JPS601524A - Semiconductor type flow-rate detecting device - Google Patents

Semiconductor type flow-rate detecting device

Info

Publication number
JPS601524A
JPS601524A JP58110398A JP11039883A JPS601524A JP S601524 A JPS601524 A JP S601524A JP 58110398 A JP58110398 A JP 58110398A JP 11039883 A JP11039883 A JP 11039883A JP S601524 A JPS601524 A JP S601524A
Authority
JP
Japan
Prior art keywords
heater
diodes
semiconductor
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58110398A
Other languages
Japanese (ja)
Inventor
Kazuhiko Miura
和彦 三浦
Tadashi Hattori
正 服部
Yukio Iwasaki
幸雄 岩崎
Tokio Kohama
時男 小浜
Kenji Kanehara
賢治 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP58110398A priority Critical patent/JPS601524A/en
Publication of JPS601524A publication Critical patent/JPS601524A/en
Priority to US06/843,922 priority patent/US4677850A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • G01F1/698Feedback or rebalancing circuits, e.g. self heated constant temperature flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Abstract

PURPOSE:To make durability excellent with respect to vibration and the like and to improve response by reducing thermal capacity, by providing a semiconductor chip, in which a plurality of temperature detecting elements and a heater element are formed in a flow path. CONSTITUTION:The heat of a heater 30 of a semiconductor chip 26 is transmitted to a gas flowing in a path 21 of a casing 29. The average of the temperatures of a fluid in a broad range on the upstream side of the heater 30 is detected by diodes 31-33, which are arranged at the neighboring positions. The average of the temperatures of the fluid on the downstream side of the heater 30 is detected by diodes 34-36. The temperatures can be stably detected even though the flow is disturbed. The temperature detecting elements and the heater are solid states. There are no problems of disconnection. The durability is excellent. They can be manufactured by ordinary semiconductor manufacturing technologies. Fine machining can be performed. The thermal capacity can be reduced and the response can be improved.

Description

【発明の詳細な説明】 この発明は、例えばエンジンの吸入空気流量を測定する
ものとして有用な半導体式流量検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor flow rate detection device useful, for example, for measuring the intake air flow rate of an engine.

従来、トーマスメータあるいは熱線式流量計のように白
金抵抗線を用いた流量針が公知であるが、流体にさらさ
れる測定素子が線(ワイヤー)であるために振動、衝撃
等により断線しゃずいという問題がある。
Conventionally, flow needles using platinum resistance wire, such as Thomas meters or hot wire flowmeters, have been known, but since the measuring element exposed to the fluid is a wire, the wires are prone to breakage due to vibrations, shocks, etc. There's a problem.

また、セラミック基板のような絶縁体上に抵抗体膜を蒸
着あるいは印刷する構造の流量針も提案されている。こ
れは測定素子が膜体であるため振動等に対しては強いが
、抵抗体膜を前着法あるいは印刷法により形成している
ために微細な加工ができず、測定素子の形状を太き(す
る必要があってこのために熱容量が増大して応゛答性が
悪化するという問題がある。
Further, a flow needle having a structure in which a resistor film is deposited or printed on an insulator such as a ceramic substrate has also been proposed. Since the measuring element is a film, it is strong against vibrations, etc., but since the resistor film is formed by a pre-depositing method or a printing method, fine processing is not possible, and the shape of the measuring element is thick. (There is a problem that this increases heat capacity and deteriorates responsiveness.

この発明は、上記従来の欠点を解消するためになされた
もので、振動等に対する耐久性、応答性のすぐれた流量
検出装置を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide a flow rate detection device that has excellent durability and responsiveness against vibrations and the like.

この目的は本発明によれば、測定素子を半導体チップで
構成し、かつ温度検出素子を少なくとも2個の半導体素
子(ダイオード、トランジスタなど)で構成することに
より達成される。
This object is achieved according to the invention in that the measuring element is made up of a semiconductor chip and the temperature detection element is made up of at least two semiconductor elements (diodes, transistors, etc.).

