JP3367827B2 - Micro flowmeter for vacuum - Google Patents

Micro flowmeter for vacuum

Info

Publication number
JP3367827B2
JP3367827B2 JP17654696A JP17654696A JP3367827B2 JP 3367827 B2 JP3367827 B2 JP 3367827B2 JP 17654696 A JP17654696 A JP 17654696A JP 17654696 A JP17654696 A JP 17654696A JP 3367827 B2 JP3367827 B2 JP 3367827B2
Authority
JP
Japan
Prior art keywords
resistance heating
heating element
downstream
upstream
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17654696A
Other languages
Japanese (ja)
Other versions
JPH1019621A (en
Inventor
山田  明
弘行 三島
洋 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17654696A priority Critical patent/JP3367827B2/en
Publication of JPH1019621A publication Critical patent/JPH1019621A/en
Application granted granted Critical
Publication of JP3367827B2 publication Critical patent/JP3367827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、大気圧以下の真空
に近い圧力下において流れる例えばガス等の流体の流量
を計測する真空用微小流量計に関する。 【0002】 【従来の技術】大気圧以下の真空に近い圧力下において
流れる気体の流量を計測する従来の真空用微小流量計
は、図6に示すように構成されている。図6に示すよう
に真空用微小流量計1は、センサ部2とバイパス部3か
らなり、計測する流路4に設けられる。センサ部2は、
毛細管5を使用し、この毛細管5に二つのヒータ(抵抗
発熱体)6,7を巻回している。このヒータ6,7は、
ブリッジ回路(図示せず)に接続され、このブリッジ回
路により、ヒータ6,7の抵抗値が測定される。また、
バイパス部3は、センサ部2と同等の毛細管を使用して
層流素子バイパスを構成している。 【0003】上記センサ部2は、ヒータ6,7により加
熱されて温度が上昇するが、その温度分布は図6に示す
ようになる。すなわち、気体が流れていない場合の温度
分布は、毛細管5の中央部が最も高く、両端部に近い程
低くなっているが、気体が流れると、温度の最高部が毛
細管5の末端方向に移動する。 【0004】上記センサ部2に流れる気体の流量は最大
で10ml/min程度であるため、殆どの気体はバイ
パス部3に流れる。センサ部2の流量をQs、バイパス
部3の流量をQbとすると、総流量Qは「Q=Qs+Q
b」であり、分流比kは「Qb/Qs=k」で表され
る。 【0005】そして、上記センサ部2における抵抗発熱
体であるヒータ6,7の温度差を、その電気抵抗差より
求め、質量流量を測定する。ここで、質量流量は、通常
sccm(standard cc/min.)と呼ば
れる大気圧15℃における気体の体積の単位時間当りの
流量で表される。上記sccm以外にslm(stan
dard l/min.)も用いられる。 【0006】 【発明が解決しようとする課題】流路4内が真空に近い
環境下では、ヒータ(抵抗発熱体)6,7から流路4中
に流れる気体への伝熱が悪くなるため、相対的に配管
(流路4)を熱伝導で伝わる伝熱量が大きくなる。この
ためセンサ部2の上流と下流に温度差をつけるために流
量を大きくしたり、あるいはヒータ6,7を設置する毛
細管5を細くする必要がある。このため圧力損失が1T
orr以上となって許容範囲を越えてしまい、計測器の
後流側に必要流量が流れなくなるという問題がある。 【0007】本発明は上記の課題を解決するためになさ
れたもので、真空環境下でも圧力損失が殆どなく、質量
流量の測定が可能な真空用微小流量計を提供することを
目的とする。 【0008】 【課題を解決するための手段】本発明に係る真空用微小
流量計は、低熱伝導のベースフィルム上に平板状の上流
側抵抗発熱体及び下流側抵抗発熱体を設けてセンサ部を
構成し、前記センサ部の上流側抵抗発熱体及び下流側抵
抗発熱体にそれぞれ低熱伝導支持線を接続して該センサ
部を真空に近い圧力下の流体が流れる流路内に支持する
と共に、前記低熱伝導支持線を前記流路から外部に導出
して計測用ブリッジ回路に接続し、前記ブリッジ回路に
より前記上流側抵抗発熱体及び下流側抵抗発熱体の抵抗
値を測定し、該抵抗値に基づいて前記上流側抵抗発熱体
及び下流側抵抗発熱体の温度分布を求めて前記流体の流
量を計測することを特徴とする。 【0009】上記のように上流側抵抗発熱体及び下流側
抵抗発熱体を低熱伝導率のベースフィルムに設置し、低
熱伝導の支持線で保持することにより、抵抗発熱体の発
熱は殆ど流体に伝えられる。この結果、真空環境下で気
体と抵抗発熱体との熱伝達率が悪い状態においても、上
流側抵抗発熱体と下流側抵抗発熱体との温度差が顕著に
なり、質量流量を確実に測定することができる。 【0010】 【発明の実施の形態】以下、図面を参照して本発明の一
実施形態を説明する。図1は本発明の一実施形態に係る
真空用微小流量計の正面図、図2は同平面図である。図
1及び図2において、11は流路で、この流路11の途
中にセンサ部12が水平に設けられる。このセンサ部1
2は、図3に詳細を示すように低熱伝導のベースフィル
ム13上に平板状に形成された上流側抵抗発熱体14及
び下流側抵抗発熱体15を設けたものである。上記セン
サ部12は、図1に示すように低熱伝導の保持用フィル
ム18により保持され、流路11内に平行に設けられ
る。上記抵抗発熱体14,15は、同じ特性を有するも
ので、それぞれ低熱伝導の支持線16,17により流路
11に支持される。上記支持線16,17としては、熱
伝導の非常に小さい部材、例えば直径10μm程度の銅
線が用いられる。また、上記抵抗発熱体14,15は、
上記支持線16,17を介してブリッジ回路19に接続
され、このブリッジ回路19により抵抗発熱体14,1
5の抵抗値が測定される。そして、この抵抗発熱体1
4,15の抵抗値に基づいて上流側抵抗発熱体14と下
流側抵抗発熱体15との温度差が演算回路(図示せず)
により算出され、更に、この温度差から流体の流量が求
められる。 【0011】次に上記実施形態の動作を説明する。セン
サ部12の抵抗発熱体14,15には、同じ電流量が供
給され、その発熱により流路11内を流れる流体、すな
わち気体が加熱される。この場合は、流路11内を流れ
る気体は、まず、上流側抵抗発熱体14に加熱されて下
流側抵抗発熱体15に達する。従って、下流側抵抗発熱
体15の温度は、上流側抵抗発熱体14の温度より高く
なる。ベースフィルム13、保持用フィルム18及び支
持線16,17は、熱伝導が非常に小さいので、流路1
1内を流れる気体が流量が微小であっても、上流側抵抗
発熱体14と下流側抵抗発熱体15との温度差が顕著に
現れる。 【0012】上記抵抗発熱体14,15の抵抗値がブリ
ッジ回路19により計測され、その抵抗値に基づいて抵
抗発熱体14,15の温度差が算出される。更に、この
温度差から流体の質量流量を求めることができる。 【0013】図4は、ブリッジ回路19で測定された電
圧(センサ出力)と真空槽の圧力上昇により求めた流量
との関係を示したものである。この図から明らかなよう
に真空環境下でも、微小流量を測定することができるも
のである。また、このときの圧力損失は0.1Torr
以下で、許容範囲内に収まっている。 【0014】次に上流側抵抗発熱体14と下流側抵抗発
熱体15の温度差から流体の質量流量を求める場合の原
理について説明する。図5は、センサ部12における温
度分布状態を示したもので、実線aは気体流量が0、破
線bは気体流量が微小、破線cは気体流量が小、破線d
は気体流量が大の場合の温度分布特性である。 【0015】今、上流側抵抗発熱体14の温度をT1 、
下流側抵抗発熱体15の温度をT2とすると、抵抗発熱
体14から気体への伝熱量Qg1、抵抗発熱体15から気
