JP2646846B2 - Temperature-sensitive resistance element - Google Patents

Temperature-sensitive resistance element

Info

Publication number
JP2646846B2
JP2646846B2 JP2319651A JP31965190A JP2646846B2 JP 2646846 B2 JP2646846 B2 JP 2646846B2 JP 2319651 A JP2319651 A JP 2319651A JP 31965190 A JP31965190 A JP 31965190A JP 2646846 B2 JP2646846 B2 JP 2646846B2
Authority
JP
Japan
Prior art keywords
temperature
resistance element
resistance
sensitive
sensitive resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2319651A
Other languages
Japanese (ja)
Other versions
JPH04188032A (en
Inventor
考司 谷本
雄二 有吉
三樹生 別所
靖夫 多田
克明 安井
智也 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2319651A priority Critical patent/JP2646846B2/en
Publication of JPH04188032A publication Critical patent/JPH04188032A/en
Application granted granted Critical
Publication of JP2646846B2 publication Critical patent/JP2646846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えばエンジンの吸入空気量を測定する
熱式流量センサに用いられる感温抵抗素子に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-sensitive resistance element used for, for example, a thermal flow sensor for measuring an intake air amount of an engine.

[従来の技術] 一般に自動車のエンジンの電子制御式燃老噴射装置に
おいては、空燃比制御のためエンジンへの吸入空気量を
精度良く計測することが重要である。このような吸入空
気量を測定する空気流量センサとして、最近、小型で質
量流量が得られ、応答性の良い熱式流量センサが普及し
つつある。
2. Description of the Related Art In general, in an electronically controlled fuel injection system for an automobile engine, it is important to accurately measure the amount of intake air to the engine for air-fuel ratio control. Recently, as an air flow sensor for measuring such an intake air amount, a thermal flow sensor having a small size and a mass flow rate and a good responsiveness is becoming widespread.

この熱式流量センサは、吸入空気中に配設した感温抵
抗素子に電流を供給して発熱させ、この感温抵抗素子か
ら吸入空気中への伝熱現象を利用したものである。
This thermal type flow sensor utilizes a heat transfer phenomenon from the temperature-sensitive resistance element to the intake air by supplying an electric current to the temperature-sensitive resistance element disposed in the intake air to generate heat.

このような熱式流量センサの従来の感温抵抗素子は、
特開昭57−153231号公報に示されている。第11図(a)
及び(b)は、この感温抵抗素子の断面図と上面図、第
12図はこの感温抵抗素子の要部を示す構成図である。図
において、(1)はアルミナ(Al2O3)、又はポリイミ
ド等からなり、例えば2×20×0.5mmの大きさの絶縁性
基板、(2)はこの絶縁性基板(1)上に蒸着又は印刷
等により形成された例えば白金又はニッケル等からなる
薄膜で、温度により抵抗値が変化する温度依存性抵抗膜
を構成する。(3)はこの温度依存性抵抗膜(2)の一
部にトリミング等により形成されたパターン溝で、上記
温度依存性抵抗膜(2)をこのパターン溝(3)により
線状に加工して抵抗値を調整するものである。(4)は
予め温度依存性抵抗膜(2)に所定のパターン溝(3)
が形成されてなる感温抵抗部、(5)は所望の抵抗値に
するためにトリミング等により抵抗値調整パターン溝が
形成される抵抗値調整部である。(6)は上記温度依存
性抵抗膜(2)の1端部が上記のパターン溝(3)によ
り2分割された一対のリード端子部、(7)はこのリー
ド端子部(6)に接続されたリード線で、このリード線
(7)を介して外部の制御回路と接続される。
The conventional temperature-sensitive resistance element of such a thermal type flow sensor is:
This is disclosed in JP-A-57-153231. Fig. 11 (a)
And (b) are a sectional view and a top view of the temperature-sensitive resistance element, and FIG.
FIG. 12 is a configuration diagram showing a main part of the temperature-sensitive resistance element. In the figure, (1) is made of alumina (Al 2 O 3 ), polyimide or the like, for example, an insulating substrate having a size of 2 × 20 × 0.5 mm, and (2) is deposited on the insulating substrate (1). Or, it is a thin film made of, for example, platinum or nickel formed by printing or the like, and constitutes a temperature-dependent resistance film whose resistance value changes with temperature. (3) is a pattern groove formed on a part of the temperature-dependent resistance film (2) by trimming or the like. The temperature-dependent resistance film (2) is linearly processed by the pattern groove (3). It adjusts the resistance value. (4) A predetermined pattern groove (3) is previously formed in the temperature-dependent resistance film (2).
Is a temperature-sensitive resistor portion, and (5) is a resistance value adjusting portion in which a resistance value adjusting pattern groove is formed by trimming or the like to obtain a desired resistance value. (6) is a pair of lead terminal portions in which one end of the temperature-dependent resistance film (2) is divided into two by the pattern groove (3), and (7) is connected to the lead terminal portion (6). Connected to an external control circuit via the lead wire (7).

