱はケーシング1
12の通路111内を流れる気体へ伝達され、同時に第
2半導体デツプ22のシリコン基板、セラミック基板2
3、第1半導体デツプ21へ伝達される。ここで、熱伝
導の良いシリコン基板を使用して1チツプ上に温度検出
素子、ヒータ、温度検出素子と配置した場合に比べ、2
デツプに分けると、ヒータ42の熱がフリップデツプバ
ンプである点接触の部分、熱伝導の悪いセラミック基板
を通って第1の半導体デツプ21へ伝わるため、上流側
の第1半導体デツプ11の温度検出素子31の部分では
流れる気体の温度に近い温度となり、温度検出素子31
と41の間で大きな温度差を得ることができる。
In the above configuration, when power is consumed by the heater 42 of the second semiconductor depth 22 on the downstream side, the heat is transferred to the casing 1.
The gas flowing through the 12 passages 111 is transmitted to the silicon substrate and the ceramic substrate 2 of the second semiconductor depth 22 at the same time.
3, transmitted to the first semiconductor depth 21; Here, compared to the case where a silicon substrate with good thermal conductivity is used and a temperature detection element, a heater, and a temperature detection element are arranged on one chip,
When divided into depths, the heat of the heater 42 is transmitted to the first semiconductor depth 21 through the point contact portion of the flip depth bump and the ceramic substrate with poor heat conduction, so that the temperature of the first semiconductor depth 11 on the upstream side increases. The temperature at the detection element 31 is close to that of the flowing gas, and the temperature at the temperature detection element 31 is close to that of the flowing gas.
A large temperature difference can be obtained between and 41.

また温度検出素子及びヒータは、固体であって綿(ワイ
ヤー)でないため断線については問題がないし、通常の
半導体製造技術を用いて製造できるので微細加工が可能
となり、この部分の体格、即ち熱容量が小さくなって応
答性が向上する。
In addition, the temperature detection element and heater are solid and not made of cotton (wire), so there is no problem with disconnection, and since they can be manufactured using normal semiconductor manufacturing technology, microfabrication is possible. Smaller size improves responsiveness.

しかして、ダイオード31.41の入点とB点の電位差
がオフセント電圧に等しくなるように回路部12により
ヒータ42の発熱量が制御され、ダイオード31と41
の温度差が所定値に制御される。このように制御される
と、ヒータ42で消費される電力は、流量と所定の関数
関係になり、流量に対しである曲線に従って増加する。
Therefore, the amount of heat generated by the heater 42 is controlled by the circuit section 12 so that the potential difference between the input point and the point B of the diodes 31 and 41 becomes equal to the offset voltage.
The temperature difference is controlled to a predetermined value. When controlled in this way, the power consumed by the heater 42 has a predetermined functional relationship with the flow rate, and increases according to a certain curve with respect to the flow rate.

一方、ヒータ42の消費電力はC点の電圧として出力さ
れるのでOUT端子からは流量に応じた信号が出力され
る。
On the other hand, since the power consumption of the heater 42 is output as a voltage at point C, a signal corresponding to the flow rate is output from the OUT terminal.

次に本発明の第2実施例を第7図により説明する。第2
実施例では2枚のセラミック基板23Δ、23Bを用意
し、それぞれの基板23A、23Bに第1、第2の半導
体デツプ21.22をの−lている。このよ°)にセラ
ミック基板を2枚にすることにより第1、第2半導体デ
ツプ21と22とは、流れる気体の温度により近くなり
、第1実施例よリヒータの消費電力を少なくすることが
できる。
Next, a second embodiment of the present invention will be described with reference to FIG. Second
In the embodiment, two ceramic substrates 23Δ, 23B are prepared, and first and second semiconductor depths 21, 22 are formed on each substrate 23A, 23B. By using two ceramic substrates in this way, the temperature of the first and second semiconductor depths 21 and 22 is closer to that of the flowing gas, and the power consumption of the reheater can be reduced compared to the first embodiment. .

第8図及び第9図は第3実施例を示すものでセンサ部の
チップを保持するセラミック基板に回路部をハイブリッ
ドIC化したものを置き、回路部を含む検出装置を小型
化したものである。セラミック基板23はむンーリ部に
取り付けである第1半導体チップ21と第2半導体チ・
4プ22と回路部I2とを断熱するために、切欠き23
1があり、センサ部の反対側の端部はコネクタ113に
なっている。このセラミック基板23はアルミ等の金属
または耐熱性の樹脂でできたハウジング112Δ、11
2Bの間にゴム等のクソシ目ンをはさんで穴232〜2
35の部分でネジ止めされる。
Figures 8 and 9 show a third embodiment, in which a hybrid IC circuit is placed on a ceramic substrate that holds a sensor chip, and the detection device including the circuit is miniaturized. . The ceramic substrate 23 has a first semiconductor chip 21 and a second semiconductor chip attached to the hollow part.
In order to insulate the circuit portion I2 from the 4th step 22, the cutout 23 is
1, and the opposite end of the sensor section is a connector 113. This ceramic substrate 23 has housings 112Δ, 11 made of metal such as aluminum or heat-resistant resin.
Insert a piece of rubber or other material between 2B and make holes 232-2.
It is screwed on at part 35.