体への伝熱量Qg2、下流側抵抗発熱体15の位置での気
体温度Tg2等は、次のような関係がある。 【0016】 Qg1=αA(T1 −Tg1) …(1) Qg2=αA(T2 −Tg2) …(2) Tg2={Qg1/(Cp Wg )}+Tg1 …(3) 但し、Qg1:抵抗発熱体14から気体への伝熱量(W) Qg2:抵抗発熱体15から気体への伝熱量(W) Tg1:上流側抵抗発熱体14の位置での気体温度(℃) Tg2:下流側抵抗発熱体15の位置での気体温度(℃) α :気体への熱伝達率(W/m2 ℃) A :伝熱面積(m2 ) Cp :気体比熱(j/kg℃) Wg :気体流量(kg/s) そして、上記(1)式〜(3)式から上流側抵抗発熱体
14の位置での気体温度Tg1及び下流側抵抗発熱体15
の位置での気体温度Tg2を消去すると、 f=(Qg1,Qg2,α,T1 ,T2 )=0 の関係が得られる。 【0017】ここで、Qg1,Qg2,αは、気体流量Wg
の関数であるので、予め検定することで、気体流量Wg
と抵抗発熱体14,15の温度T1 ,T2 の関係を求め
ることができる。 【0018】 【発明の効果】以上詳記したように本発明によれば、抵
抗発熱体14,15を低熱伝導率のベースフィルム13
に設置し、低熱伝導の支持線16,17で保持すること
により、抵抗発熱体14,15の発熱は殆ど流体に伝え
られる。この結果、真空環境下で気体と抵抗発熱体1
4,15との熱伝達率が悪い状態においても、上流側抵
抗発熱体14と下流側抵抗発熱体15との温度差が顕著
になり、質量流量を確実に測定することができる。すな
わち、従来技術のように流路を細くする必要がないの
で、真空環境下でも圧力損失が殆どなく、質量流量を確
実に測定することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro flowmeter for vacuum which measures a flow rate of a fluid such as a gas flowing under a pressure close to a vacuum below the atmospheric pressure. 2. Description of the Related Art A conventional vacuum micro flowmeter for measuring a flow rate of a gas flowing under a pressure close to a vacuum below the atmospheric pressure is configured as shown in FIG. As shown in FIG. 6, the minute flow meter for vacuum 1 includes a sensor unit 2 and a bypass unit 3 and is provided in a flow path 4 to be measured. The sensor unit 2
A capillary 5 is used, and two heaters (resistance heating elements) 6 and 7 are wound around the capillary 5. These heaters 6 and 7
It is connected to a bridge circuit (not shown), and the resistance value of the heaters 6 and 7 is measured by the bridge circuit. Also,
The bypass unit 3 forms a laminar flow element bypass using a capillary tube equivalent to the sensor unit 2. The temperature of the sensor section 2 is increased by being heated by the heaters 6 and 7, and its temperature distribution is as shown in FIG. In other words, the temperature distribution when no gas is flowing is highest at the center of the capillary 5 and lower nearer to both ends, but when gas flows, the highest temperature moves toward the end of the capillary 5. I do. Since the flow rate of the gas flowing through the sensor section 2 is about 10 ml / min at the maximum, most of the gas flows into the bypass section 3. Assuming that the flow rate of the sensor section 2 is Qs and the flow rate of the bypass section 3 is Qb, the total flow rate Q is “Q = Qs + Q”.
b ", and the split ratio k is represented by" Qb / Qs = k ". Then, the temperature difference between the heaters 6 and 7, which are resistance heating elements in the sensor section 2, is determined from the difference in electric resistance, and the mass flow rate is measured. Here, the mass flow rate is represented by a flow rate per unit time of a gas volume at an atmospheric pressure of 15 ° C., usually called sccm (standard cc / min.). Slm (stan
dard l / min. ) Is also used. In an environment where the inside of the flow path 4 is close to a vacuum, heat transfer from the heaters (resistance heating elements) 6 and 7 to the gas flowing in the flow path 4 becomes poor. The amount of heat transferred through the pipe (flow path 4) by heat conduction is relatively large. For this reason, it is necessary to increase the flow rate or to make the capillary 5 in which the heaters 6 and 7 are installed thin in order to provide a temperature difference between the upstream and downstream of the sensor section 2. Therefore, pressure loss is 1T
There is a problem that the required flow rate does not flow to the downstream side of the measuring instrument due to exceeding orr and exceeding the allowable range. SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a micro flowmeter for vacuum capable of measuring a mass flow rate with almost no pressure loss even in a vacuum environment. A minute flow meter for vacuum according to the present invention is provided with a plate-like upstream resistance heating element and a downstream resistance heating element on a base film having low thermal conductivity, and a sensor section is provided.