このように構成された感温抵抗素子は、上記感温抵抗
体である温度依存性抵抗膜(2)の膜厚がばらつくため
に、例えば所望の抵抗値の約80%を所定のパターン溝
(3)で形成し、約20%は抵抗調整部(5)に抵抗値調
整パターン溝を形成することによって抵抗値を精度良く
所望値とすることが行われている。
In the temperature-sensitive resistance element configured as described above, for example, about 80% of a desired resistance value is set to a predetermined pattern groove (because the thickness of the temperature-dependent resistance film (2) as the temperature-sensitive resistor varies). The resistance value is formed accurately in a desired value by forming a resistance value adjustment pattern groove in the resistance adjustment portion (5) about 20%.

また、このような感温抵抗素子を用いた熱式流量セン
サの構造を第13図に示す。図において、(8)は空気が
吸入される吸入管、(9)は吸入管(8)内に配された
支持部材、(10)はこの支持部材(9)に1端が固定さ
れ、上記説明した感温抵抗素子である発熱用感温抵抗素
子、(11)はこの発熱用感温抵抗素子(10)と比較して
抵抗値が約50倍以上大きい感温抵抗素子である吸気温検
出用感温抵抗素子で、上記支持部材(9)に1端が固定
され、上記発熱用感温抵抗素子(11)と並設されてい
る。また、矢印は空気流の方向を示す。
FIG. 13 shows the structure of a thermal type flow sensor using such a temperature-sensitive resistance element. In the drawing, (8) is a suction pipe through which air is sucked, (9) is a support member disposed in the suction pipe (8), and (10) is fixed at one end to the support member (9). The temperature-sensitive resistance element for heating, which is the temperature-sensitive resistance element described, (11) is an intake temperature detection element that is a temperature-sensitive resistance element having a resistance value that is about 50 times greater than that of the temperature-sensitive resistance element for heating (10). One end is fixed to the support member (9), and is provided in parallel with the heating temperature-sensitive resistance element (11). Arrows indicate the direction of airflow.

このような発熱用感温抵抗素子(10)及び吸気温検出
用感温抵抗素子(11)を用い、第14図に示すような定温
度差制御回路を構成することによって、質量流量を検出
することができる。図において、(12)(13)(14)は
固定抵抗で、発熱用感温抵抗素子(10)及び吸気温検出
用感温抵抗素子(11)と共にブリッジ回路を構成する。
(15)は固定抵抗(14)と発熱用感温抵抗素子(10)の
接続点及び固定抵抗(12)(13)の接続点が接続される
差動増幅器で、ブリッジ回路の不平衡電圧を増幅する。
(16)はこの差動増幅器(15)からの出力信号によって
制御されるパワートランジスタで、コレクタはバッテリ
電源に接続され、エミッタはブリッジ回路に接続されて
いる。
A mass flow rate is detected by forming a constant temperature difference control circuit as shown in FIG. 14 by using such a heat-sensitive resistance element for heating (10) and a temperature-sensitive resistance element for detecting intake air temperature (11). be able to. In the figure, reference numerals (12), (13), and (14) denote fixed resistors, which constitute a bridge circuit together with the heating temperature-sensitive resistance element (10) and the intake temperature detection temperature-sensitive resistance element (11).
(15) is a differential amplifier in which the connection point of the fixed resistor (14) and the temperature-sensitive resistance element for heating (10) and the connection point of the fixed resistors (12) and (13) are connected. Amplify.
(16) is a power transistor controlled by an output signal from the differential amplifier (15). The collector is connected to a battery power source, and the emitter is connected to a bridge circuit.

次に、動作について説明する。ブリッジ回路が平衡状
態にあるとき、各ブリッジ抵抗は次式を満たす。
Next, the operation will be described. When the bridge circuit is in an equilibrium state, each bridge resistor satisfies the following equation.