以上述べたようにこの発明によれば耐久性、応答性の点
で優れているという効果がある。
As described above, the present invention has the effect of being excellent in terms of durability and responsiveness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明になる装置を備えたエンジンの構成図
、第2図は第1図に図示した装置の要部の断面斜視図、
第3図は第2図に図示したセンサ部の部分断面斜視図、
第4図は第1の半導体デツプを示す平面図、第5図は第
2の半導体チップを示す平面図、第6図はこの発明で用
いられる回路部を示す電気回路図、第7図はこの1発明
の第2実施例を示す部分断面斜視図、第8図はこの発明
の第3実施例を示す正面図、第9図は第8図のI−■線
に沿う断面図である。 12・・・回路部、21・・・第1の半導体デツプ、2
2・・・第2の半導体デツプ、23.23A、23B・
・・セラミック基板、31.41・・・温度検出素子。 42・・・ヒータ、112・・・ケーシング、121・
・・ソケット。 代理人弁理士 岡 部   隆 第6図 1 1 第9図 1’lJ
FIG. 1 is a block diagram of an engine equipped with a device according to the present invention, FIG. 2 is a cross-sectional perspective view of the main parts of the device shown in FIG.
FIG. 3 is a partial cross-sectional perspective view of the sensor section shown in FIG. 2;
FIG. 4 is a plan view showing the first semiconductor depth, FIG. 5 is a plan view showing the second semiconductor chip, FIG. 6 is an electric circuit diagram showing the circuit section used in the present invention, and FIG. 7 is a plan view showing the second semiconductor chip. 1 is a partially sectional perspective view showing a second embodiment of the invention, FIG. 8 is a front view showing a third embodiment of the invention, and FIG. 9 is a sectional view taken along the line I--■ in FIG. 12...Circuit section, 21...First semiconductor depth, 2
2...Second semiconductor depth, 23.23A, 23B.
...Ceramic substrate, 31.41...Temperature detection element. 42... Heater, 112... Casing, 121.
··socket. Representative Patent Attorney Takashi Okabe Figure 6 1 1 Figure 9 1'lJ

Claims (8)

【特許請求の範囲】[Claims] (1)流路内に設置されたケーシングと、このケーシン
グに設けられ、温度検出素子が形成された第1の半導体
チップと、前記ケーシングの前記第1の半導体チップと
近接した位置に設けられ、ヒータ素子及び温度検出素子
が形成された第2の半導体デツプとを備えたことを特徴
とする半導体式流量検出装置。
(1) a casing installed in a flow path, a first semiconductor chip provided in the casing and on which a temperature detection element is formed, and a first semiconductor chip provided in the casing in a position close to the first semiconductor chip; 1. A semiconductor flow rate detection device comprising a heater element and a second semiconductor depth formed with a temperature detection element.
(2)前記温度検出素子がダイオードを複数個直列接続
したものからなる特許請求の範囲ff11項に記載の半
導体式流量検出装置。
(2) The semiconductor flow rate detection device according to claim ff11, wherein the temperature detection element comprises a plurality of diodes connected in series.
(3)前記ケーシングがデュアルインラインパッケージ
形状である特許請求の範囲第1項に記載の半導体式流量
検出装置。
(3) The semiconductor flow rate detection device according to claim 1, wherein the casing has a dual inline package shape.
(4)前記第Lfl’!2の半導体デツプが1枚のセラ
ミック基板−1にほぼ流れ方向に沿って配置されている
特許請求の範囲第1項に記載の212導体式流量検出装
置。
(4) Said No. Lfl'! A 212-conductor type flow rate detection device according to claim 1, wherein two semiconductor depths are arranged on one ceramic substrate-1 substantially along the flow direction.
(5)前記mi、第2の半導体デツプがそれぞれ別のセ
ラミック基板−ヒに配置されている特許請求の範囲第1
項記載の半導体式流量検出装置。
(5) The mi and second semiconductor depths are respectively arranged on separate ceramic substrates.
Semiconductor type flow rate detection device as described in .
(6)前記ヒラミック基板−1−に前記第1、第2崖導
体チップの信号を処理する回路部が配置されている特許
請求の範囲第4項記載の半導体式流量検出装置。
(6) The semiconductor flow rate detection device according to claim 4, wherein a circuit section for processing signals from the first and second cliff conductor chips is disposed on the helical substrate -1-.
(7)前記第1、第2の半導体チップが前記セラミック
基板の切欠き部分に配置され“ζいる特許請求の範囲第
4項又は第5項記載の半導体式流量検出装置。
(7) The semiconductor flow rate detection device according to claim 4 or 5, wherein the first and second semiconductor chips are arranged in a notch portion of the ceramic substrate.
(8)前記ケーシングが流路内に突出したソケットに挿
入固定されている特許請求の範囲第1項記載の半導体式
流量検出装置。
(8) The semiconductor flow rate detection device according to claim 1, wherein the casing is inserted and fixed into a socket that protrudes into the flow path.
JP58020842A 1983-02-11 1983-02-11 Semiconductor type flow rate detecting apparatus Pending JPS59147221A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58020842A JPS59147221A (en) 1983-02-11 1983-02-11 Semiconductor type flow rate detecting apparatus
US06/843,922 US4677850A (en) 1983-02-11 1986-03-21 Semiconductor-type flow rate detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020842A JPS59147221A (en) 1983-02-11 1983-02-11 Semiconductor type flow rate detecting apparatus

Publications (1)

Publication Number Publication Date
JPS59147221A true JPS59147221A (en) 1984-08-23

Family

ID=12038322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020842A Pending JPS59147221A (en) 1983-02-11 1983-02-11 Semiconductor type flow rate detecting apparatus

Country Status (1)

Country Link
JP (1) JPS59147221A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0147831A2 (en) * 1983-12-27 1985-07-10 Honeywell Inc. Flow sensor
JPS60230019A (en) * 1984-04-28 1985-11-15 Toyota Motor Corp Gas flow rate detector
JPS6161013A (en) * 1984-08-29 1986-03-28 ゼネラル モーターズ コーポレーシヨン Fluid flow-rate sensor
JPS61189416A (en) * 1985-02-19 1986-08-23 Nippon Soken Inc Direct heat type flow rate sensor
US4680963A (en) * 1985-01-24 1987-07-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor flow velocity sensor
US4790181A (en) * 1983-12-01 1988-12-13 Aine Harry E Thermal mass flow meter and method of making same
JPH03233168A (en) * 1990-02-07 1991-10-17 Hitachi Ltd Measuring device of air flow amount for internal combustion engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790181A (en) * 1983-12-01 1988-12-13 Aine Harry E Thermal mass flow meter and method of making same
EP0147831A2 (en) * 1983-12-27 1985-07-10 Honeywell Inc. Flow sensor
JPS60220864A (en) * 1983-12-27 1985-11-05 株式会社山武 Housing for flow velocity sensor
EP0147831A3 (en) * 1983-12-27 1985-12-04 Honeywell Inc. Flow sensor
JPS60230019A (en) * 1984-04-28 1985-11-15 Toyota Motor Corp Gas flow rate detector
JPS6161013A (en) * 1984-08-29 1986-03-28 ゼネラル モーターズ コーポレーシヨン Fluid flow-rate sensor
US4680963A (en) * 1985-01-24 1987-07-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor flow velocity sensor
JPS61189416A (en) * 1985-02-19 1986-08-23 Nippon Soken Inc Direct heat type flow rate sensor
JPH0476413B2 (en) * 1985-02-19 1992-12-03 Nippon Jidosha Buhin Sogo Kenkyusho Kk
JPH03233168A (en) * 1990-02-07 1991-10-17 Hitachi Ltd Measuring device of air flow amount for internal combustion engine

Similar Documents

Publication Publication Date Title
US4677850A (en) Semiconductor-type flow rate detecting apparatus
US4682496A (en) Flow rate detecting apparatus having semiconductor chips
JPS601525A (en) Semiconductor type flow-rate detecting device
US6889545B2 (en) Flow rate sensor
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JP3335860B2 (en) Measuring element for thermal air flow meter and thermal air flow meter
CN100414263C (en) Thermal air meter
JPH05508915A (en) Thin film air flow sensor using temperature biased resistive element
JPH06105178B2 (en) Control and detection circuit for a mass airflow sensor
US6935172B2 (en) Thermal type flow measuring device
US5351536A (en) Air flow rate detector
US4587843A (en) Thermocouple-type gas-flow measuring apparatus
JP5152292B2 (en) Flow measuring device
JPH06273435A (en) Heat-generating resistor element and heat-type air flowmeter
US6725716B1 (en) Thermo-sensitive flow rate sensor and method of manufacturing the same
US20040060361A1 (en) Device for detecting physical quantity
JPS59147221A (en) Semiconductor type flow rate detecting apparatus
US6886402B2 (en) Gas flow rate and temperature measuring element
US6679114B2 (en) Thermosensitive flow rate sensor
US6571623B1 (en) Measuring instrument with rectangular flow channel and sensors for measuring the mass of a flowing medium
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPS604814A (en) Semiconductor type flow rate detector
JPS59206715A (en) Semiconductor type flow rate detector
JPS61200433A (en) Semiconductive type flow amount detection apparatus
JPS601524A (en) Semiconductor type flow-rate detecting device