And an upstream resistance heating element and a downstream resistance of the sensor section.
The low heat conduction supporting wires are connected to the anti-heating elements, respectively.
Part is supported in the flow path where fluid under pressure close to vacuum flows
At the same time, the low thermal conductive support wire is led out of the flow path to the outside.
And connect it to the bridge circuit for measurement.
The resistance of the upstream resistance heating element and the downstream resistance heating element
Measured value, characterized in that seeking temperature distribution of the upstream-side resistance heating element and the downstream resistive heating element based on the resistance value for measuring the flow rate of the fluid. As described above, the upstream resistance heating element and the downstream resistance heating element are installed on the base film having a low thermal conductivity, and are held by the supporting lines having a low thermal conductivity. Can be As a result, even in a state where the heat transfer coefficient between the gas and the resistance heating element is poor in a vacuum environment, the temperature difference between the upstream resistance heating element and the downstream resistance heating element becomes remarkable, and the mass flow rate is reliably measured. be able to. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a front view of a micro flowmeter for vacuum according to an embodiment of the present invention, and FIG. 2 is a plan view of the same. 1 and 2, reference numeral 11 denotes a flow path, and a sensor unit 12 is provided horizontally in the middle of the flow path 11. This sensor unit 1
Reference numeral 2 denotes an arrangement in which an upstream resistance heating element 14 and a downstream resistance heating element 15 which are formed in a plate shape on a low heat conduction base film 13 as shown in detail in FIG. The sensor section 12 is held by a holding film 18 having low thermal conductivity as shown in FIG. The resistance heating elements 14 and 15 have the same characteristics and are supported by the flow path 11 by supporting wires 16 and 17 having low heat conduction, respectively. As the support wires 16 and 17, a member having extremely low heat conductivity, for example, a copper wire having a diameter of about 10 μm is used. The resistance heating elements 14 and 15 are
The bridge circuit 19 is connected to the bridge circuit 19 via the support wires 16 and 17, and the bridge circuit 19 allows the resistance heating elements 14 and 1 to be connected.
A resistance value of 5 is measured. And this resistance heating element 1
An arithmetic circuit (not shown) calculates a temperature difference between the upstream resistance heating element 14 and the downstream resistance heating element 15 based on the resistance values 4 and 15.
, And the flow rate of the fluid is obtained from the temperature difference. Next, the operation of the above embodiment will be described. The same amount of current is supplied to the resistance heating elements 14 and 15 of the sensor unit 12, and the fluid that flows in the flow path 11, that is, the gas, is heated by the generated heat. In this case, the gas flowing in the flow path 11 is first heated by the upstream resistance heating element 14 and reaches the downstream resistance heating element 15. Therefore, the temperature of the downstream resistance heating element 15 becomes higher than the temperature of the upstream resistance heating element 14. Since the base film 13, the holding film 18, and the support wires 16, 17 have very low heat conduction, the flow path 1