RH・R2=(RK+R1)・R3 …(1) (ここで、RHは発熱用感温抵抗素子(10)の抵抗値、
RKは吸気温検出用感温抵抗素子(11)の抵抗値、R1、R
2、R3は固定抵抗(12)(13)(14)各々の抵抗値であ
る。) この時、発熱用感温抵抗素子(10)及び吸気温検出用
感温抵抗素子(11)共に、白金の温度依存性抵抗膜
(2)より構成されており、抵抗値は温度によって変化
することになる。従って、発熱用感温抵抗素子(10)を
吸気温度より一定温度高い温度の抵抗値で、ブリッジ回
路が平衡状態になるように各ブリッジ抵抗を設定するこ
とにより、定温度制御が実現できる。つまり、ブリッジ
回路の不平衡電圧がほぼゼロとなるようにパワートラン
ジスタ(16)から発熱用感温抵抗素子(10)に加熱電流
を供給することによって、発熱用感温抵抗素子(10)の
抵抗値、したがって温度は一定に保持されることにな
る。また、吸気温検出用感温抵抗素子(11)の抵抗RK
は発熱用感温抵抗素子(10)の抵抗RHに比べて充分大
きく設定されているので、上記加熱電流の殆どは発熱用
感温抵抗素子(10)側に流れ、吸気温検出用感温素子抵
抗素子(11)の自己発熱は小さい。なお、発熱用感温抵
抗素子(10)及び吸気温検出用感温抵抗素子(11)共に
同様な抵抗温度依存性を示し、吸気温度の変化に伴なっ
て吸気温検出用感温抵抗素子(11)及び発熱用感温抵抗
素子(10)の温度も変化することになる。また、吸気温
検出用感温抵抗素子(11)に直列に接続された固定抵抗
(12)(13)は、この温度差の吸気温度依存性を調整す
るために設けられている。
RH · R2 = (RK + R1) · R3 (1) (where RH is the resistance value of the heating temperature-sensitive resistance element (10),
RK is the resistance value of the temperature-sensitive resistance element (11) for detecting the intake air temperature, R1, R
2. R3 is the resistance of each of the fixed resistors (12), (13) and (14). At this time, both the heat-generating resistance element (10) and the intake-temperature detection resistance element (11) are composed of a platinum temperature-dependent resistance film (2), and the resistance value changes with temperature. Will be. Accordingly, constant temperature control can be realized by setting each bridge resistor so that the bridge circuit is in an equilibrium state with the resistance value of the heating temperature-sensitive resistance element (10) at a temperature higher than the intake air temperature by a certain temperature. In other words, by supplying a heating current from the power transistor (16) to the heating temperature-sensitive resistance element (10) so that the unbalanced voltage of the bridge circuit becomes almost zero, the resistance of the heating temperature-sensitive resistance element (10) is reduced. The value, and thus the temperature, will be kept constant. Also, the resistance RK of the temperature-sensitive resistance element (11) for detecting the intake air temperature.
Is set sufficiently larger than the resistance RH of the heat-generating temperature-sensitive resistance element (10), so that most of the heating current flows to the heat-generating temperature-sensitive resistance element (10) side, and the intake air temperature detection temperature-sensitive element The self-heating of the resistance element (11) is small. In addition, both the heating-use temperature-sensitive resistance element (10) and the intake-air-temperature detection temperature-sensitive resistance element (11) show the same resistance temperature dependency, and the intake-air-temperature detection temperature-sensitive resistance element ( 11) and the temperature of the heating temperature-sensitive resistance element (10) also change. Further, fixed resistors (12) and (13) connected in series to the intake temperature detecting temperature-sensitive resistance element (11) are provided to adjust the intake temperature dependency of this temperature difference.

一方、発熱用感温抵抗素子(10)からの放熱量と発熱
量が等しい熱的平衡状態において、加熱電流は質量流量
だけの関数となる。従って、加熱電流を固定抵抗(14)
における電圧降下として検出することによって、質量流
量を検出することができる。
On the other hand, in a thermal equilibrium state in which the amount of heat radiation from the heating temperature-sensitive resistance element (10) is equal to the amount of heat generation, the heating current is a function of only the mass flow rate. Therefore, the heating current is fixed resistance (14)
, The mass flow rate can be detected.

[発明が解決しようとする課題] 従来の感温抵抗素子は以上のように構成されており、
温度依存性抵抗膜(2)のバラツキに応じて抵抗調整部
(5)に抵抗値調整パターン溝を形成することにより所
望の抵抗値としていた。
[Problem to be Solved by the Invention] The conventional temperature-sensitive resistance element is configured as described above,
A desired resistance value is obtained by forming a resistance value adjustment pattern groove in the resistance adjustment portion (5) according to the variation of the temperature-dependent resistance film (2).

しかしながら、このように抵抗調整部(5)に抵抗値
調整パターン溝を設けると、抵抗値は所望の値となるも
のの、流量センサに用いた場合には、流量検出特性にバ
ラツキが生じるという課題があった。
However, if the resistance value adjusting pattern groove is provided in the resistance adjusting portion (5) in this way, the resistance value becomes a desired value, but when used in a flow rate sensor, the flow rate detection characteristics vary. there were.

本発明は係る課題を解決するためなされたものであっ
て、流量検出特性のバラツキの小さい流量センサを構成
できる感温抵抗素子を提供することを目的とする。
The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a temperature-sensitive resistance element that can constitute a flow sensor having a small variation in flow detection characteristics.

[課題を解決するための手段] 本発明に係る感温抵抗素子は、基体上に設けられ、温
度により電気抵抗値が変化する温度依存性抵抗体と、こ
の温度依存性抵抗体に電流を供給するリード端子部を備
え、上記温度依存性抵抗体に該温度依存性抵抗体の発熱
時における平均温度領域に抵抗調整部を設けたことを特
徴とするものである。
[Means for Solving the Problems] A temperature-sensitive resistance element according to the present invention is provided on a substrate, and supplies a current to the temperature-dependent resistor whose electric resistance changes with temperature. Wherein the temperature-dependent resistor is provided with a resistance adjuster in an average temperature region when the temperature-dependent resistor generates heat.

また、第2の発明に係る感温抵抗素子は、基体上に設
けられ、温度により電気抵抗値が変化する温度依存性抵
抗体と、この温度依存性抵抗体に電流を供給するリード
端子部を備え、上記温度依存性抵抗体に該温度依存性抵
抗体の発熱時における平均温度より高い温度の部分及び
低い温度部分に抵抗調整部を設けたことを特徴とするも
のである。
Further, a temperature-sensitive resistor element according to a second aspect of the present invention includes a temperature-dependent resistor provided on a base and having an electrical resistance value that changes with temperature, and a lead terminal unit that supplies a current to the temperature-dependent resistor. The temperature-dependent resistor is provided with a resistance adjusting section at a temperature higher than the average temperature and a temperature lower than the average temperature when the temperature-dependent resistor generates heat.

