JPH03295418A - Thermal type mass flowmeter sensor - Google Patents

Thermal type mass flowmeter sensor

Info

Publication number
JPH03295418A
JPH03295418A JP2098452A JP9845290A JPH03295418A JP H03295418 A JPH03295418 A JP H03295418A JP 2098452 A JP2098452 A JP 2098452A JP 9845290 A JP9845290 A JP 9845290A JP H03295418 A JPH03295418 A JP H03295418A
Authority
JP
Japan
Prior art keywords
sensor
pipe
stainless steel
mass flowmeter
thermal mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2098452A
Other languages
Japanese (ja)
Other versions
JP2670882B2 (en
Inventor
Yoichiro Kazama
洋一郎 風間
Makoto Tanaka
誠 田中
Akihito Hayashi
明史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2098452A priority Critical patent/JP2670882B2/en
Publication of JPH03295418A publication Critical patent/JPH03295418A/en
Application granted granted Critical
Publication of JP2670882B2 publication Critical patent/JP2670882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a response characteristic to transient variation in flow rate by forming a sensor pipe of a single-layer pipe made of a metallic material which is richer in anticorrosiveness than stainless steel and has higher thermal conductivity than stainless steel. CONSTITUTION:The sensor pipe 1 is made nearly of nickel to, for example, a 0.6mm external diameter and a 0.52mm internal diameter and its thermal conductivity (k) is 94W/m/K and about 3.8 times as large as k=24.5W/m/K of stainless steel. This sensor can expand a measurable flow rate range and also improves response performance and anticorrosiveness performance to corrosive gas.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、被測定流体が渣れるセンサーパイプにヒータ
を巻設し、ヒータ自体又はヒータ前後の温度に基づいて
センサーパイプ内を流れる流体の流量を測定する熱式質
量流量計センサーの改良に関するものである。
Detailed Description of the Invention "Industrial Application Field" The present invention involves winding a heater around a sensor pipe in which a fluid to be measured is suspended, and measuring the flow of the fluid flowing through the sensor pipe based on the temperature of the heater itself or before and after the heater. This invention relates to improvements in thermal mass flowmeter sensors that measure flow rates.

[従来の技術及び発明が解決しようとする課題]小流量
の計測装置としては例えば特開平1−107114号公
報に開示されたごとく、流体が流れるセンサーパイプを
冷却する例も見られるが、一般には冷却するよりも加熱
する方が簡明であるから、加熱式の質jtii計が用い
られる6加熱式渣量計の一般的な構成は、被測定流体が
流れるセンサーパイプの一部を加熱してその上流側と下
流側との温度差を検出し、またはセンサーパイプの上流
側と下流側に感熱抵抗線を巻回して、センサーパイプを
加熱すると同時に感熱抵抗線の抵抗値の変化から上流側
と下流側との温度差を検出し−その温度差から被測定流
体の流量を測定するものである。
[Prior Art and Problems to be Solved by the Invention] As disclosed in Japanese Patent Application Laid-Open No. 1-107114, there is an example of a small flow rate measuring device that cools a sensor pipe through which fluid flows, but in general, Heating is simpler than cooling, so a typical configuration of a heating-type residue meter that uses a heated quality meter is to heat a part of the sensor pipe through which the fluid to be measured flows. Detect the temperature difference between the upstream and downstream sides, or wrap a heat-sensitive resistance wire around the upstream and downstream sides of the sensor pipe to heat the sensor pipe and at the same time detect the temperature difference between the upstream and downstream sides based on the change in resistance of the heat-sensitive resistance wire. The temperature difference between the two sides is detected and the flow rate of the fluid to be measured is measured from that temperature difference.

温度差の検出は通常ホイーストンブリッジ回路によって
行われるが、特公昭53−702号公報の技術は、温度
変化による電気抵抗値の変化を利用しているものの、セ
ンサーパイプ自体を電気抵抗としているためにブリッジ
回路が通常のホイーストンブリッジとはなりえず、した
がってブリッジ回路の出力が流量に対して線形に変化し
ないおそれがある7 センナ−バイブの材質は、耐食性を持たせるため従来よ
りステンレス鋼が用いられてきたが、内層をステンレス
鋼とし外層に熱伝導率の高い銀や銅などを用いて2層管
とした技術もある(実公平1−25295号)、シかし
ながら流体がCl2CIFq、 F2等のハロゲン系の
ガスのときには、内層がステンレス鋼であっても腐食を
起こしやすい。
Detection of temperature differences is normally carried out using a Wheatstone bridge circuit, but the technology disclosed in Japanese Patent Publication No. 1983-702 utilizes changes in electrical resistance due to temperature changes, but because the sensor pipe itself has electrical resistance. In this case, the bridge circuit cannot be a normal Wheatstone bridge, and therefore the output of the bridge circuit may not vary linearly with the flow rate. However, there is also a technology in which the inner layer is made of stainless steel and the outer layer is made of silver or copper, which has high thermal conductivity, to create a two-layer tube (Refer to Utility Model Publication No. 1-25295). When using a halogen-based gas such as F2, corrosion is likely to occur even if the inner layer is made of stainless steel.