Even if the flow rate of the gas flowing through the inside 1 is very small, the temperature difference between the upstream resistance heating element 14 and the downstream resistance heating element 15 appears remarkably. The resistance values of the resistance heating elements 14 and 15 are measured by the bridge circuit 19, and the temperature difference between the resistance heating elements 14 and 15 is calculated based on the resistance values. Further, the mass flow rate of the fluid can be obtained from the temperature difference. FIG. 4 shows the relationship between the voltage (sensor output) measured by the bridge circuit 19 and the flow rate obtained by increasing the pressure in the vacuum chamber. As is clear from this figure, a minute flow rate can be measured even in a vacuum environment. The pressure loss at this time is 0.1 Torr
Below, it is within the allowable range. Next, the principle of obtaining the mass flow rate of the fluid from the temperature difference between the upstream resistance heating element 14 and the downstream resistance heating element 15 will be described. FIG. 5 shows a temperature distribution state in the sensor unit 12, wherein a solid line a has a gas flow rate of 0, a dashed line b has a small gas flow rate, a dashed line c has a small gas flow rate, and a dashed line d.
Is a temperature distribution characteristic when the gas flow rate is large. Now, let the temperature of the upstream resistance heating element 14 be T1,
Assuming that the temperature of the downstream resistance heating element 15 is T2, the heat transfer quantity Qg1 from the resistance heating element 14 to the gas, the heat transfer quantity Qg2 from the resistance heating element 15 to the gas, and the gas temperature Tg2 at the position of the downstream resistance heating element 15 Etc. have the following relationship. Qg1 = αA (T1−Tg1) (1) Qg2 = αA (T2−Tg2) (2) Tg2 = {Qg1 / (CpWg)} + Tg1 (3) where Qg1: resistance heating element 14 Qg2: Heat transfer amount from resistance heating element 15 to gas (W) Tg1: Gas temperature (° C.) at position of upstream resistance heating element 14 Tg2: Downstream resistance heating element 15 Gas temperature at position (° C.) α: Heat transfer coefficient to gas (W / m 2 ° C.) A: Heat transfer area (m 2 ) Cp: Gas specific heat (j / kg ° C.) Wg: Gas flow rate (kg / s) From the above equations (1) to (3), the gas temperature Tg1 at the position of the upstream resistance heating element 14 and the downstream resistance heating element 15
Eliminating the gas temperature Tg2 at the position (1), the following relationship is obtained: f = (Qg1, Qg2, α, T1, T2) = 0. Here, Qg1, Qg2, α are gas flow rates Wg
Therefore, by performing a test in advance, the gas flow rate Wg
And the temperatures T1 and T2 of the resistance heating elements 14 and 15 can be obtained. As described above in detail, according to the present invention, the resistance heating elements 14 and 15 are connected to the base film 13 having a low thermal conductivity.
The heat generated by the resistance heating elements 14 and 15 is almost transmitted to the fluid. As a result, the gas and the resistance heating element 1 in a vacuum environment
Even when the heat transfer coefficient between the upstream resistance heating element 14 and the downstream resistance heating element 15 is low, the temperature difference between the upstream resistance heating element 14 and the downstream resistance heating element 15 becomes remarkable, and the mass flow rate can be reliably measured. That is, since it is not necessary to make the flow path thinner as in the prior art, there is almost no pressure loss even in a vacuum environment, and the mass flow rate can be reliably measured.

【図面の簡単な説明】 【図1】本発明の一実施形態に係る真空用微小流量計の
正面図。 【図2】同実施形態における真空用微小流量計の平面
図。 【図3】同実施形態におけるセンサ部の詳細を示す図。 【図4】同実施形態におけるセンサ出力と真空槽の圧力
上昇により求めた流量との関係を示す図。 【図5】同実施形態におけるセンサ部の温度分布状態を
示す図。 【図6】従来の真空用微小流量計の構成及びセンサ部の
温度分布を示す図。 【符号の説明】 11 流路 12 センサ部 13 ベースフィルム 14 上流側抵抗発熱体 15 下流側抵抗発熱体 16,17 支持線 18 保持用フィルム 19 ブリッジ回路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a micro flowmeter for vacuum according to an embodiment of the present invention. FIG. 2 is a plan view of the minute flow meter for vacuum in the embodiment. FIG. 3 is a diagram showing details of a sensor unit in the embodiment. FIG. 4 is a view showing a relationship between a sensor output and a flow rate obtained by a rise in the pressure of a vacuum chamber in the embodiment. FIG. 5 is a diagram showing a temperature distribution state of a sensor unit in the embodiment. FIG. 6 is a diagram showing a configuration of a conventional micro flowmeter for vacuum and a temperature distribution of a sensor unit. [Description of Signs] 11 Flow path 12 Sensor unit 13 Base film 14 Upstream resistance heating element 15 Downstream resistance heating element 16, 17 Support wire 18 Holding film 19 Bridge circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−105777(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01F 1/00 - 9/02 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-105777 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G01F 1/00-9/02