[作用] 上記のように構成された感温抵抗素子は、温度依存性
抵抗体における平均温度領域に抵抗調整部を設けること
により、温度依存性抵抗体の温度分布の影響が抑えられ
るので、感温抵抗素子毎のバラツキも抑えられる。
[Operation] In the temperature-sensitive resistance element configured as described above, the influence of the temperature distribution of the temperature-dependent resistor can be suppressed by providing the resistance adjusting unit in the average temperature region of the temperature-dependent resistor. Variations of each thermal resistance element can be suppressed.

また、第2の発明の感温抵抗素子は、温度依存性抵抗
体における平均温度より高い部分と低い部分に抵抗調整
部を設けることにより、温度依存性抵抗体の温度分布の
影響を相殺することができるので、感温抵抗素子毎のバ
ラツキも抑えられる。
Further, in the temperature-sensitive resistance element according to the second aspect of the present invention, the influence of the temperature distribution of the temperature-dependent resistor is offset by providing a resistance adjusting portion at a portion higher and lower than the average temperature in the temperature-dependent resistor. Therefore, variations among the temperature-sensitive resistance elements can be suppressed.

[実施例] 以下、本発明の一実施例を第1図に基づいて説明す
る。第1図は、この発明の感温抵抗素子の上面図を示
す。図において、(3)は温度依存性抵抗膜(2)にエ
ッチング叉はレーザトリミング等により予め形成された
パターン溝で、このパターン溝(3)によって温度依存
性抵抗膜(2)を線状に加工し、高抵抗の温度依存性抵
抗体を構成する。(5)は発熱した温度依存性抵抗体に
おける平均温度領域に形成され、所望の抵抗値とするた
めにレーザトリミング等により抵抗値調整パターン溝
(5a)が形成される抵抗値調整部で、この実施例では温
度依存性抵抗体の長手方向の中央部に構成されている。
Example An example of the present invention will be described below with reference to FIG. FIG. 1 shows a top view of the temperature-sensitive resistance element of the present invention. In the figure, (3) is a pattern groove formed in advance on the temperature-dependent resistance film (2) by etching or laser trimming, etc., and the temperature-dependent resistance film (2) is linearly formed by the pattern groove (3). Process to form a high resistance temperature dependent resistor. (5) is a resistance value adjusting portion which is formed in the average temperature region of the heated temperature-dependent resistor and in which a resistance value adjusting pattern groove (5a) is formed by laser trimming or the like to obtain a desired resistance value. In the embodiment, the temperature-dependent resistor is formed at the center in the longitudinal direction.

このように構成された感温抵抗素子においても、第13
図に示されるようにリード端子部(6)側を固定端、他
端を自由端とし、感温抵抗素子の長手方向が空気流に対
して垂直になるように固定される。また、第14図に示さ
れるような定温度差制御回路により、感温抵抗部の温度
が空気温度より平均で160℃高い温度になるように制御
することによって、加熱電流を固定抵抗(14)における
電圧降下として検出することができる。従って、この電
圧降下を検出することによって、質量流量を検出でき
る。
In the temperature-sensitive resistance element thus configured, the thirteenth
As shown in the drawing, the lead terminal (6) side is a fixed end, the other end is a free end, and the longitudinal direction of the temperature-sensitive resistance element is fixed so as to be perpendicular to the air flow. The heating current is controlled by a constant temperature difference control circuit as shown in FIG. 14 so that the temperature of the temperature-sensitive resistor section is 160 ° C. higher than the air temperature on average, so that the heating current is fixed. Can be detected as a voltage drop. Therefore, the mass flow can be detected by detecting this voltage drop.

上記のような感温抵抗素子を用いて熱式流量センサを
製造し、流量検出特性を測定したところ、流量センサ毎
の流量検出特性のバラツキは非常に小さくなっていた。
つまり、この実施例の感温抵抗素子では、抵抗調整部
(5)が空気温度より160℃高い平均温度部分に形成さ
れているので、抵抗値調整パターン溝(5a)の有無によ
って、温度依存性抵抗体の温度分布に影響を与えないた
めである。第2図(a)及び(b)は、この実施例及び
従来例の抵抗調整部(5)における抵抗値調整パターン
溝(5a)の有無による長手方向の温度分布を示す。図に
おいて、縦軸は温度差を、横軸は感温抵抗素子の自由端
からの距離を示し、実線は抵抗調整部(5)に抵抗値調
整パターン溝(5a)のない感温抵抗素子、点線は抵抗調
整部(5)に抵抗値調整パターン溝(5a)が形成された
感温抵抗素子を示すものである。いずれにおいても、感
温抵抗素子の抵抗値、平均温度及び空気流量は同じ条件
である。第2図(a)及び(b)に示されるように、従
来例に比べてこの発明の感温抵抗素子は、抵抗値調整パ
ターン溝(5a)の有無によっては、感温抵抗素子の温度
分布にほとんど変化がない。
When a thermal type flow sensor was manufactured using the above-described temperature-sensitive resistance element and the flow detection characteristics were measured, the variation in the flow detection characteristics for each flow sensor was extremely small.
That is, in the temperature-sensitive resistance element of this embodiment, since the resistance adjusting portion (5) is formed at the average temperature portion 160 ° C. higher than the air temperature, the temperature dependence depends on the presence or absence of the resistance value adjusting pattern groove (5a). This is so as not to affect the temperature distribution of the resistor. 2 (a) and 2 (b) show the longitudinal temperature distribution depending on the presence or absence of the resistance value adjusting pattern groove (5a) in the resistance adjusting portion (5) of this embodiment and the conventional example. In the figure, the vertical axis represents the temperature difference, the horizontal axis represents the distance from the free end of the temperature-sensitive resistance element, and the solid line represents a temperature-sensitive resistance element having no resistance value adjustment pattern groove (5a) in the resistance adjustment section (5). The dotted line indicates the temperature-sensitive resistance element in which the resistance value adjustment pattern groove (5a) is formed in the resistance adjustment section (5). In any case, the resistance value, the average temperature, and the air flow rate of the temperature-sensitive resistance element are the same. As shown in FIGS. 2 (a) and 2 (b), the temperature-sensitive resistance element of the present invention has a temperature distribution of the temperature-sensitive resistance element different from that of the conventional example depending on the presence or absence of the resistance value adjusting pattern groove (5a). There is almost no change.