特にセンサーパイプの肉厚は一般に著しく薄いから、僅
かの腐食があっても信頼性を損なうおそれがある7また
加熱式の質量流量計では流体を加熱しているために、高
温の流体に対してもセンサーパイプの耐食性が保証され
ている必要があるが、ステンレス鋼の耐食性はハロゲン
ガスが高温になると劣ってくるという問題点がある。
In particular, the wall thickness of the sensor pipe is generally extremely thin, so even a small amount of corrosion may impair reliability.7 Also, since heated mass flowmeters heat the fluid, However, the corrosion resistance of stainless steel deteriorates when halogen gas reaches high temperatures, which is a problem.

ここで熱式流量計の作用を説明すると、上流側と下流側
の検温位置に対応する位置での流体の温度は、流量が0
のときには互いに等しくすなわち温度差はOである。次
いで流量を増加すると2上流位置での流体の温度は?i
菫の増加に従って低下するが、下流位置での流体の温度
は、上流位置の流体温度の低下はどは低下せず、また加
熱位置と検温位置との位置間係によっては却って上昇し
、いずれにしろ両者の温度差はOより増加し、一般には
この温度差は流体の流量に従って線形に増加する。流体
の流量を更に増加すると、上流位置での流体の温度の低
下には限度があり、同時に、流体は加熱部において十分
に加熱されないうちに下流位置に至るから、両位置の流
体の温度差は再び減少し、したがって流量の計測範囲に
は限度がある。
To explain the operation of a thermal flowmeter here, the temperature of the fluid at the positions corresponding to the temperature measurement positions on the upstream and downstream sides is 0 when the flow rate is 0.
When , they are equal to each other, that is, the temperature difference is O. If you then increase the flow rate, what is the temperature of the fluid at the 2nd upstream position? i
However, the temperature of the fluid at the downstream position does not decrease as the temperature of the fluid at the upstream position decreases, and depending on the positional relationship between the heating position and the temperature measurement position, the temperature of the fluid at the downstream position increases. However, the temperature difference between the two increases from O, and generally this temperature difference increases linearly with the flow rate of the fluid. If the flow rate of the fluid is further increased, there is a limit to the decrease in the temperature of the fluid at the upstream position, and at the same time, the fluid reaches the downstream position before it is sufficiently heated in the heating section, so the temperature difference between the fluid at both positions is decreases again, and therefore there is a limit to the measurement range of the flow rate.

次にセンサーパイプの温度に着目すると、長手方向の熱
伝導が悪いと、上記上下流位置での流体の温度差がその
ままセンサーパイプの温度差に反映されるから、流量計
としての感度は高くはなるが、他方において温度の高い
下流側のセンサーパイプから温度の低い上流側に熱が補
給されないから、早期に流量の計測範囲の上限に至って
しまう6前記ステンレス鋼は金属材料中熱伝導率が低い
ものであるから、センサーパイプとしてステンレス鋼を
用い、またはステンレス鋼を内層として用いる構成では
、流量の計測範囲が狭いという問題点がある。
Next, focusing on the temperature of the sensor pipe, if heat conduction in the longitudinal direction is poor, the temperature difference in the fluid at the upstream and downstream positions will be directly reflected in the temperature difference in the sensor pipe, so the sensitivity of the flowmeter will not be high. However, on the other hand, heat is not supplied from the higher temperature downstream sensor pipe to the lower temperature upstream side, so the upper limit of the flow rate measurement range is reached early.6 The stainless steel has a low thermal conductivity among metal materials. Therefore, in a configuration in which stainless steel is used as the sensor pipe or stainless steel is used as the inner layer, there is a problem that the flow rate measurement range is narrow.

次にセンサーパイプの径方向の熱伝導を見ると、流体の
温度はセンサーパイプの内面に至り、センサーパイプの
肉厚を伝わり、しかる後外面に取付けた検温手段に至る
から、径方向の熱伝導が悪いと流量の過渡変化に対する
応答特性が遅くなる6ステンレス鋼は熱伝導率が低いか
ら、センサーパイプとしてステンレス鋼を用い、または
ステンレス鋼を内層として用いる構成では、流量の過渡
変化に対する応答が悪化するという問題点もある。
Next, looking at heat conduction in the radial direction of the sensor pipe, the temperature of the fluid reaches the inner surface of the sensor pipe, is transmitted through the wall thickness of the sensor pipe, and then reaches the temperature measuring means attached to the outer surface, so heat conduction in the radial direction If the quality is poor, the response characteristics to transient changes in flow rate will be slow.6 Stainless steel has low thermal conductivity, so in a configuration that uses stainless steel as the sensor pipe or stainless steel as the inner layer, the response to transient changes in flow rate will deteriorate. There is also the problem of doing so.