Claims (1)

(57)【特許請求の範囲】 【請求項1】 低熱伝導のベースフィルム上に平板状の
上流側抵抗発熱体及び下流側抵抗発熱体を設けてセンサ
部を構成し、前記センサ部の上流側抵抗発熱体及び下流
側抵抗発熱体にそれぞれ低熱伝導支持線を接続して該セ
ンサ部を真空に近い圧力下の流体が流れる流路内に支持
すると共に、前記低熱伝導支持線を前記流路から外部に
導出して計測用ブリッジ回路に接続し、前記ブリッジ回
路により前記上流側抵抗発熱体及び下流側抵抗発熱体の
抵抗値を測定し、該抵抗値に基づいて前記上流側抵抗発
熱体及び下流側抵抗発熱体の温度分布を求めて前記流体
の流量を計測することを特徴とする真空用微小流量計。
(57) [Claim 1] A sensor in which a flat upstream resistance heating element and a downstream resistance heating element are provided on a base film having low thermal conductivity.
A resistance heating element upstream and downstream of the sensor section.
Connect the low thermal conductive support wires to each side resistance heating element and
The sensor part is supported in the flow path where fluid under a pressure close to vacuum flows.
And at the same time, the low thermal conductive support wire is
Derived and connected to a bridge circuit for measurement.
The upstream resistance heating element and the downstream resistance heating element
A minute flowmeter for vacuum, comprising: measuring a resistance value; obtaining a temperature distribution of the upstream resistance heating element and the downstream resistance heating element based on the resistance value ; and measuring a flow rate of the fluid.
JP17654696A 1996-07-05 1996-07-05 Micro flowmeter for vacuum Expired - Fee Related JP3367827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17654696A JP3367827B2 (en) 1996-07-05 1996-07-05 Micro flowmeter for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17654696A JP3367827B2 (en) 1996-07-05 1996-07-05 Micro flowmeter for vacuum

Publications (2)

Publication Number Publication Date
JPH1019621A JPH1019621A (en) 1998-01-23
JP3367827B2 true JP3367827B2 (en) 2003-01-20

Family

ID=16015483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17654696A Expired - Fee Related JP3367827B2 (en) 1996-07-05 1996-07-05 Micro flowmeter for vacuum

Country Status (1)

Country Link
JP (1) JP3367827B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247499B2 (en) * 2013-10-29 2017-12-13 株式会社フジキン Gas flow meter
JP6939191B2 (en) * 2017-07-26 2021-09-22 東京電力ホールディングス株式会社 Flow meter and flow measurement method

Also Published As

Publication number Publication date
JPH1019621A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
US3938384A (en) Mass flow meter with reduced attitude sensitivity
JP4831879B2 (en) Mass flow meter
EP1329711B1 (en) Thermal fluid property and flow sensor with a feedback loop forcing a sensor element in a wheatstone bridge to track the resistance of a variable resistor in the bridge
US4319483A (en) Method of automated fluid flow measurement
US20090164163A1 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
US4548075A (en) Fast responsive flowmeter transducer
JP4632689B2 (en) Thermal mass flow meter
JPS6365892B2 (en)
JPH08338746A (en) Device and method for detecting flow rate
JPH039218A (en) Device for measuring quantity of flowing medium
JPH08509066A (en) Current difference type thermal mass flow transducer
JP3324855B2 (en) Mass flow sensor
JPH05133780A (en) Flow rata sensor
US5142907A (en) Constant temperature gradient fluid mass flow transducer
JPH063389B2 (en) Fluid flow measuring device
JPS59230166A (en) Ambient temperature compensation double bridge anemometer
JPS61217749A (en) Device for measuring thermal conductivity of gas
US4845984A (en) Temperature compensation for a thermal mass flow meter
JP2005514612A (en) Apparatus and method for thermal isolation of a thermal mass flow sensor
JP3367827B2 (en) Micro flowmeter for vacuum
JPH1038652A (en) Thermal mass flowmeter
JPH0245715A (en) Heat bundle mass flowmeter
JPH0399230A (en) Mass flow rate sensor
GB1352175A (en) Electrical flowmeters
JPH0668452B2 (en) Mass flow meter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021008

LAPS Cancellation because of no payment of annual fees