また、上記のような感温抵抗素子を用いた流量センサ
によって、空気流量検出特性を調べた結果を第3図に示
す。図において、縦軸は抵抗調整部(5)に抵抗値調整
パターン溝(5a)を形成していない感温抵抗素子の流量
検出特性を基準とし、抵抗調整部(5)に抵抗値調整パ
ターン溝(5a)を形成した感温抵抗素子の流量検出特性
の流量検出ドリフト特性を、横軸は空気流量を示す。ま
た、実線はこの実施例の感温抵抗素子を用いた流量検出
ドリフト特性を、点線は従来例の感温抵抗素子を用いた
流量検出ドリフト特性を示す。第3図より、この実施例
の感温抵抗素子は、従来例の感温抵抗素子を用いたもの
に比べて、流量センサとした際の流量検出ドリフト特性
のバラツキが小さい。従って、感温抵抗素子の温度依存
性抵抗体の平均温度付近に抵抗調整部(5)を設けるこ
とによって、抵抗値調整パターン溝(5a)の有無による
流量検出特性の影響を小さくできる。したがって、感温
抵抗素子の歩留まりを大幅に向上させることができる。
FIG. 3 shows the result of examining the air flow rate detection characteristics using a flow rate sensor using the above-described temperature-sensitive resistance element. In the figure, the vertical axis represents the flow rate detection characteristic of the temperature-sensitive resistance element in which the resistance value adjusting pattern groove (5a) is not formed in the resistance adjusting portion (5), and the resistance value adjusting pattern groove is provided in the resistance adjusting portion (5). The flow rate detection drift characteristic of the flow rate detection characteristic of the temperature sensitive resistance element forming (5a) is shown, and the horizontal axis shows the air flow rate. The solid line shows the flow rate detection drift characteristic using the temperature-sensitive resistance element of this embodiment, and the dotted line shows the flow rate detection drift characteristic using the conventional temperature-sensitive resistance element. As shown in FIG. 3, the temperature-sensitive resistance element of this embodiment has a smaller variation in the flow rate detection drift characteristic when used as a flow rate sensor than the conventional temperature-sensitive resistance element. Therefore, by providing the resistance adjusting section (5) near the average temperature of the temperature-dependent resistor of the temperature-sensitive resistance element, the influence of the flow rate detection characteristics due to the presence or absence of the resistance value adjusting pattern groove (5a) can be reduced. Therefore, the yield of the temperature-sensitive resistance element can be significantly improved.

また、第4図は第2の発明の実施例である感温抵抗素
子を示す上面図であって、この感温抵抗素子は、温度依
存性抵抗体の長手方向の中央部に感温抵抗部(4)を、
その両端部に抵抗調整部(5)を設けたものである。
FIG. 4 is a top view showing a temperature-sensitive resistance element according to an embodiment of the second invention. The temperature-sensitive resistance element is provided at a central portion in the longitudinal direction of a temperature-dependent resistor. (4)
A resistance adjusting section (5) is provided at both ends.