センサーパイプの径方向の熱伝導を良くする手段の−と
して、センサーパイプの肉厚を薄くする技術もあるが(
特開昭62−192618号)、センサーパイプの強度
上の信頼性を欠くおそれが生じる6同様に2層構造のス
テンレス鋼の肉厚を薄くすると強度上の信頼性を欠くお
それが生じる。
As a means to improve the radial heat conduction of the sensor pipe, there is a technique to reduce the wall thickness of the sensor pipe (
JP-A No. 62-192618), there is a risk that the strength of the sensor pipe will be unreliable.6 Similarly, if the wall thickness of the two-layer stainless steel is made thin, there is a risk that the strength of the sensor pipe will be unreliable.

したがって本発明は、流量の過渡変化に対する応答特性
に優れ、ハロゲンガスに対する耐食性にも優れ、計測で
きる最大流量レンジも大きく取れる熱式質量流量計セン
サーを提供することを目的とする。
Therefore, an object of the present invention is to provide a thermal mass flowmeter sensor that has excellent response characteristics to transient changes in flow rate, excellent corrosion resistance against halogen gas, and can be used over a wide maximum flow rate range.

[課題を解決するための手段] 本発明は、センサーパイプを、ステンレス鋼よりも耐食
性に富むとともにステンレス鋼よりも熱伝導率の高い金
属材料による単層管によって形成することにより、上記
目的を達成したものである。
[Means for Solving the Problems] The present invention achieves the above objects by forming the sensor pipe with a single-layer pipe made of a metal material that is more corrosion resistant than stainless steel and has higher thermal conductivity than stainless steel. This is what I did.

上記金属材料としては1例えばニッケル又は白金を挙げ
ることができる。
Examples of the metal material include nickel or platinum.

[作用] 本発明は、ステンレス鋼よりも熱伝導率の高い金属材料
によってセンサーパイプを構成しているから、センサー
パイプの内面側と外面側との熱伝導が良くなり、流量の
過渡変化に対する応答特性が良くなる。
[Function] Since the sensor pipe of the present invention is made of a metal material with higher thermal conductivity than stainless steel, heat conduction between the inner and outer surfaces of the sensor pipe is improved, and the response to transient changes in flow rate is improved. Characteristics improve.

同時に、温度の高い下流側のセンサーパイプから温度の
低い上流側に熱が補給され、したがって流量計としての
感度は低くなるものの、流量の計測範囲は広くなる。こ
の結果、流体をセンサーパイプとこれをバイパスするバ
イパス流路とに流すときのバイパス流路の流量は小さく
て済むから、バイパス流路の構造を簡単化することがで
きるし、全流量に対する計測流量の比率が高いから、流
量計全体としての精度は向上する。
At the same time, heat is supplied from the higher-temperature downstream sensor pipe to the lower-temperature upstream side, and therefore, although the sensitivity of the flowmeter becomes lower, the flow rate measurement range becomes wider. As a result, when fluid flows through the sensor pipe and the bypass flow path that bypasses it, the flow rate in the bypass flow path can be small, so the structure of the bypass flow path can be simplified, and the measured flow rate relative to the total flow rate can be reduced. Since the ratio is high, the accuracy of the flowmeter as a whole improves.

また本発明は、ステンレス鋼よりも耐食性に富む金属材
料によってセンサーパイプを構成しているから、ステン
レス鋼によってセンサーパイプを構成したときよりも耐
食性が向上する。すなわち熱式質1FfLI計は主とし
て半導体製造装置におけるガスの流量制御に用いられ、
N2.Ar、 He、 Cl□ほか各種のガスを通す6
中でもCI2 、 CIFq、 F2等のハロゲン系の
ガスは腐食性が非常に強く、特に高温域では殆どの金属
を腐食させ、ステンレス鋼も腐食するが、純ニッケルは
ステンレス鋼以上の耐食性があり、例えばCIFqに対
して約600℃まで殆ど侵されない。したがってステン
レス鋼よりも耐食性に富む金属、例えばニッケル、白金
等では、半導体製造分野に使用されるハロゲン系のガス
に高温域で使用しても耐食性を有し、長期の寿命が保障
される。
Further, in the present invention, since the sensor pipe is made of a metal material that is more corrosion resistant than stainless steel, the sensor pipe has improved corrosion resistance compared to when the sensor pipe is made of stainless steel. In other words, the thermal quality 1FfLI meter is mainly used for controlling the flow rate of gas in semiconductor manufacturing equipment.
N2. Passes various gases such as Ar, He, Cl□6
Among them, halogen-based gases such as CI2, CIFq, and F2 are extremely corrosive, and corrode most metals, including stainless steel, especially in high-temperature ranges, but pure nickel has better corrosion resistance than stainless steel, such as It is hardly affected by CIFq up to about 600°C. Therefore, metals that are more corrosion resistant than stainless steel, such as nickel and platinum, have corrosion resistance even when used in high temperature ranges with halogen gases used in the semiconductor manufacturing field, ensuring a long service life.

[実施例] 以下本発明の実施例を図面に基づいて説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の熱式流量計センサーSの外
観図であり、一対のケース4と4′とはほぼ対称に形成
されたアルミ材よりなり、第2図はケース4′を外した
正面図である。ケース4.4′の合せ面3に形成した漬
5内には、セラミック繊維をベーパ状に成形したセラミ
ックペーパから成る断熱材6を装置して、センサーパイ
プ1を抱くように組立てられている9センサーパイプ1
は略U字状に折曲した細管で、センサーパイプの両端1
a、1bが基板2を貫通するように固定されている7セ
ンサーパイプ1は外径0.6mm、内径0.52mmで
、成分がほぼ全量ニッケルによって構成されており、そ
の熱伝導率にはに一94W/m/にであり(理科年表6
0年版による)、ステンレス鋼のに=24−5W/m/
K (同前)と比べて約3.8倍大きい。
FIG. 1 is an external view of a thermal flowmeter sensor S according to an embodiment of the present invention, in which a pair of cases 4 and 4' are made of aluminum material and are formed almost symmetrically, and FIG. FIG. A heat insulating material 6 made of ceramic paper made of ceramic fibers formed into a vapor shape is installed in the dipper 5 formed on the mating surface 3 of the case 4.4', and is assembled to hold the sensor pipe 1. sensor pipe 1
is a thin tube bent into a roughly U-shape, with both ends of the sensor pipe 1
The 7-sensor pipe 1, which is fixed so that a and 1b pass through the substrate 2, has an outer diameter of 0.6 mm and an inner diameter of 0.52 mm, and is composed almost entirely of nickel, and its thermal conductivity is 194 W/m/ (Science Chronology 6
0 version), stainless steel = 24-5W/m/
It is approximately 3.8 times larger than K (same as before).

このセンサーパイプの両端1a、1bは図示しないメイ
ンパイプに接続されており、該メインパイプにはこのセ
ンサーパイプ1と並列にバイパス流路が形成されており
、センサーパイプ1の流量Q、とバイパス流路の流量と
の比が一定になるように設計されており、こうしてセン
サーパイプ1の流量Q、よりメインパイプの全流量が求
められる様になっている。
Both ends 1a and 1b of this sensor pipe are connected to a main pipe (not shown), and a bypass flow path is formed in the main pipe in parallel with this sensor pipe 1, and the flow rate Q of the sensor pipe 1 and the bypass flow are The flow rate Q of the sensor pipe 1 and the total flow rate of the main pipe can be determined in this way.

センサーパイプ1の外周には一対のコイル7゜8が巻回
されており、ケース4.4′内の講5に収納されている
。コイル7.8は加熱要素であると同時に感温要素でも
あり、白金、鉄−ニッケルなどを芯線とする極細のエナ
メル被覆金属線によって形成されている。センサーパイ
プ1の外面には、ポリイミド樹脂をトルエンで希釈した
絶縁材が薄く塗布され、その上から上記し−タ兼センサ
ーコイル7.8をセンサーパイプ1の長さ方向に100
〜200回程巻回し、更に上記絶縁材を塗布して絶縁被
膜を形成して、コイル間及びコイルとセンサーパイプと
の間の絶縁を図っている。コイル7.8は流体の温度よ
り50℃〜100°C高く加熱されるが、上シーの絶縁
材は耐熱性があり、コイルの絶縁は破壊しない2 第3図はセンサーバイブ1の上流側と下流側との温度差
を検出する手段を示し、ヒータ兼センサーコイル7.8
の電気抵抗値をR7、Rsとすると、この抵抗は他の一
対の固定抵抗R1,R2とでブリッジ回路を構成してい
る。ブリッジ回路には定電流源10からの定電流ibが
流れ、コイル7.8のジュール熱によってセンサーバイ
ブ1は室温ないしは流体の温度よりも50〜100℃温
度が上昇した状態となる。センザー流量Q、がQ、=O
の場合には、ブリッジがバランスしてブリッジ回路の不
平衡電圧ΔEはΔE=Oである。センサーパイプ1に流
量Q、が流れると、熱がコイル7がらコイル8 I!!
IIへ運ばれて、コイル7の温度が下がりコイル8の温
度が上昇するにの温度変化によってコイル7゜8の抵抗
値R7、RAが変化し、ブリッジ回路に不平衡電圧へE
をもたらし、ΔEは差動増幅器11の出力として取り出
され、この出力はセンサー流量Q。
A pair of coils 7.8 are wound around the outer circumference of the sensor pipe 1, and are housed in a coil 5 within a case 4.4'. The coil 7.8 is both a heating element and a temperature-sensitive element, and is formed of a very fine enamelled metal wire with a core of platinum, iron-nickel, etc. The outer surface of the sensor pipe 1 is thinly coated with an insulating material made of polyimide resin diluted with toluene, and the above-mentioned sensor/sensor coil 7.8 is placed over the insulating material 100 mm in the length direction of the sensor pipe 1.
The coils are wound approximately 200 times, and the above insulating material is applied to form an insulating film to provide insulation between the coils and between the coil and the sensor pipe. The coil 7.8 is heated 50°C to 100°C higher than the fluid temperature, but the insulation of the upper seam is heat resistant and the coil insulation will not be destroyed.2 Figure 3 shows the upstream side of the sensor vibe 1 and 7.8 shows a means for detecting the temperature difference with the downstream side, and a heater/sensor coil 7.8
Assuming that the electrical resistance values of are R7 and Rs, this resistor constitutes a bridge circuit with another pair of fixed resistors R1 and R2. A constant current ib from the constant current source 10 flows through the bridge circuit, and the Joule heat of the coil 7.8 causes the sensor vibe 1 to be in a state where the temperature is 50 to 100° C. higher than the room temperature or the temperature of the fluid. Sensor flow rate Q, is Q, = O
In this case, the bridge is balanced and the unbalanced voltage ΔE of the bridge circuit is ΔE=O. When a flow rate Q flows through the sensor pipe 1, heat is transferred from the coil 7 to the coil 8 I! !
II, the temperature of the coil 7 decreases and the temperature of the coil 8 increases, causing the resistance values R7 and RA of the coil 7.8 to change, causing an unbalanced voltage E in the bridge circuit.
ΔE is taken out as the output of the differential amplifier 11, and this output is the sensor flow rate Q.

に比例するから、メインパイプの質U流量が求められる
7 ヒータ兼センサー7.8はケース4.4′内の講5内で
@熱材6に密着して包囲されているから、講5内には対
流が生ぜず、したがって本質m流量計センサーSの姿勢
の変化によるゼロドリフトやスパンドリフトが解消され
る。
Since it is proportional to No convection occurs, and therefore zero drift and span drift due to changes in the attitude of the flow meter sensor S are eliminated.

第4図は、本実施例におけるセンサーバイブ1内を流れ
る流量Q、に対する不平衡電圧ΔEを測定した結果(A
>を示し、比較のためステンレス単層管の場合(B)及
びステンレス管の外面に銅メツキを施した場合(C)に
ついて、他の条件は同一で測定した結果も示した。この
図から解る通りステンレス単層管では、流量Q、と不平
衡電圧へEとがリニアに変化する範囲はQs=7cc/
minまでで、そのときΔE−=70mVであり、また
ステンレス管の外面に銅メツキを施した2層管では、リ
ニアに変化する範囲はQs=8cc/minまでで、そ
のときΔE = 45 m Vであるのに対して本実施
例では、リニアに変化する範囲はQ、= 15 cc 
/ m i nまでで、そのときΔE=50mVであっ
た6すなわち本実施例では検出感度が多少低下するもの
の、リニアに変化する範囲の上限流量が約2倍に増加し
た。
FIG. 4 shows the measurement result (A
>, and for comparison, the results were also shown for the case of a stainless steel single-layer tube (B) and the case of a case where the outer surface of the stainless steel tube was plated with copper (C) under the same conditions. As can be seen from this figure, in the stainless steel single-layer pipe, the range in which the flow rate Q and the unbalanced voltage E change linearly is Qs = 7cc/
min, then ΔE- = 70 mV, and in a two-layer pipe with copper plating on the outer surface of the stainless steel pipe, the range of linear change is up to Qs = 8 cc/min, then ΔE = 45 mV In contrast, in this example, the range of linear change is Q, = 15 cc
/min, at that time ΔE=50 mV6, that is, in this example, although the detection sensitivity decreased somewhat, the upper limit flow rate in the linearly changing range increased approximately twice.

次に流菫の過渡変化に対する応答特性を測定した結果を
第5図に示す6第5図は(イ)に示すように流量Q、を
Oがら5 c c / m i nにステップ状に変化
させたときの、不平衡電圧ΔEの応答を示し、(ロ)の
ステンレス単層管ではΔEの飽和値の63%にまで達す
る時定数τは、τ−4secであったにれに対して(ハ
)の本実施例では、τ−2secであり、応答特性の改
善が図られた。
Next, the results of measuring the response characteristics to transient changes in the flow violet are shown in Figure 5.6 In Figure 5, as shown in (a), the flow rate Q is changed stepwise from O to 5 cc/min. The response of the unbalanced voltage ΔE when In the present example (c), the response time was τ-2 sec, and the response characteristics were improved.

更にセンサーバイブ】内に流す流体が例えば半導体製造
分野に用いられるCIF、の場合、高温になるほど腐食
速度が大きくなり、ステンレス鋼では120℃以下の温
度でしか使用に耐えず、それ以上の温度では短時間で腐
食が発生するが1本実施例のセンサーバイブ1はステン
レス鋼よりも耐食性に富むニッケルで構成されているた
め、600℃の高温状態まで十分使用に耐える。このた
め特に腐食性の強い上記ハロゲンガス等の流体を高温域
状態で多く流すときにも、長期外命を確保することが出
来るようになった、 なお上記実施例においてセンサーバイブ1を白金製とし
ても同様の効果が生じる。
Furthermore, if the fluid flowing inside the sensor vibrator is, for example, CIF, which is used in the semiconductor manufacturing field, the corrosion rate increases as the temperature increases, and stainless steel can withstand use only at temperatures below 120 degrees Celsius, and at higher temperatures. Although corrosion occurs in a short period of time, the sensor vibe 1 of this embodiment is made of nickel, which has higher corrosion resistance than stainless steel, so it can withstand use up to high temperatures of 600°C. For this reason, even when a large amount of fluid such as the above-mentioned halogen gas, which is particularly corrosive, is flowed in a high temperature range, it is now possible to ensure long-term life.In addition, in the above embodiment, the sensor vibe 1 is made of platinum. A similar effect occurs.

次に一般に熱式質量流量計センサーSの基板2はステン
レス鋼によって形成されており、またセンサーバイブ1
はシール性をもって基板2に同定する必要がある。従来
のようにセンサーバイブ1をステンレス鋼によって形成
したときには、該センサーバイブ1の基板2への密封・
固定は、ろう付けすることによって容易に達成すること
ができた6なお基板2は十分な厚さがあり、また基板2
が接する流体の温度は加温されてはいないがら、基板2
はステンレス鋼によって形成して問題はない。但しろう
材については、耐食性の観点から例えば二・7ケルを主
体とするろう材を用いる必要がある6 しかるにセンサーバイブ1を例えばニッケルによって形
成したときに、ニッケルを主体とするろう材によって基
板2にろう付けしようとすると、ろう材中の不純物がセ
ンサーパイプ1に溶は込んでその融点を下げ、センサー
パイプ1が溶けてしまう。またセンサーパイプ1と基板
2との間をビーム溶接しようとすると、センサーパイプ
1の熱容量が基板2の熱容量に比して著しく小さいため
に、適正に溶接することができない。
Next, the substrate 2 of the thermal mass flowmeter sensor S is generally made of stainless steel, and the sensor vibe 1 is generally made of stainless steel.
must be identified to the substrate 2 with sealing properties. When the sensor vibe 1 is made of stainless steel as in the past, it is difficult to seal the sensor vibe 1 to the substrate 2.
Fixation could be easily achieved by brazing6 Note that the substrate 2 is of sufficient thickness and that the substrate 2
Although the temperature of the fluid in contact with the substrate 2 is not heated,
There is no problem with it being made of stainless steel. However, from the viewpoint of corrosion resistance, it is necessary to use a brazing material mainly composed of, for example, 2.7 Kel.6 However, when the sensor vibe 1 is made of, for example, nickel, the substrate 2 is When brazing is attempted, impurities in the brazing filler metal melt into the sensor pipe 1 and lower its melting point, causing the sensor pipe 1 to melt. Furthermore, when beam welding is attempted between the sensor pipe 1 and the substrate 2, the heat capacity of the sensor pipe 1 is significantly smaller than that of the substrate 2, so that proper welding cannot be performed.