以下、この発明を図に示す実施例について説明する。Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図は、この発明になる半導体式流量検出装置を備え
た燃料噴射火花点火式エンジンの一例を示す。エンジン
1は、燃焼用空気をエアクリーナ2および吸入導管3を
経て吸気弁の開弁時に燃焼室へ吸入する。燃料は吸入導
管3に設置された電磁式燃料噴射弁6から噴射供給され
る。吸入空気流量は吸入導管3に設けられたスロットル
弁7を開閉操作することにより制御され、燃料噴射量は
電子制御ユニット8によって噴射弁6の開弁時間を変え
ることにより、基本的には吸入空気流量に見合った量、
必要に応じてこれに補正を加えた量に制御される。
FIG. 1 shows an example of a fuel injection spark ignition engine equipped with a semiconductor flow rate detection device according to the present invention. The engine 1 sucks combustion air into a combustion chamber through an air cleaner 2 and an intake conduit 3 when an intake valve is opened. Fuel is injected and supplied from an electromagnetic fuel injection valve 6 installed in the intake conduit 3. The intake air flow rate is controlled by opening and closing the throttle valve 7 provided in the intake conduit 3, and the fuel injection amount is basically controlled by changing the opening time of the injection valve 6 using the electronic control unit 8. amount commensurate with the flow rate,
The amount is controlled by adding correction to this amount as necessary.

上記エアクリーナ2の直下流には整流格子9が設けられ
る。この格子9は吸入空気の流れを整流し、流量検出装
置による流量測定の1l11.!I定精度を向上させる
役目をなす。
A rectifying grid 9 is provided immediately downstream of the air cleaner 2. This grid 9 rectifies the flow of intake air and allows the flow rate measurement by the flow rate detection device. ! It serves to improve I-determined accuracy.

このようなエンジン1の吸入系において、半導体式流量
検出装置10はスロットル弁7と整流格子9との間で吸
入導管3に設置されている。この装置10はエンジンI
の吸入空気流量を測定し、それに応じた電気信号を制御
ユニット8に入力するもので、センサ部IIと回路部1
2よりなり、センサ部11は吸入導管3内に配置されて
いる。
In such an intake system of the engine 1, the semiconductor flow rate detection device 10 is installed in the intake conduit 3 between the throttle valve 7 and the rectifier grid 9. This device 10 is an engine I
This device measures the intake air flow rate and inputs a corresponding electric signal to the control unit 8.
2, and the sensor section 11 is disposed within the suction conduit 3.

次にこの検出装置工0を吸入導管3に取り付けた状態を
示す第2図により説明する。センサ部11と回路部12
よりなる半導体式流量検出装置10はネジにより吸入導
管3に固定される。
Next, a description will be given with reference to FIG. 2, which shows the state in which this detection device 0 is attached to the suction conduit 3. Sensor section 11 and circuit section 12
A semiconductor flow rate detection device 10 consisting of the following is fixed to the suction conduit 3 with a screw.

センナ部11はハウジングの中に流体の流れと平行に流
体通路21を有し、その中心位置に流量検出するための
半導体チップが設置しである。センサ部11は2列のビ
ン22を有するデュアルインラインパンケージ形式のケ
ーシング23を有しており、センサ部11は半導体チッ
プの信号を出力する2列のピン22を2個のソケット2
4に挿入し、振動等によりはずれないよう接着固定され
る。
The sensor part 11 has a fluid passage 21 in the housing parallel to the flow of fluid, and a semiconductor chip for detecting the flow rate is installed at the center of the fluid passage 21. The sensor section 11 has a dual in-line pancage type casing 23 having two rows of bins 22, and the sensor section 11 has two rows of pins 22 that output signals from a semiconductor chip through two sockets 2.
4 and is adhesively fixed so that it will not come off due to vibration etc.