このように構成された感温抵抗素子も上記実施例と同
様に熱式流量センサに用いられ、第14図に示される定温
度差制御回路により感温抵抗部(4)の温度が、空気温
度より平均で約160℃高い温度に保持され、この熱平衡
状態において、加熱電流をブリッジ抵抗(14)における
電圧降下として測定することによって質量流量が検出で
きる。また、この実施例の感温抵抗素子は、温度依存性
抵抗体の両端部に抵抗調整部(5)が設けられているの
で、両端の抵抗値調整パターン溝(5a)による温度分布
の影響が相殺され、その結果、感温抵抗素子の温度分布
特性にほとんど影響を与えない。第5図(a)及び
(b)を用いて、詳細に説明する。第5図(a)は感温
抵抗素子の固定端部分に抵抗調整部(5)が、第5図
(b)は感温抵抗素子の先端部分に抵抗調整部(5)が
形成された場合の温度分布を示す。なお図中、実線は感
温抵抗素子の抵抗調整部(5)に抵抗値調整パターン溝
(5a)を形成しない場合の温度分布を、点線は抵抗調整
部(5)に抵抗値調整パターン溝(5a)を形成した場合
の温度分布を示す。なお、この時、いずれも温度依存性
抵抗体の抵抗値及び抵抗温度係数は同じである。この図
より、いずれの場合にも感温抵抗素子の固定端側で温度
が低く、自由端側の温度が高くなる。よって、抵抗値調
整パターン溝(5a)が固定端側に形成した場合、この部
分に抵抗値調整パターン溝(5a)がない場合に比べて温
度感度が高くなる。したがって、平均温度を維持するた
めに、より多くの加熱電流を必要とし、固定抵抗(14)
における出力電圧が増大する。また逆に、抵抗値調整パ
ターン溝(5a)が先端部にある場合には、この部分に抵
抗値調整パターン溝(5a)がない場合に比べて温度感度
が高くなる。したがって、小さい加熱電流で平均温度を
維持することができるために、固定抵抗(14)における
出力電圧は減少する。また、このような感温抵抗素子を
用いて流量センサの特性を調べたところ、第6図に示す
ような結果が得られた。実線は固定端側に抵抗値調整パ
ターン溝(5a)を形成した感温抵抗素子を、点線は先端
部に抵抗値調整パターン溝(5a)を形成した感温抵抗素
子を用いた流量検出特性のドリフト量を示す。この図に
示されるように、固定端側に抵抗値調整パターン溝(5
a)を形成した場合には、プラス方向に流量検出特性が
シフトし、先端部に抵抗値調整パターン溝(5a)を形成
した場合にはマイナス方向に流量検出特性はシフトす
る。したがって、この実施例のように両端に抵抗調整部
(5)を設け、両方に抵抗値調整パターン溝(5a)を形
成することによって、第7図に示されるように感温抵抗
素子の温度依存性抵抗体の抵抗調整部(5)の抵抗値調
整パターン溝(5a)の有無による温度分布への影響が相
殺され、第8図に示されるように流量検出特性のドリフ
トは小さくでき、感温抵抗素子の歩留まりは大幅に向上
する。
The temperature-sensitive resistance element thus configured is also used for a thermal type flow sensor as in the above embodiment, and the temperature of the temperature-sensitive resistance section (4) is reduced by the constant temperature difference control circuit shown in FIG. Maintained at a temperature about 160 ° C. higher on average, and in this thermal equilibrium state, the mass flow can be detected by measuring the heating current as a voltage drop across the bridge resistor (14). Further, in the temperature-sensitive resistance element of this embodiment, since the resistance adjusting portions (5) are provided at both ends of the temperature-dependent resistor, the influence of the temperature distribution due to the resistance value adjusting groove (5a) at both ends is affected. As a result, the temperature distribution characteristics of the temperature-sensitive resistance element are hardly affected. This will be described in detail with reference to FIGS. 5 (a) and 5 (b). FIG. 5 (a) shows a case where the resistance adjusting portion (5) is formed at the fixed end portion of the temperature-sensitive resistance element, and FIG. 5 (b) shows a case where the resistance adjustment portion (5) is formed at the tip portion of the temperature-sensitive resistance element. 3 shows the temperature distribution. In the drawing, the solid line shows the temperature distribution when the resistance adjustment pattern groove (5a) is not formed in the resistance adjustment section (5) of the temperature-sensitive resistance element, and the dotted line shows the resistance adjustment pattern groove (5) in the resistance adjustment section (5). The temperature distribution when 5a) is formed is shown. In this case, the resistance value and the resistance temperature coefficient of the temperature-dependent resistor are the same. As shown in this figure, in each case, the temperature is low on the fixed end side of the temperature-sensitive resistance element and is high on the free end side. Therefore, when the resistance value adjustment pattern groove (5a) is formed on the fixed end side, the temperature sensitivity is higher than when the resistance value adjustment pattern groove (5a) is not provided at this portion. Therefore, to maintain the average temperature requires more heating current and fixed resistance (14)
The output voltage at increases. Conversely, when the resistance value adjustment pattern groove (5a) is at the tip, the temperature sensitivity is higher than when the resistance value adjustment pattern groove (5a) is not provided at this portion. Therefore, the output voltage at the fixed resistor (14) decreases because the average temperature can be maintained with a small heating current. When the characteristics of the flow rate sensor were examined using such a temperature-sensitive resistance element, the results shown in FIG. 6 were obtained. The solid line indicates the temperature-sensitive resistance element with the resistance adjustment pattern groove (5a) formed on the fixed end, and the dotted line indicates the flow rate detection characteristics using the temperature-sensitive resistance element with the resistance adjustment pattern groove (5a) formed at the tip. Indicates the amount of drift. As shown in this figure, the resistance adjustment pattern groove (5
When a) is formed, the flow rate detection characteristic shifts in the plus direction, and when the resistance value adjustment pattern groove (5a) is formed at the tip, the flow rate detection characteristic shifts in the minus direction. Therefore, by providing the resistance adjusting portions (5) at both ends and forming the resistance value adjusting pattern grooves (5a) at both ends as shown in this embodiment, as shown in FIG. The influence on the temperature distribution due to the presence or absence of the resistance value adjusting pattern groove (5a) of the resistance adjusting portion (5) of the resistive element is offset, and the drift of the flow rate detection characteristic can be reduced as shown in FIG. The yield of the resistance element is greatly improved.