そこで本実施例では第6図に示すように、センサーパイ
プ1の管端1a、1bのそれぞれにステンレス鋼製のバ
イブ9を外嵌し、このステンレスパイプ9とセンサーパ
イプの管端1a、lbとの間をビーム溶接Yし、ステン
レスパイプ9と基板2との間をろう付けZしている。ビ
ーム溶接Yについては、センサーパイプ1とステンレス
パイプ9との熱容量に大差がないために、またろう付け
Zについては、ステンレスパイプ9も基板2も共にステ
ンレス鋼製であるために、いずれも適正に行うことがで
きる。なおステンレスパイプ9とセンサーパイプの管端
1a、lbとの間のビーム溶接Yと、ステンレスパイプ
9と基板2との間のろう付けZとの順序は、いずれを先
に行ってもよい。
Therefore, in this embodiment, as shown in FIG. 6, a stainless steel vibrator 9 is fitted onto each of the ends 1a and 1b of the sensor pipe 1, and the stainless steel pipe 9 and the ends 1a and 1b of the sensor pipe are connected to each other. Beam welding Y is performed between the stainless steel pipe 9 and the substrate 2, and brazing Z is performed between the stainless steel pipe 9 and the substrate 2. Regarding beam welding Y, there is not much difference in heat capacity between sensor pipe 1 and stainless steel pipe 9, and regarding brazing Z, since both stainless steel pipe 9 and substrate 2 are made of stainless steel, both are properly performed. It can be carried out. Note that the beam welding Y between the stainless steel pipe 9 and the tube ends 1a and lb of the sensor pipe and the brazing Z between the stainless steel pipe 9 and the substrate 2 may be performed in any order.

[発明の効果] 以上説明のごとく、本発明の熱式質量流量計センサーに
よれば、計測できる流量範囲を従来例の約2倍にするこ
とができ、更に応答性能及び腐食ガスに対する耐食性能
の向上を図ることができ、総合的に非常に優れた性能の
流量計を得ることが出来るようになった。
[Effects of the Invention] As explained above, according to the thermal mass flowmeter sensor of the present invention, the measurable flow rate range can be approximately doubled compared to the conventional example, and the response performance and corrosion resistance against corrosive gas can be improved. It has become possible to obtain a flowmeter with extremely excellent overall performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の外観図、第2図は一方のケ
ースを外したときの正面図、第3図はブリッジ回路の回
路図、第4図はセンサー流量Q、に対する不平衡電圧Δ
Eの変化を示す特性図、第5図は流量Q、のステップ変
化に対する不平衡電圧ΔEの応答を示す特性図、第6図
は第1図中X部拡大断面図である。 S・・・熱式質量流量計センサー ト・・センサーパイプ  2・・・基板  3・・・合
せ面4.4′・・・ケース   5・・・溝   6・
・・断熱材7・・・上流側コイル   8・−・下流側
コイル9・・・ステンレスパイプ Y・・・ビーム溶接 Z・・・ろう付は
Fig. 1 is an external view of an embodiment of the present invention, Fig. 2 is a front view when one case is removed, Fig. 3 is a circuit diagram of the bridge circuit, and Fig. 4 is an imbalance with respect to the sensor flow rate Q. Voltage Δ
FIG. 5 is a characteristic diagram showing the response of the unbalanced voltage ΔE to a step change in the flow rate Q. FIG. 6 is an enlarged cross-sectional view of the section X in FIG. S...Thermal mass flow meter sensor...Sensor pipe 2...Board 3...Mating surface 4.4'...Case 5...Groove 6...
... Insulation material 7 ... Upstream coil 8 - Downstream coil 9 ... Stainless steel pipe Y ... Beam welding Z ... Brazing

Claims (5)

【特許請求の範囲】[Claims] (1)被測定流体が流れるセンサーパイプと、このセン
サーパイプを加熱する手段と、センサーパイプの上流側
と下流側との温度差を検出する手段とを有する熱式質量
流量計センサーにおいて、前記センサーパイプを、ステ
ンレス鋼よりも耐食性に富むとともにステンレス鋼より
も熱伝導率の高い金属材料による単層管によって形成し
たことを特徴とする熱式質量流量計センサー。
(1) In a thermal mass flowmeter sensor having a sensor pipe through which a fluid to be measured flows, a means for heating the sensor pipe, and a means for detecting a temperature difference between an upstream side and a downstream side of the sensor pipe, the sensor A thermal mass flowmeter sensor characterized in that the pipe is formed from a single-layer pipe made of a metal material that has higher corrosion resistance than stainless steel and higher thermal conductivity than stainless steel.
(2)被測定流体が流れるセンサーパイプの上流側と下
流側との外周面にそれぞれ感熱抵抗線によって形成した
上流側コイルと下流側コイルとを巻回し、該上流側コイ
ルと下流側コイルと他の抵抗とによってブリッジ回路を
構成し、該ブリッジ回路の不平衡電圧を検出することに
よって前記センサーパイプ内を流れる流体の流量を測定
する熱式質量流量計センサーにおいて、 前記センサーパイプを、ステンレス鋼よりも耐食性に富
むとともにステンレス鋼よりも熱伝導率の高い金属材料
による単層管によって形成したことを特徴とする熱式質
量流量計センサー。
(2) An upstream coil and a downstream coil formed by a heat-sensitive resistance wire are wound around the outer peripheral surfaces of the upstream side and downstream side of the sensor pipe through which the fluid to be measured flows, respectively, and the upstream coil, the downstream coil, and the other coils are wound. A thermal mass flowmeter sensor that forms a bridge circuit with a resistance of This thermal mass flowmeter sensor is characterized by being formed from a single-layer tube made of a metal material that is highly corrosion resistant and has higher thermal conductivity than stainless steel.
(3)前記金属材料がニッケルである請求項1又は2記
載の熱式質量流量計センサー。
(3) The thermal mass flowmeter sensor according to claim 1 or 2, wherein the metal material is nickel.
(4)前記金属材料が白金である請求項1又は2記載の
熱式質量流量計センサー。
(4) The thermal mass flowmeter sensor according to claim 1 or 2, wherein the metal material is platinum.
(5)前記センサーパイプの管端にステンレス鋼製のパ
イプを外嵌し、該ステンレスパイプと前記センサーパイ
プの管端との間をビーム溶接し、前記ステンレスパイプ
と熱式質量流量計センサーの基板との間をろう付けした
請求項1〜4のいずれか1項記載の熱式質量流量計セン
サー。
(5) Fitting a stainless steel pipe onto the end of the sensor pipe, beam welding the stainless steel pipe and the end of the sensor pipe, and bonding the stainless steel pipe to the substrate of the thermal mass flowmeter sensor. The thermal mass flowmeter sensor according to any one of claims 1 to 4, wherein the thermal mass flowmeter sensor is brazed to the thermal mass flowmeter sensor.
JP2098452A 1990-04-13 1990-04-13 Thermal mass flow sensor Expired - Lifetime JP2670882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098452A JP2670882B2 (en) 1990-04-13 1990-04-13 Thermal mass flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098452A JP2670882B2 (en) 1990-04-13 1990-04-13 Thermal mass flow sensor

Publications (2)

Publication Number Publication Date
JPH03295418A true JPH03295418A (en) 1991-12-26
JP2670882B2 JP2670882B2 (en) 1997-10-29

Family

ID=14220109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098452A Expired - Lifetime JP2670882B2 (en) 1990-04-13 1990-04-13 Thermal mass flow sensor

Country Status (1)

Country Link
JP (1) JP2670882B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115829A (en) * 2002-07-23 2009-05-28 Hitachi Metals Ltd Flow rate sensor, flow rate measuring device, and flow rate control device
CN112816011A (en) * 2020-12-22 2021-05-18 北京七星华创流量计有限公司 Fluid measurement sensor and mass flow controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309309B1 (en) * 2012-05-31 2013-09-17 김상현 Mass flow controller sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013219A (en) * 1983-07-04 1985-01-23 Ohkura Electric Co Ltd Thermal sensor of mass flowmeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013219A (en) * 1983-07-04 1985-01-23 Ohkura Electric Co Ltd Thermal sensor of mass flowmeter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115829A (en) * 2002-07-23 2009-05-28 Hitachi Metals Ltd Flow rate sensor, flow rate measuring device, and flow rate control device
CN112816011A (en) * 2020-12-22 2021-05-18 北京七星华创流量计有限公司 Fluid measurement sensor and mass flow controller

Also Published As

Publication number Publication date
JP2670882B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
JPH05133780A (en) Flow rata sensor
JPH0495820A (en) Thermal mass flowmeter
US5763774A (en) Fluid flow meter with reduced orientation sensitivity
US20080196494A1 (en) Flow sensor
JPH1038652A (en) Thermal mass flowmeter
JPH03295418A (en) Thermal type mass flowmeter sensor
JP2000028411A (en) Flow-rate sensor and flow-rate detecting device
GB2159631A (en) Fluid flow measurement
JP3266707B2 (en) Mass flow sensor
JPH02141621A (en) Heat type flow rate sensor
US20220397438A1 (en) Non-invasive thermometer
JP3865159B2 (en) Thermal mass flow meter
US5224378A (en) Thermal flowmeter with detecting element supported by supports having engaging portions
JPH0399230A (en) Mass flow rate sensor
JP4139149B2 (en) Gas sensor
JP4081639B2 (en) Thermal mass flow meter for liquids
JP2001153707A (en) Flow sensor
JP5292201B2 (en) RTD
JP4201861B2 (en) Flow sensor
JP3367827B2 (en) Micro flowmeter for vacuum
JPH08189847A (en) Thermal type mass flow-meter
JP2003254807A (en) Thermal sensor, installing method thereof, and mass flowmeter
JPH074509Y2 (en) Micro flow sensor
JPH04140613A (en) Thermal flowmeter
JP3766290B2 (en) Flow sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070711

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 13