回路部12は半導体チップの出力信号を処理して、流量
を表す信号をコネクタ25より出力する。
The circuit section 12 processes the output signal of the semiconductor chip and outputs a signal representing the flow rate from the connector 25.

なお、ソケット24はセンサ部11の流路21を通過す
る流れが、吸入導管3の壁面の境界層の影響を受けるこ
となく、吸入導管3の流量を代表できる位置になるよう
吸入導管3の中に突出している。また、流れが乱れて圧
力損失が増大するのを防ぐため、ソケット24の流れ方
向の先端を鋭角にしである。
The socket 24 is located in the suction conduit 3 so that the flow passing through the flow path 21 of the sensor section 11 can represent the flow rate of the suction conduit 3 without being affected by the boundary layer on the wall of the suction conduit 3. It stands out. Further, in order to prevent flow disturbance and increase in pressure loss, the tip of the socket 24 in the flow direction is made at an acute angle.

センサ部11の構造を示す第3図において、妬はシリコ
ン基板上にヒータ素子、温度検出素子が形成されている
半導体チップである。
In FIG. 3 showing the structure of the sensor section 11, a semiconductor chip is provided with a heater element and a temperature detection element formed on a silicon substrate.

27はセラミック基板であり、リードピン22とチップ
26を電気的に接続するよう導体ペーストが印刷焼成さ
れCいて、リードピン22、チップ26がフリップチッ
プバンブ法によりハンダ付されている。
27 is a ceramic substrate, on which a conductive paste is printed and fired to electrically connect the lead pins 22 and the chip 26, and the lead pins 22 and the chip 26 are soldered by the flip-chip bump method.

なお、基板27にはその切欠き部分に2個の突出した支
持部28が形成されており、この部分でチップ26を空
気流にさらすように配置している。
Note that two protruding support portions 28 are formed in the notch portion of the substrate 27, and the chip 26 is placed so as to be exposed to the air flow at these portions.

これにより、セラミック基板27のうち半導体チップを
固定し、信号を取り出すのに必要な部分だけが流体通路
21に位置する構造となり、半導体チップ26のヒータ
素子の熱のセラミック基板27に奪われる量と、セラミ
ック基板27がら気体へ熱伝達される量をより少な(し
、ヒータ素子の消費電力をより少なくしている。基板2
7は、例えばPPSよりなるケーシング29に納められ
支持されるが、う・−シング29は第1ケーシング29
Aと第2ケーシング29Bとから構成されている。
As a result, only the portion of the ceramic substrate 27 necessary for fixing the semiconductor chip and extracting the signal is located in the fluid passage 21, and the amount of heat from the heater element of the semiconductor chip 26 lost to the ceramic substrate 27 is reduced. , the amount of heat transferred from the ceramic substrate 27 to the gas is reduced (and the power consumption of the heater element is further reduced.
7 is housed and supported in a casing 29 made of PPS, for example, and the housing 29 is housed in the first casing 29.
A and a second casing 29B.

ケーシング29の流入口21Aは、通路21内へ流れが
乱れることなく流入するようベルマウス形状となってい
る。
The inlet 21A of the casing 29 has a bell mouth shape so that the flow can flow into the passage 21 without disturbance.

また、半導体チップ26への流れがよどむのを防ぐため
に、ハウジング29Bの内@Xをチップ26に流れが斜
めから当るよう半導体チップ側に突出する構造にしであ
る。このような構造にすることにより、精度良く流量検
出できる。
In addition, in order to prevent the flow to the semiconductor chip 26 from stagnation, the inner part of the housing 29B is designed to protrude toward the semiconductor chip so that the flow hits the chip 26 obliquely. With such a structure, the flow rate can be detected with high accuracy.

次に半導体チップ2Gの構成について説明する。Next, the configuration of the semiconductor chip 2G will be explained.

半導体の温度検出素子としては、ダイオードまたはトラ
ンジスタを形成し、その順方向電圧が温度に対し2.0
〜2.5mV/’cのリニアな特性を持つことを利用し
て温度検出するものと、拡散法により形成した拡散抵抗
の抵抗値が温度により変化することを利用して温度検出
するものと2通りの方法が考えられるが、この実施例で
はダイオードにより温度検出素子を形成している。半導
体チップ26を示す第4A図において、これは全体とし
て、拡散抵抗からなるヒータ30、ヒータ3oより上流
側の流体温度を検出するための上流温度検出素子及びヒ
ータ30より下流側の流体温度を検出するための下流温
度検出素子からなっている。
As a semiconductor temperature detection element, a diode or a transistor is formed, and its forward voltage is 2.0 with respect to temperature.
There are two types: one that detects temperature by utilizing the linear characteristic of ~2.5mV/'c, and the other that detects temperature by utilizing the fact that the resistance value of the diffused resistor formed by the diffusion method changes with temperature. Although any method can be considered, in this embodiment, the temperature detection element is formed by a diode. In FIG. 4A showing the semiconductor chip 26, this as a whole includes a heater 30 made of a diffused resistor, an upstream temperature detection element for detecting the fluid temperature upstream of the heater 3o, and a fluid temperature downstream of the heater 30. It consists of a downstream temperature sensing element for

上流側温度検出素子は、3個のダイオード(トランジス
タと等価的なもの)31.32.33からなり、ヒータ
30よりやや離れた位置に形成されている。下流側温度
検出素子は、3個のダイオード34.35.36からな
り、ヒータ30に近接した位置に形成されている。なお
ハツチング部はアルミ蒸着により形成された電極である
The upstream temperature detection element consists of three diodes (equivalent to transistors) 31, 32, and 33, and is formed at a position slightly apart from the heater 30. The downstream temperature detection element is composed of three diodes 34, 35, and 36, and is formed near the heater 30. Note that the hatching portion is an electrode formed by aluminum vapor deposition.

また、このデツプ26′は第4B図に示されるようにN
−N小型のシリコンウェハにP型不純物41、N型不純
物42を拡散し、SiO2膜43のエツチングを行なっ
た後、アルミ電極44、アルミ電極44の腐食を防ぐ保
護膜(Si02膜、Si3N4膜等)45を付けて製作
された構造となっている。
Also, this depth 26' is N as shown in FIG. 4B.
-N After diffusing P-type impurities 41 and N-type impurities 42 into a small silicon wafer and etching the SiO2 film 43, the aluminum electrode 44 is coated with a protective film (Si02 film, Si3N4 film, etc.) to prevent corrosion of the aluminum electrode 44. ) 45.

次に第5図により回路部12の詳細回路について説明す
る。回路部12はセンサ部11の検出信号を処理し、流
量を表す出力信号を出力するもので、温度出力処理部1
2A、フィードバック制御部12B1オフセツト調整部
12C1電源部12D1出力部12Eからなる。
Next, the detailed circuit of the circuit section 12 will be explained with reference to FIG. The circuit section 12 processes the detection signal of the sensor section 11 and outputs an output signal representing the flow rate, and the temperature output processing section 1
2A, a feedback control section 12B1, an offset adjustment section 12C, a power supply section 12D, and an output section 12E.

処理部12Aは、一定電圧が印加されているダイオード
31〜36のアノード・カソード間の電圧を取り出すだ
めの回路で、各ダイオードに接続された抵抗501〜5
12、及びopアンプ513.514からなる。ここで
、抵抗507〜5゜9は流れの上流側にあるダイオード
31〜33のアノード、カソード間の平均値を出し、抵
抗510〜512は流れの下流側にあるダイオード34
〜36のアノード・カソード間の平均値を出すものであ
り、抵抗501〜506の抵抗値より1桁以上の大きな
抵抗値のものを用いる。ここで、温度係数の補正のない
場合についてはそのバラツキの分布が正規分布にしたが
うとすれば、バラツキは、上流側、下流側とも1/3に
なる。さらに誤差を小さくするために、抵抗501〜5
016は可変抵抗器にすることも考えられる。OPアン
プ513.514は上流側、下流側のダイオードのカソ
ード・アノード間電圧の平均値をインピーダンス変換し
て、フィードバック制御部12Bに出力する。
The processing unit 12A is a circuit for extracting the voltage between the anodes and cathodes of the diodes 31 to 36 to which a constant voltage is applied, and includes resistors 501 to 5 connected to each diode.
12, and operational amplifiers 513 and 514. Here, the resistances 507 to 5°9 give the average value between the anodes and cathodes of the diodes 31 to 33 on the upstream side of the flow, and the resistances 510 to 512 give the average value between the anodes and cathodes of the diodes 31 to 33 on the downstream side of the flow.
The average value between the anode and cathode of resistors 501 to 506 is calculated, and a resistance value that is one order of magnitude or more larger than the resistance value of resistors 501 to 506 is used. Here, if the distribution of the variation follows a normal distribution in the case where the temperature coefficient is not corrected, the variation will be 1/3 on both the upstream and downstream sides. In order to further reduce the error, resistors 501 to 5
016 may be a variable resistor. The OP amplifiers 513 and 514 impedance convert the average value of the cathode-anode voltage of the upstream and downstream diodes and output it to the feedback control section 12B.

フィードバック制御部12Bは、上流側、下流側の温度
差がオフセット稠整部で12Cで設定する電圧差になる
ように、ヒータ30に加わる電圧を変えてヒータ30の
消費電力をコントロールする。この回路で521.52
2.523は抵抗、524.525はコンデンサ、52
6はOPアンプである。そして、抵抗522.523、
コンデンサ524.525で定まる時定数で出力信号を
出し、抵抗527を通してダーリントン接続されたトラ
ンジスタ528.529で信号の電力増幅を行う。
The feedback control unit 12B controls the power consumption of the heater 30 by changing the voltage applied to the heater 30 so that the temperature difference between the upstream side and the downstream side becomes the voltage difference set by the offset adjustment unit 12C. In this circuit 521.52
2.523 is a resistor, 524.525 is a capacitor, 52
6 is an OP amplifier. And resistance 522.523,
An output signal is output with a time constant determined by capacitors 524 and 525, and the power of the signal is amplified by transistors 528 and 529 connected to Darlington through a resistor 527.

オフセット調整部12Cは、抵抗53.532で定まる
電圧に、抵抗533の電位差が等しくなるようにOPア
ンプ534、トランジスタ535で制御を行う。電源部
12Dは、レギュレータ541とコンデンサ542.5
43よりなり、一定電圧を出力する。出力部12Eは、
ヒ〜り30で消費された電力を検出・器の流量信号とし
て出力するもので、低抵抗551と抵抗551に比べ高
抵抗の抵抗552.553と、OPアンプ554よりな
り、抵抗552と553の分割値により出力のゲイン調
整を行なう。
The offset adjustment unit 12C performs control using an OP amplifier 534 and a transistor 535 so that the potential difference across the resistor 533 becomes equal to the voltage determined by the resistors 53 and 532. The power supply section 12D includes a regulator 541 and a capacitor 542.5.
43 and outputs a constant voltage. The output section 12E is
It outputs the power consumed by the heater 30 as a flow signal for the detector/device, and consists of a low resistance 551, a resistance 552, 553, which has a higher resistance than the resistance 551, and an OP amplifier 554. Adjust the output gain using the division value.

上記構成において、半導体チップ26のヒータ30で電
力を消費させると、その熱はケーシング29の通路21
内を流れる気体へ伝達される。
In the above configuration, when the heater 30 of the semiconductor chip 26 consumes power, the heat is transferred to the passage 21 of the casing 29.
transmitted to the gas flowing inside.

ヒータ30より上流側の流体温度は、隣接して配置され
た3個のダイオード31〜33により検出しているため
、局部的な流体温度でなく広範囲の流体温度の平均的な
ものが検出される。
Since the fluid temperature upstream of the heater 30 is detected by three diodes 31 to 33 arranged adjacently, the average fluid temperature over a wide range is detected instead of a local fluid temperature. .

またヒータ30より下流側の流体温度も同様に3個のダ
イオード34〜36により検出しており、流体温度の平
均的なものが検出される。特に下流側の流体温度はヒー
タ30で熱せられた流体の温度であるため、流れが乱れ
ても適確に検出する必要があるが、本願では複数のダイ
オードを隣接して配置しであるため、流れが乱れても流
れがダイオード上を必ず流れることになり、安定的に温
度検出が行なわれる。
Further, the fluid temperature on the downstream side of the heater 30 is similarly detected by three diodes 34 to 36, and the average fluid temperature is detected. In particular, since the fluid temperature on the downstream side is the temperature of the fluid heated by the heater 30, it is necessary to accurately detect even if the flow is disturbed, but in this application, since multiple diodes are arranged adjacently, Even if the flow is turbulent, the flow will always flow over the diode, allowing stable temperature detection.

また温度検出素子及びヒータは、固体であって線(ワイ
ヤー)でないため断線については問題がないし、通常の
半導体製造技術を用いて製造できるので微細加工が可能
となり、この部分の体格、即ち熱容量が小さくなって応
答性が向上する。
In addition, the temperature detection element and heater are solid and not wires, so there is no problem with disconnection, and since they can be manufactured using normal semiconductor manufacturing technology, microfabrication is possible, and the physique of this part, that is, the heat capacity. Smaller size improves responsiveness.

しかして、ダイオード群で検出した結果であるA点とB
点の電位差がオフセット電圧に等しくなるように回路部
12によりヒータ30の発熱量が制御され、ダイオード
群31〜33とダイオード群34〜36の温度差が所定
値に制御される。このように制御されると、ヒータ30
で消費される電力は、流量と所定の関数関係になり、流
量に対しである曲線に従って増加する。一方、ヒータ3
0の消費電力は0点の電圧として出力されるのでOUT
端子からは流量に応じた信号が出力される。
Therefore, points A and B, which are the results detected by the diode group,
The amount of heat generated by the heater 30 is controlled by the circuit unit 12 so that the potential difference between the points is equal to the offset voltage, and the temperature difference between the diode groups 31 to 33 and the diode groups 34 to 36 is controlled to a predetermined value. When controlled in this way, the heater 30
The power consumed in the flow rate has a predetermined functional relationship with the flow rate, and increases according to a certain curve with respect to the flow rate. On the other hand, heater 3
The power consumption at 0 is output as a voltage at 0 point, so OUT
A signal corresponding to the flow rate is output from the terminal.

なお、上記構成ではダイオードを並列的に接続したが、
第6A図に示す第2実施例のようにダイオードを直列接
続するようなものでもよい。
Note that in the above configuration, the diodes are connected in parallel, but
It is also possible to connect diodes in series as in the second embodiment shown in FIG. 6A.

第6A図において、61〜64は上流側のダイオード群
を示し、65〜66は下流側のダイオード群を示してい
る。この等価回路図が第7図で、ダイオード61〜64
は直列接続され、ダイオード65〜68は直列接続され
ている。
In FIG. 6A, 61 to 64 indicate a group of diodes on the upstream side, and 65 to 66 indicate a group of diodes on the downstream side. This equivalent circuit diagram is shown in FIG. 7, and diodes 61 to 64
are connected in series, and diodes 65 to 68 are connected in series.

このチップ26は、第6B図に示すようにP〜N型のシ
リコンウェハーにP型不純物71を拡散して、領域を分
離した後、P型不純物72、N型不純物73を拡散し、
5i02膜74にコンタクト用の孔をエツチングであけ
てアルミ75を蒸着して電極にした後、保護膜76を付
けて製作しである。
This chip 26 is made by diffusing P-type impurities 71 into a P to N-type silicon wafer to separate regions, and then diffusing P-type impurities 72 and N-type impurities 73, as shown in FIG. 6B.
A contact hole is etched in the 5i02 film 74, aluminum 75 is vapor-deposited to form an electrode, and a protective film 76 is attached.

このような構成にすることにより、ダイオードのバラツ
キを小さくして(ダイオードの温度特性は、正規分布に
したがうと考えられ、本実施例の様に直列にダイオード
を4個接続すれば、出力が4倍になり、バラツキは変化
しないため、等測的に分散は1/4になる)かつ流れの
乱れに対して強くなる。
By adopting such a configuration, variations in the diodes can be reduced (the temperature characteristics of diodes are considered to follow a normal distribution, and if four diodes are connected in series as in this example, the output will be 4). (The dispersion is isometrically reduced to 1/4 because the dispersion does not change) and becomes resistant to flow turbulence.

また本実施例では、第1実施例に比べ素子の製造工程は
増えるが、出力の線の数が減り、制御回路の入力部分の
構成が簡易になるメリットがある。
Further, in this embodiment, although the manufacturing process of the element is increased compared to the first embodiment, there is an advantage that the number of output lines is reduced and the configuration of the input portion of the control circuit is simplified.

また第8図に示す第3実施例のように温度検出チップ2
6Aと温度検出−ヒータチップ26Bと2つのチップを
分離するようにしてもよい。このような構成にすること
で、1チツプの場合と比べ上流と下流のダイオードで構
成される温度検出部分の温度差が大きくなり、検出精度
が上がる。
In addition, as in the third embodiment shown in FIG.
6A and the temperature detection-heater chip 26B may be separated into two chips. With such a configuration, the temperature difference between the temperature detection portions composed of upstream and downstream diodes becomes larger than in the case of a single chip, and detection accuracy increases.

以上述べたようにこの発明によれば耐久性、応答性の点
で優れているという効果がある。また、ダイオードなど
の半導体素子の温度特性のバラツキを吸収でき、検出性
も優れている。
As described above, the present invention has the effect of being excellent in terms of durability and responsiveness. Furthermore, it can absorb variations in the temperature characteristics of semiconductor elements such as diodes, and has excellent detectability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明になる装置を備えたエンジンの構成図
、第2図は第1図に図示した装置の要部の断面斜視図、
第3図は第2図に図示したセンサ部の部分断面斜視図、
第4A図及び第4B図はそれぞれ半導体チップを示す平
面図及び断面図、第5図はこの発明で用いられる回路部
を示す電気回路図、第6A図及び第6B図はそれぞれこ
の発明の第2実施例を示す平面図、断面図、第7図は第
6A図に示した半導体チップの等価回路図、第8図はこ
の発明の第3実施例を示す正面図である。 26・・・半導体チップ、30・・・ヒータ、31〜3
G・・・61〜68・・・半導体素子をなすダイオード
。 代理人弁理士 岡 部 隆 第6A図 26 U 第68図 第7図 第8図
FIG. 1 is a block diagram of an engine equipped with a device according to the present invention, FIG. 2 is a cross-sectional perspective view of the main parts of the device shown in FIG.
FIG. 3 is a partial cross-sectional perspective view of the sensor section shown in FIG. 2;
4A and 4B are a plan view and a sectional view showing a semiconductor chip, respectively, FIG. 5 is an electric circuit diagram showing a circuit section used in the present invention, and FIGS. 6A and 6B are a second diagram of the present invention. 7 is an equivalent circuit diagram of the semiconductor chip shown in FIG. 6A, and FIG. 8 is a front view showing a third embodiment of the present invention. 26... Semiconductor chip, 30... Heater, 31-3
G...61-68...Diodes forming semiconductor elements. Representative Patent Attorney Takashi Okabe Figure 6A Figure 26 U Figure 68 Figure 7 Figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)少なくとも2個の半導体素子からなる温度検出素
子と流体を加熱するためのヒータ素子とが形成された半
導体チップを備え、この半導体チップを流路内に設置し
たことを特徴とする半導体式流量検出装置。
(1) A semiconductor type characterized in that it is equipped with a semiconductor chip on which a temperature detection element consisting of at least two semiconductor elements and a heater element for heating a fluid are formed, and this semiconductor chip is installed in a flow path. Flow rate detection device.
(2)前記半導体素子がダイオードからなり、該ダイオ
ードが直列接続されている特許請求の範囲第1項記載の
半導体式流量検出装置。
(2) The semiconductor flow rate detection device according to claim 1, wherein the semiconductor element is a diode, and the diodes are connected in series.
(3)前記半導体素子がダイオードからなり、該ダイオ
ードが並列接続されている特許請求の範囲第1項記載の
半導体式流量検出装置。
(3) The semiconductor flow rate detection device according to claim 1, wherein the semiconductor element is a diode, and the diodes are connected in parallel.
(4)前記温度検出素子が前記ヒータ素子の両側に形成
されている特許請求の範囲第1項記載の半導体式流量検
出装置。
(4) The semiconductor flow rate detection device according to claim 1, wherein the temperature detection element is formed on both sides of the heater element.
JP58110398A 1983-02-11 1983-06-20 Semiconductor type flow-rate detecting device Pending JPS601524A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58110398A JPS601524A (en) 1983-06-20 1983-06-20 Semiconductor type flow-rate detecting device
US06/843,922 US4677850A (en) 1983-02-11 1986-03-21 Semiconductor-type flow rate detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58110398A JPS601524A (en) 1983-06-20 1983-06-20 Semiconductor type flow-rate detecting device

Publications (1)

Publication Number Publication Date
JPS601524A true JPS601524A (en) 1985-01-07

Family

ID=14534791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58110398A Pending JPS601524A (en) 1983-02-11 1983-06-20 Semiconductor type flow-rate detecting device

Country Status (1)

Country Link
JP (1) JPS601524A (en)

Similar Documents

Publication Publication Date Title
US4677850A (en) Semiconductor-type flow rate detecting apparatus
US4682496A (en) Flow rate detecting apparatus having semiconductor chips
KR960015065B1 (en) Control and detection circuitry for mass air-flow sensors
JPS601525A (en) Semiconductor type flow-rate detecting device
US6889545B2 (en) Flow rate sensor
US4870860A (en) Direct-heated flow measuring apparatus having improved response characteristics
JPH10197305A (en) Thermal air flowmeter and measuring element for thermal air flowmeter
US7409859B2 (en) Thermal type flow measuring apparatus
US6675644B2 (en) Thermo-sensitive flow rate sensor
US4587843A (en) Thermocouple-type gas-flow measuring apparatus
JPH063389B2 (en) Fluid flow measuring device
JP5152292B2 (en) Flow measuring device
US6725716B1 (en) Thermo-sensitive flow rate sensor and method of manufacturing the same
US4399698A (en) Gas flow measuring apparatus
JPH06273435A (en) Heat-generating resistor element and heat-type air flowmeter
US7251995B2 (en) Fluid flow sensor
KR100323315B1 (en) Thermo-sensitive flow rate sensor
US6684693B2 (en) Heat generation type flow sensor
US6886402B2 (en) Gas flow rate and temperature measuring element
US6679114B2 (en) Thermosensitive flow rate sensor
JPS61194317A (en) Direct-heating type flow-rate sensor
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPS59147221A (en) Semiconductor type flow rate detecting apparatus
JPS601524A (en) Semiconductor type flow-rate detecting device
KR0163637B1 (en) Thermal type air flow rate detector