また、上記実施例においては、感温抵抗素子が片持ち
構造に固定された流量センサに用いたものについて説明
したが、第9図に示されるように両持ち構造に固定され
た流量センサについても同様に実施することができる。
すなわち、両持ち構造に固定された感温抵抗素子の温度
分布は、第10図に示すように両固定端側で温度が低くな
り、中央部で最も高くなる。したがって、中央部と固定
端の間にこの実施例の感温抵抗素子の平均温度領域部を
形成することになる。この平均温度領域部に抵抗調整部
(5)を設けることによって、上記実施例と同様に温度
依存性抵抗体の温度分布に影響なく、感温抵抗素子毎の
バラツキを抑えることができる。
Further, in the above embodiment, the description has been given of the case where the temperature-sensitive resistance element is used for the flow sensor fixed to the cantilever structure. However, as shown in FIG. 9, the flow sensor fixed to the double-support structure is also used. It can be implemented similarly.
That is, as shown in FIG. 10, the temperature distribution of the temperature-sensitive resistance element fixed to the double-supported structure has a lower temperature at both fixed ends and a highest temperature at the center. Therefore, an average temperature region of the temperature-sensitive resistor of this embodiment is formed between the center and the fixed end. By providing the resistance adjusting section (5) in this average temperature region, it is possible to suppress variations among the temperature-sensitive resistance elements without affecting the temperature distribution of the temperature-dependent resistor, as in the above embodiment.

また、温度依存性抵抗体の中央部と端部に抵抗調整部
(5)を設けることによっても、上記実施例と同様の作
用、効果が得られる。
The same operation and effect as in the above embodiment can also be obtained by providing the resistance adjusting section (5) at the center and the end of the temperature-dependent resistor.

[発明の効果] 本発明は上記説明したように構成されているので、抵
抗調整部による温度依存性抵抗体の温度分布に影響な
く、感温抵抗素子毎のバラツキを抑えることができ、流
量検出特性のバラツキの小さい流量センサが得られると
いう効果を有する。
[Effect of the Invention] Since the present invention is configured as described above, it is possible to suppress the variation of each temperature-sensitive resistance element without affecting the temperature distribution of the temperature-dependent resistor by the resistance adjustment unit, and to detect the flow rate. This has the effect that a flow sensor with small variations in characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例である感温抵抗素子を示す
上面図、第2図はこの発明の一実施例及び従来例の感温
抵抗素子の抵抗値調整パターン溝の有無による温度分布
を説明するための図、第3図はこの実施例と従来例を用
いた流量センサの流量検出特性ドリフト量を示す図、第
4図は第2の発明の実施例である感温抵抗素子を示す上
面図、第5図は抵抗調整部の位置と温度分布を説明する
ための図、第6図は抵抗調整部の位置と流量センサの流
量検出特性のドリフト量を説明する図、第7図はこの実
施例の感温抵抗素子の抵抗値調整パターン溝の有無によ
る温度分布を説明するための図、第8図はこの実施例を
用いた流量センサの流量検出特性ドリフト量を示す図、
第9図はこの発明の他の実施例の感温抵抗素子を用いた
流量センサの構造図、第10図はこの発明の他の実施例の
感温抵抗素子の温度分布図、第11図は従来の感温抵抗素
子を示す図、第12図は従来の感温抵抗素子の要部を示す
図、第13図は流量センサの構造図、第14図は流量センサ
の回路構成図である。 図において、(1)は基体、(2)は温度依存性抵抗
膜、(5)は抵抗調整部である。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a top view showing a temperature-sensitive resistance element according to an embodiment of the present invention, and FIG. 2 is a temperature distribution according to the presence or absence of a resistance value adjusting pattern groove of the temperature-sensitive resistance element according to the embodiment of the invention and a conventional example. FIG. 3 is a diagram showing a flow rate detection characteristic drift amount of a flow sensor using this embodiment and a conventional example, and FIG. 4 is a diagram showing a temperature-sensitive resistance element according to an embodiment of the second invention. FIG. 5 is a diagram for explaining the position and temperature distribution of the resistance adjusting unit, FIG. 6 is a diagram for explaining the drift amount of the flow detection characteristic of the flow sensor and the position of the resistance adjusting unit, and FIG. FIG. 8 is a diagram for explaining a temperature distribution depending on the presence or absence of a resistance value adjusting pattern groove of the temperature-sensitive resistance element of this embodiment; FIG. 8 is a diagram showing a drift amount of a flow rate detection characteristic of a flow sensor using this embodiment;
FIG. 9 is a structural diagram of a flow rate sensor using a temperature-sensitive resistance element according to another embodiment of the present invention, FIG. 10 is a temperature distribution diagram of a temperature-sensitive resistance element according to another embodiment of the present invention, and FIG. FIG. 12 is a view showing a conventional temperature-sensitive resistance element, FIG. 12 is a view showing a main part of the conventional temperature-sensitive resistance element, FIG. 13 is a structural view of a flow sensor, and FIG. 14 is a circuit configuration diagram of the flow sensor. In the figure, (1) is a base, (2) is a temperature-dependent resistance film, and (5) is a resistance adjusting unit. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多田 靖夫 兵庫県姫路市千代田町840番地 三菱電 機株式会社姫路製作所内 (72)発明者 安井 克明 兵庫県姫路市千代田町840番地 三菱電 機株式会社姫路製作所内 (72)発明者 山川 智也 兵庫県姫路市千代田町840番地 三菱電 機株式会社姫路製作所内 (56)参考文献 特開 昭57−153231(JP,A) 特開 平2−22516(JP,A) 特開 平1−109221(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuo Tada 840 Chiyoda-cho, Himeji-shi, Hyogo Mitsubishi Electric Corporation Himeji Works (72) Inventor Katsuaki Yasui 840 Chiyoda-cho, Himeji-shi, Hyogo Mitsubishi Electric Corporation Himeji Works (72) Inventor Tomoya Yamakawa 840 Chiyoda-cho, Himeji City, Hyogo Prefecture Mitsubishi Electric Corporation Himeji Works (56) References JP-A-57-153231 (JP, A) JP-A-2-22516 (JP) , A) JP-A-1-109221 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体上に設けられ、温度により電気抵抗値
が変化する温度依存性抵抗体、この温度依存性抵抗体に
電流を供給するリード端子部を備え、上記温度依存性抵
抗体に該温度依存性抵抗体の発熱時における平均温度領
域に抵抗調整部を設けたことを特徴とする感温抵抗素
子。
A temperature-dependent resistor provided on a substrate and having an electric resistance value that varies with temperature; and a lead terminal for supplying a current to the temperature-dependent resistor. A temperature-sensitive resistance element, wherein a resistance adjustment unit is provided in an average temperature region when a temperature-dependent resistor generates heat.
【請求項2】基体上に設けられ、温度により電気抵抗値
が変化する温度依存性抵抗体、この温度依存性抵抗体に
電流を供給するリード端子部を備え、該温度依存性抵抗
体の発熱時における平均温度より高い温度の部分、及び
低い温度部分に抵抗調整部を設けたことを特徴とする感
温抵抗素子。
2. A temperature-dependent resistor provided on a base and having an electric resistance value that varies with temperature, and a lead terminal for supplying a current to the temperature-dependent resistor, wherein the temperature-dependent resistor generates heat. A temperature-sensitive resistance element characterized in that a resistance adjusting section is provided at a portion having a temperature higher than the average temperature at the time and a portion having a temperature lower than the average temperature.
JP2319651A 1990-11-21 1990-11-21 Temperature-sensitive resistance element Expired - Fee Related JP2646846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2319651A JP2646846B2 (en) 1990-11-21 1990-11-21 Temperature-sensitive resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319651A JP2646846B2 (en) 1990-11-21 1990-11-21 Temperature-sensitive resistance element

Publications (2)

Publication Number Publication Date
JPH04188032A JPH04188032A (en) 1992-07-06
JP2646846B2 true JP2646846B2 (en) 1997-08-27

Family

ID=18112681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319651A Expired - Fee Related JP2646846B2 (en) 1990-11-21 1990-11-21 Temperature-sensitive resistance element

Country Status (1)

Country Link
JP (1) JP2646846B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57153231A (en) * 1981-03-18 1982-09-21 Matsushita Electric Ind Co Ltd Platinum thin film temperature snsor
JPH01109221A (en) * 1987-10-21 1989-04-26 Mitsubishi Electric Corp Heat generating resistance body for thermal flowmeter
JPH0222516A (en) * 1988-07-11 1990-01-25 Sharp Corp Flow sensor

Also Published As

Publication number Publication date
JPH04188032A (en) 1992-07-06

Similar Documents

Publication Publication Date Title
JPH10197309A (en) Measuring element for thermal air flowmeter and thermal air flowmeter
JPH0989619A (en) Heat-sensitive flowmeter
JP4157034B2 (en) Thermal flow meter
JP4608843B2 (en) Flow measuring device
JP3658170B2 (en) Flow sensor
JP2682349B2 (en) Air flow meter and air flow detection method
JP2842729B2 (en) Thermal flow sensor
US6508117B1 (en) Thermally balanced mass air flow sensor
JPH0690062B2 (en) Thermal flow velocity detector
JP2599854B2 (en) How to set the thermal flow sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JP2946400B2 (en) Heating resistor temperature control circuit
JP2646846B2 (en) Temperature-sensitive resistance element
JP3761769B2 (en) Thermal flow sensor
JP2529895B2 (en) Flow sensor
JPS6053814A (en) Airflow-rate measuring device
JP2004340936A (en) Flow sensor
JP3095322B2 (en) Thermal air flow detector
JP2944890B2 (en) Thermal air flow detector
JP3316740B2 (en) Flow detection element
JP2002174541A (en) Thermal-type device for measuring quantity of flow
JP3184402B2 (en) Thermal air flow detector
JPH0674803A (en) Heat sensing flow rate sensor
JP3133609B2 (en) Thermal air flow detector
JPH0438425A (en) Thermal flow sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees