JPS61267704A - Production of optical transmission body made of synthetic resin - Google Patents

Production of optical transmission body made of synthetic resin

Info

Publication number
JPS61267704A
JPS61267704A JP59198338A JP19833884A JPS61267704A JP S61267704 A JPS61267704 A JP S61267704A JP 59198338 A JP59198338 A JP 59198338A JP 19833884 A JP19833884 A JP 19833884A JP S61267704 A JPS61267704 A JP S61267704A
Authority
JP
Japan
Prior art keywords
base material
monomer
synthetic resin
prepolymer
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59198338A
Other languages
Japanese (ja)
Other versions
JPH0629885B2 (en
Inventor
Koichi Maeda
浩一 前田
Yukinori Watanabe
渡辺 行範
Ikuo Tago
田子 育良
Yuichi Aoki
裕一 青木
Akio Takigawa
滝川 章雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59198338A priority Critical patent/JPH0629885B2/en
Publication of JPS61267704A publication Critical patent/JPS61267704A/en
Publication of JPH0629885B2 publication Critical patent/JPH0629885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To produce the titled body having a good stability for long periods by sealing a gap formed between a molding base material and an inner wall of the molding means in the outlet of the molding means with a liquid sealing layer, thereby preventing an additive from invading into the molding means. CONSTITUTION:The prepolymer fluid having a stickiness and usable to the starting material of the optical transmission body made of the synthetic resin is fed in an extruder 1 cooled with a cooling water. The prepolymer fluid is prepolymerized just before gelling a monomer Ma, thereby maintaining a fluidity. And an extruding means (not shown in the figure) is provided in the extruder 1. The prepolymer 10 is extruded by the extruding means followed by continuously feeding to a forming pipe 3 which is passing through a heating jacket 2 composed of a bronze block etc. after extruding the prepolymer. And then, the stainless pipe is drawn up by a pulling up means at the same rate to the extruding rate. The prepolymer 10 attendent on the stainless pipe is continuously formed to the optical transmission body while passing the all producing steps.

Description

【発明の詳細な説明】 3、l 産業上の利用分野 本発明は、屈折率分布を有する合成樹脂光伝送体の製造
方法に関し、更に詳細には合成樹脂光伝透体の連続的製
造を可能にする技術に関する。
[Detailed Description of the Invention] 3.l Industrial Application Field The present invention relates to a method for manufacturing a synthetic resin light transmitting body having a refractive index distribution, and more specifically, a method that enables continuous production of a synthetic resin light transmitting body. Regarding the technology to

3.2  従来技術0説明  (1、 屈折率分布が次に示す一式で表される透明棒状体は凸レ
ンズ作用を示し、この透明棒状体中を進の屈折率、n(
r)は中心軸からrの距離にある点の屈折率、Aは正の
定数(屈折率分布定数)である。
3.2 Explanation of Prior Art 0 (1. A transparent rod-like body whose refractive index distribution is represented by the set shown below exhibits a convex lens action, and the index of refraction, n(
r) is the refractive index at a point located at a distance of r from the central axis, and A is a positive constant (refractive index distribution constant).

n(r)−n□ (/−t/21 r2)  ・・・(
1)L−2π/ゾr        ・・・(2)屈折
率分布が次に示す(3)式で表される場合には凹レンズ
作用を示す。ここでBは正の定数(屈折率分布定数)で
ある。
n(r)-n□ (/-t/21 r2) ...(
1) L-2π/zor (2) When the refractive index distribution is expressed by the following equation (3), a concave lens effect is exhibited. Here, B is a positive constant (refractive index distribution constant).

n(r)=no (/+//2Br2)   ” ・・
(3)特公昭!2−!ざ57号公報(以下特許出願lと
称する)、特開昭!;/−#J94!号公報(以下特許
出願2と称する)、特公昭!;t−3732/号公報(
以下特許出願3と称する)及び特開昭37−lざ270
2号公報(以下特許出願lと称する)には、架橋性単量
体Maを一部重合させて得られる網状重合体の透明ゲル
物体に、この網状重合体の屈折霧滴状態で接触させ内部
へ拡散させた後または拡散と同時に重合させることによ
り、屈折率が表面から内部に向かって連続的に変化する
合成樹脂光伝送体を製造する方法が開示されている。
n(r)=no (/+//2Br2)”...
(3) Tokuko Akira! 2-! Za No. 57 (hereinafter referred to as patent application l), JP-A-Sho! ;/-#J94! Publication No. (hereinafter referred to as Patent Application 2), Tokukosho! ;t-3732/publication (
(hereinafter referred to as Patent Application 3) and JP-A-37-1-270
Publication No. 2 (hereinafter referred to as Patent Application 1) discloses that a transparent gel body of a network polymer obtained by partially polymerizing a crosslinkable monomer Ma is brought into contact with the network polymer in the state of refraction droplets, and the internal A method for manufacturing a synthetic resin light transmitting body in which the refractive index changes continuously from the surface toward the inside by polymerizing after diffusing or simultaneously with the diffusion is disclosed.

また特願昭5g−70/ 号(以下特許出願Sと称する
)では、合成樹脂光伝送体を連続的に製造するために有
機母材を連続的に製造する方法が述べられている。この
出願に記載されている方法は、母材を形成するに際し、
単量体Maを予備重合させて塑性流動を表わす一般式: %式%(4) (式中、Dはずり速度、σはずり応力、Kは重性粘度の
逆数、nは定数をそれぞれ表わす)リマーを細長い通路
に供給して、この通路を進行させつつ加熱重合させるこ
とによって前記母材を得る。上記条件のプレポリマーと
する理由としては次のことが挙げられている。
Further, Japanese Patent Application No. 5G-70/1989 (hereinafter referred to as Patent Application S) describes a method for continuously manufacturing an organic base material in order to continuously manufacture a synthetic resin optical transmission body. The method described in this application includes, in forming the base material,
General formula expressing plastic flow by prepolymerizing monomer Ma: % formula % (4) (In the formula, D is shear rate, σ is shear stress, K is the reciprocal of the gravity viscosity, and n is a constant. ) The above-mentioned base material is obtained by supplying the reamer to a long and narrow passage and heating and polymerizing it while advancing the passage. The reasons for using the prepolymer under the above conditions are as follows.

単量体または低粘度プレポリマーのような工具−トン流
体に近い物体を細長い管内に導入し、その管内を通過さ
せながら加熱して重合させる場合、熱は管の外側から加
えられるために、管近傍の周辺領域から重合が進み、そ
れに伴って粘度が上昇して行く。管内を流れる流体には
、中心が最大で周辺に向かうに従って放物線状に流速が
減少するという速度分布が元々存在しているが、重合が
進むに、つれて、この周辺領域と中心領域との間の速度
差はさらに大きくなる。そして、最終的には周辺領域の
流体が先にゲル化して管内に滞溜し、中心領域の流体は
ほとんど重合せずに管から流れ出ることになる。
When an object similar to a tool-ton fluid, such as a monomer or a low-viscosity prepolymer, is introduced into a long, thin tube and polymerized by heating while passing through the tube, the heat is applied from the outside of the tube, so Polymerization proceeds from the nearby peripheral region, and the viscosity increases accordingly. The fluid flowing inside the pipe originally has a velocity distribution in which the flow velocity is maximum at the center and decreases parabolically toward the periphery, but as polymerization progresses, the velocity distribution between the peripheral region and the center region The speed difference becomes even larger. In the end, the fluid in the peripheral region gels first and accumulates in the tube, while the fluid in the central region flows out of the tube without polymerizing.

これを是正するためには、管内での流体の速度分布をな
るべく一定にする必要がある。すなわち、管内の流体を
ビンガム流体に近づければよい。ビンガム流体は上記式
(4)においてはn−■の場合であって、管内の流体の
流速は一定となる。nが小さくなってlに近づくほど、
流体はニエートン流体に近づく。また、管の内壁に近い
周辺付近での流体の流速はnの値によってはそれほど変
化せず、むしろnが大きいほど流速も大きいが、nがl
に近づくほど中心付近での流速が大きくなり、その結果
周辺領域と中心領域との流速の差が大きくなって速度分
布の放物線がシャープになる。
In order to correct this, it is necessary to make the velocity distribution of the fluid within the pipe as constant as possible. That is, it is sufficient to bring the fluid in the pipe closer to Bingham fluid. Bingham fluid is a case of n-■ in the above equation (4), and the flow rate of the fluid in the pipe is constant. As n becomes smaller and approaches l,
The fluid approaches Nieton's fluid. In addition, the flow velocity of the fluid near the inner wall of the pipe does not change much depending on the value of n; in fact, the larger n is, the greater the flow velocity is.
The closer it gets to the point, the higher the flow velocity near the center becomes, and as a result, the difference in flow velocity between the peripheral region and the center region becomes larger, and the parabola of the velocity distribution becomes sharper.

このような観点から、上記特許出願!では上述したよう
に単量体Maを予備重合させて、nの値が/、10以上
である粘性流体としてから成形管内に送り込むものであ
る。すなわち、nの値が1.10未満では、はじめに周
辺付近がゲル化されてしまうと、中心付近の単量体Ha
は重合されずに管内から流出し、良好な母材が形成でき
ない。
From this perspective, we filed the above patent application! As described above, the monomer Ma is prepolymerized to form a viscous fluid in which the value of n is /, 10 or more, and then fed into the forming tube. That is, if the value of n is less than 1.10, if the vicinity of the periphery is first gelled, the monomer Ha near the center will be
flows out from the pipe without being polymerized, making it impossible to form a good base material.

この場合、流速を極端に落とせば母材ができないことも
ないが、生産性が悪くなって実泪的でない。
In this case, if the flow rate is extremely reduced, the base metal will not be formed, but productivity will be poor and this is not practical.

また、好ましくはnの値は大きくとも八50である。こ
れはnの値が大きすぎると管内への押し込みが困難にな
ったり母材が不均質となって不都合が生ずるからである
Preferably, the value of n is at most 850. This is because if the value of n is too large, it becomes difficult to push into the pipe or the base material becomes non-uniform, causing problems.

更に特願昭5g−702号(以下特許出願6と称する)
では、上記特許出願jの製造方法により有機母材を連続
的に引き出し、上記特許出願/−1の製造方法を踏襲し
て合成樹脂光伝送体を連続的に製造する方法が開示され
ている。
Furthermore, Japanese Patent Application No. 5G-702 (hereinafter referred to as Patent Application 6)
discloses a method of continuously producing a synthetic resin optical transmission body by continuously drawing out an organic base material by the production method of the above-mentioned patent application J and following the production method of the above-mentioned patent application /-1.

この方法では連続的に連なった状態に有機母材を成形し
た後、一定温度に加温された拡散室に導入し、液体、気
体及び霧滴状態のいずれかの状態にある単量体Mbを拡
散させた上で、重合を完結すべく加熱する。前記有機母
材を以上の工程に連続的に通過させることによって合成
樹脂光伝送体を連続的に製造する。
In this method, after forming an organic matrix into a continuous state, it is introduced into a diffusion chamber heated to a constant temperature, and the monomer Mb in a liquid, gas, or mist state is absorbed. After being diffused, it is heated to complete the polymerization. By continuously passing the organic base material through the above steps, a synthetic resin light transmitting body is continuously manufactured.

3.3  発明が解決しようとする問題点前述した従来
方法には次のような欠点がある。
3.3 Problems to be Solved by the Invention The conventional method described above has the following drawbacks.

前記プレポリマーを細長い成形管内に供給してこの管内
を進行させつつ加熱重合させることによって前記有機母
材を成形するわけであるが、成形母材が管から出る前に
有機母材と成形管のすきまに単量体Mbが侵入するとい
う問題がある。
The organic base material is molded by supplying the prepolymer into a long and slender molding tube and heating and polymerizing it as it advances through the tube, but before the molding base material comes out of the tube, the organic base material and the molding tube are separated. There is a problem that monomeric Mb enters into the gaps.

このように成形管内にMbが侵入してくると所定断面形
状の有機母材に成形されつつあるプレポリマーに単量体
Mbが周囲から拡散して行くことになり、この時、単量
体Mbの重合速度又は単量体Mbとプレポリマー中の単
量体Maとの共重合速度が、単量体Maの重合速度より
大きい場合、単量体Mbが拡散して行った周辺領域では
中心領域より更に重合が進行し、元々成形管内の速度分
布をなるべく一定にするためにビンガム流体に近づけて
おいたプレポリマーの速度分布が変化して行く。
When Mb enters the molded tube in this way, the monomer Mb diffuses from the surroundings into the prepolymer that is being molded into the organic base material with a predetermined cross-sectional shape, and at this time, the monomer Mb If the polymerization rate of monomer Mb and the copolymerization rate of monomer Ma in the prepolymer is higher than the polymerization rate of monomer Ma, the peripheral area where monomer Mb diffuses will not be in the central area. As the polymerization progresses further, the velocity distribution of the prepolymer, which was originally kept close to the Bingham fluid in order to keep the velocity distribution in the molding tube as constant as possible, changes.

すなわち、周辺領域での流速は減少し、中心領域との速
度差が大きくなり、ひいては周辺領域のプレポリマーが
通路内壁に残留することによって母材は細くなり表面に
は凹凸が現われ製造状態が不安定になるだけでなく、光
学性能にも悪影響を及ぼす。更に最終的には周辺領域の
プレポリマーが先にゲル化して通路中に滞留し、流動面
積が減少することにより中心領域でプレポリマーが高速
度で流動するようになるため中心領域のプレポリマーは
殆んど重合せずに通路中から流れ出すことになり一連統
的に連なっていた有機母材は切断してしまい、結局合成
樹脂光伝送体を連続的に製造することができないという
現象が生じた。
In other words, the flow velocity in the peripheral region decreases and the velocity difference with the central region increases, and as a result, the prepolymer in the peripheral region remains on the inner wall of the passage, resulting in the base material becoming thinner and unevenness appearing on the surface, resulting in poor manufacturing conditions. Not only does it become stable, but it also has a negative effect on optical performance. Furthermore, in the end, the prepolymer in the peripheral region gels first and stays in the passage, and as the flow area decreases, the prepolymer in the central region flows at a high velocity. As a result, the organic base material, which had been connected in a continuous manner, was cut off as it flowed out of the passage without being polymerized, resulting in the phenomenon that it became impossible to continuously manufacture synthetic resin light transmitters. .

3、 tI  従来の問題点を解決する手段成形手段の
出口部で成形母材と成形手段内壁との隙間を、例えば化
学的に不活性な液体、母材を構成する単量体と同一の単
量体等母材に対し実質的に悪影響を及ぼさない液体から
なるシール層で封止する。
3. tI Means for solving conventional problems At the outlet of the molding means, the gap between the molding base material and the inner wall of the molding means is filled with, for example, a chemically inert liquid or the same monomer as the base material. It is sealed with a sealing layer made of a liquid that does not substantially have an adverse effect on the base material, such as the polymer.

7、3  発明の作用効果 上記の液体シール層によって、拡散手段内の拡散物質が
成形手段内に侵入するのが防止される。
7.3 Effects of the Invention The liquid seal layer described above prevents the diffusion substance in the diffusion means from entering the molding means.

これにより成形手段内で周辺領域のプレポリマーが先に
ゲル化して通路中に滞留するといった現象が生じなくな
り、長時間にわたり安定して光伝送体を連続製造するこ
とができるようになった。
This eliminates the phenomenon that the prepolymer in the peripheral region gels first in the molding means and stays in the passageway, making it possible to stably and continuously manufacture the optical transmission body over a long period of time.

36実施例 以下本発明に係る合成樹脂光伝送体の製造方法の一実施
例につき図面を参照しながら説明する。
36th Example Hereinafter, an example of the method for manufacturing a synthetic resin optical transmission body according to the present invention will be described with reference to the drawings.

第1図において、冷却水によって冷却されている押出し
機(1)の中には、合成樹脂光伝送体の原料として用い
られる粘性流体(以下においてはプレポリマー流体と称
する)が入れられている。このプレポリマー流体は、単
量体Maをゲル化する直前まで予備重合させて流動性を
保持させたものである。また押出し機(1)は押出し具
(図示せず)を有し、この押出し具によってプレポリマ
ー(10)は押し出される。上述の条件を満たすプレポ
リマー(10)は、押し出された後、引き続き黄銅製ブ
ロック等からなる加熱ジャケット(2)内を貫通する一
例としてテフロンチューブからなる成形管(3)中に連
続的に導入される。
In FIG. 1, an extruder (1) cooled by cooling water contains a viscous fluid (hereinafter referred to as prepolymer fluid) used as a raw material for a synthetic resin light transmitting body. This prepolymer fluid maintains fluidity by prepolymerizing the monomer Ma until immediately before gelation. Further, the extruder (1) has an extrusion tool (not shown), and the prepolymer (10) is extruded by this extrusion tool. After being extruded, the prepolymer (10) satisfying the above conditions is continuously introduced into a molded tube (3) made of a Teflon tube, for example, passing through a heating jacket (2) made of a brass block or the like. be done.

この成形管(3)は円形断面を有する直径/−20mm
のものであってよい。ここで、予め成形管(3)内に上
方からステンレス管の下端部を挟入しておくと、プレポ
リマー(lO)の先端がこのステンレス管の下端部に接
触した状態でゲル化するので、ステンレス管の下端部と
プレポリマー(10)の先端とが一体結合される。この
後押出し速度と同じ速度でステンレス管を引き上げ装置
で引き上げると、それに伴われたプレポリマーは全製造
工程を経過する間に光伝送体となって連続的にか?装置
内に滞ることなく生成されて出てくる。加熱ジャケット
(2)には、その上部に比較的高温の水(16)、下部
にそれにより低温の水(17)がそれぞれ供給されてい
て、下部から上部に向って次第に温度が上昇するような
温度勾配でもって、成形管(3)を加熱している。そこ
で成形管(3)を通過するうちにプレポリマー(10)
は加熱重合してゲル化し、このゲル化したプレポリマー
は連続した円柱状の母材(11)となる。この加熱重合
の際の加熱速度は0、/−10″C/分であるのが好ま
しい。上述したような温度勾配のもとで加熱される場合
には、プレポリマー(10)の重合およびそれに伴う粘
度上昇が共に徐々に進行するから、ピンガム流体に近い
流動状態を保持したまま、プレポリマー(10)を流動
させることが可能となる。その結果、半径方向に均一な
組成を持った母材(11)を連続的に形成することが可
能となる。なお、ここでテフロンチェープ(3)は、プ
レポリマー(10)や母材(11)との摩擦が小さいた
めに特に有用であるが、他の樹脂や金属製のチ為−プで
あってもさしつかえない。
This formed tube (3) has a circular cross section and a diameter of /-20mm.
It may be of. Here, if the lower end of the stainless steel tube is inserted into the molded tube (3) from above in advance, the tip of the prepolymer (lO) will gel while in contact with the lower end of the stainless steel tube. The lower end of the stainless steel tube and the tip of the prepolymer (10) are integrally joined. After this, if the stainless steel tube is pulled up with a pulling device at the same speed as the extrusion speed, the prepolymer that accompanies it will become a light transmitting body continuously during the entire manufacturing process? It is generated and comes out without being stagnant in the device. The heating jacket (2) is supplied with relatively high temperature water (16) at its upper part and lower temperature water (17) at its lower part, so that the temperature gradually increases from the lower part to the upper part. The forming tube (3) is heated with a temperature gradient. There, while passing through the molded tube (3), the prepolymer (10)
is polymerized and gelled by heating, and this gelled prepolymer becomes a continuous cylindrical base material (11). The heating rate during this heating polymerization is preferably 0./-10"C/min. When heating is performed under the temperature gradient as described above, the polymerization of the prepolymer (10) and its Since the accompanying increase in viscosity progresses gradually, it is possible to flow the prepolymer (10) while maintaining a fluid state similar to that of a Pingam fluid.As a result, the base material has a uniform composition in the radial direction. (11) can be formed continuously. Note that the Teflon chain (3) is particularly useful here because it has low friction with the prepolymer (10) and the base material (11). However, other resin or metal chips may be used.

このようにして、加熱ヅヤケット(2)内の成形管(3
)からは、はとんど流動性を失って自己保形性を有する
ゲル状の母材(11)が生成されて来る。この母材(1
1)は、アセトンに不溶な成分、すなわち網状重合体の
部分を好ましくは!〜デO重量デ、さらに好ましくは1
0−!;0重量%含んでいる。この成分が少なすぎると
流動性が大きくなり、また多すぎると後の拡散工程で単
量体Mbの拡散速度が遅くなりすぎるので好ましくない
In this way, the formed tube (3) inside the heating jacket (2)
), a gel-like base material (11) is produced which loses its fluidity and has self-retaining properties. This base material (1
1) Preferably the component insoluble in acetone, that is, the part of the network polymer! ~deO weight de, more preferably 1
0-! ; Contains 0% by weight. If this component is too small, the fluidity becomes high, and if it is too large, the diffusion rate of the monomer Mb becomes too slow in the subsequent diffusion step, which is not preferable.

続いて、母材(11)は気相拡散装置(4)に送り込ま
れる。気相拡散装置(4)には最下端に上記単量体Mb
が成形管(3)内に侵入するのを防止するための液シー
ル装置(15)が付属されている。
Subsequently, the base material (11) is fed into a vapor phase diffusion device (4). The above monomer Mb is placed at the bottom end of the gas phase diffusion device (4).
A liquid sealing device (15) is attached to prevent liquid from entering the forming tube (3).

この液シール装置(15)は第、2図に詳細に示す如く
、成形管(3)の出口と拡散装置(4)との間に設けら
れ、中空の液溜め室(15a)を有し導入口(16)を
通してシール液(14)が継続的に室(15a)内に送
られ、排出口(17)を通して外部に排出される。そし
て成形管(3)を出た母材(11)は上記液溜め室(1
5a)内のシール液(14)中を通過した後拡散室(4
)に入る。
As shown in detail in FIG. 2, this liquid sealing device (15) is provided between the outlet of the forming tube (3) and the diffusion device (4), and has a hollow liquid reservoir chamber (15a). The sealing liquid (14) is continuously fed into the chamber (15a) through the opening (16) and is discharged to the outside through the outlet (17). The base material (11) that has exited the molded tube (3) is then transferred to the liquid reservoir chamber (1).
5a) after passing through the sealing liquid (14) in the diffusion chamber (4).
)to go into.

その後、有機母材(11)は液相、気相及び霧滴状態の
いずれかの状態にある単量体Mbによって満たされてい
る拡散装置(4)内部にある拡散室有機母材の周表面か
ら半径方向に拡散移動し、その結果、有機母材内には単
量体Mbの濃度がその中心軸から周表面に向かって二乗
近似で次第に増加するような濃度勾配が形成されるため
前述(1)式又は(3)式で示される屈折率分布が形成
されるわけであるが、液相、気相又は霧滴状態のいずれ
かの状態にある単量体Mbはどの状態にあっても成形管
(3)と母材(11)との隙間がシール液(14)で気
密に封止されているため、有機母材と成形管のすきまか
ら侵入して有機母材に成形されつつあるプレポリマーに
拡散していくことはない。
Thereafter, the organic matrix (11) is placed on the peripheral surface of the organic matrix in a diffusion chamber (4) which is filled with the monomer Mb in any of the liquid phase, gaseous phase and atomized state. As a result, a concentration gradient is formed in the organic matrix in which the concentration of monomer Mb gradually increases from the central axis toward the peripheral surface in a square approximation. The refractive index distribution shown by formula 1) or formula (3) is formed, but monomer Mb, which is in any of the liquid phase, gas phase, or mist state, is in any state. Since the gap between the forming tube (3) and the base material (11) is airtightly sealed with the sealing liquid (14), the liquid enters through the gap between the organic base material and the forming tube and is being formed into the organic base material. It does not diffuse into the prepolymer.

従ってプレポリマー中の速度分布は単量体Mbの拡散に
よる悪影響を受けず、前記有機母材には表面凹凸も発生
せず切断する心配もなく、表面状態良好な有機母材が連
続的に押し出されて来る。
Therefore, the velocity distribution in the prepolymer is not adversely affected by the diffusion of the monomer Mb, and the organic base material does not have surface irregularities and there is no fear of cutting, and the organic base material with a good surface condition is continuously extruded. It's coming.

シール液(14)は流動させずに静止保持しておくだけ
でもよいが、実施例のように継続的に一定速度で流動さ
せておけば有機母材からしみ出してくる(拡散してくる
)単量体Maの液中濃度が常時一定になって製造条件を
一定に維持でき、またシール液中における単量体)(a
の重合が防止されるとするのが望ましい。
The sealing liquid (14) can simply be held stationary without flowing, but if it is allowed to flow continuously at a constant speed as in the example, it will seep out (diffuse) from the organic matrix. The concentration of monomer Ma in the liquid is always constant, and the manufacturing conditions can be maintained constant.
It is desirable that the polymerization of

本発明で使用するシール液(14)としては、母材を構
成する単量体Maと同一の単量体またはMaおよび拡散
単量体Mbとは異なる他の単量体MOを使用することが
できる。
As the sealing liquid (14) used in the present invention, it is possible to use the same monomer as the monomer Ma constituting the base material or another monomer MO different from Ma and the diffusion monomer Mb. can.

上記のような単量体MCの液を用いる場合は、MOの単
量体反応性比をrC1母材単量体の反応性比り を脅としてrc≦ra  の条件を満たしていれば屈折
率は高くても低くてもかまわない。
When using a monomer MC liquid as described above, if the monomer reactivity ratio of MO is equal to the reactivity ratio of the rC1 base material monomer and satisfies the condition rc≦ra, the refractive index can be high or low.

また本発明のシール液(14)としては、母材と化学的
に反応せず且つ母材中に拡散し得ないように分子容が単
量体Maよりも大きい化学的に不活性な液体、例えばシ
リコンオイル、ポリエチレングリフール、水等を使用す
ることができる。
In addition, the sealing liquid (14) of the present invention is a chemically inert liquid having a molecular volume larger than that of the monomer Ma so as not to chemically react with the base material and unable to diffuse into the base material; For example, silicone oil, polyethylene glycol, water, etc. can be used.

ただし単量体Wbを液相状態で母材中に拡散させる場合
はMbより比重が高く、シかも溶は合わない単量体また
は化学的に不活性な液体を使用する必要がある。拡散装
置(4)には、拡散室(4b)を取り囲む外側管(4a
)が設けられており、この外側管(4a)には導入口(
21)から排出口(22)へと温水(1日)が流されて
いる。
However, when the monomer Wb is to be diffused into the base material in a liquid phase, it is necessary to use a monomer that has a higher specific gravity than Mb and is incompatible with Mb, or a chemically inert liquid. The diffusion device (4) includes an outer tube (4a) surrounding a diffusion chamber (4b).
), and this outer tube (4a) has an inlet (
Warm water (1 day) is flowing from the outlet (21) to the outlet (22).

この温水(18)で拡散室(4b)内が加熱されること
によって、単量体1ifbの一部が拡散しつつ単独であ
るいは母材(11)内のプレポリマー等と重合し、上記
濃度勾配が画定化されていく。
By heating the inside of the diffusion chamber (4b) with this hot water (18), a part of the monomer 1ifb diffuses and polymerizes alone or with the prepolymer etc. in the base material (11), resulting in the above concentration gradient. is becoming defined.

拡散室の雰囲気は、酸素による重合の阻害を回避するた
めに、空気を排気するか窒素置換してから形成される。
The atmosphere in the diffusion chamber is formed after air is evacuated or replaced with nitrogen to avoid inhibition of polymerization by oxygen.

またその温度は、公知の方法の場合と同様に、例えば!
;−90″Cに設定される。この温度が高くなればなる
ほど、単量体Mbの拡散速度は大きくなるが、母材自体
の重合速度も増大してしまうので好ましくない。また、
母材を単量体Mbの液相又はMbの蒸気又は霧滴を含む
雰囲気中に滞溜させておく時間(拡散時間)及び上記拡
散温度は得ようとする光伝送体の屈折率勾配すなわち単
量体Mbの上記濃度勾配によって決められる。
Also, the temperature, as in the case of known methods, for example!
; -90″C. The higher this temperature is, the higher the diffusion rate of the monomer Mb becomes, but this is not preferable because the polymerization rate of the base material itself also increases.
The time (diffusion time) for which the base material is allowed to stay in an atmosphere containing the liquid phase of the monomer Mb or the vapor or mist droplets of Mb and the above-mentioned diffusion temperature depend on the refractive index gradient of the optical transmission body to be obtained, that is, the It is determined by the concentration gradient of the mercury Mb.

しかし、この拡散時間が極度に長かったり拡散温度が高
すぎたりすると、単量体Mbの濃度勾配が平坦化したり
あるいは、母材の外周部付近で濃度勾配が急に大きくな
る恐れがあり、所望の屈折率勾配が得られない。゛ 単量体Mbを拡散させた後、母材(11)は拡散装置か
ら熱処理管(5)K導かれる。この熱処理管(5)はヒ
ータ(13)によって加熱されているが、このヒータ(
13)の温度を装置の下部から上部へと段階的に高温に
していくことによって、温度勾配を形成させるようにし
てもよい。またこの熱処理管(5)の内部も窒素置換さ
れている。ここで、母材(11)はさらに加熱されて重
合が完結される。こうして得られる光伝送体の屈折率は
、後述するように単量体Maと単量体Mbとの組合せに
よって、中心軸からの距離の二乗にはヌ比例して半径方
向に連続的に増大あるいは減少する屈折率勾配を有して
いる。この屈折率は光伝送体の長さ方向には変化せず一
定である。
However, if this diffusion time is extremely long or the diffusion temperature is too high, the concentration gradient of the monomer Mb may become flat, or the concentration gradient may suddenly become large near the outer periphery of the base material. refractive index gradient cannot be obtained. After diffusing the monomer Mb, the base material (11) is guided from the diffusion device to the heat treatment tube (5)K. This heat treatment tube (5) is heated by a heater (13);
A temperature gradient may be formed by increasing the temperature in step 13) from the bottom to the top of the device. The inside of this heat treatment tube (5) is also purged with nitrogen. Here, the base material (11) is further heated to complete polymerization. As will be described later, the refractive index of the optical transmission body thus obtained increases continuously in the radial direction in proportion to the square of the distance from the central axis, or It has a decreasing refractive index gradient. This refractive index does not change in the length direction of the optical transmission body and remains constant.

上述の実施例における有機母材としての透明ゲル物体の
原料となるべき単量体Ha としては、アリル基、アク
リル酸基、メタクリル酸基またはビニル基のうちの2種
類以上の基を有する単量体を用いることができる。次に
単量体Maの具体例を挙げる。
The monomer Ha to be the raw material of the transparent gel body as the organic matrix in the above examples is a monomer having two or more types of groups among allyl group, acrylic acid group, methacrylic acid group, or vinyl group. You can use your body. Next, specific examples of monomer Ma will be given.

(1)、アリル化合物 7タル酸ジアリル、イソフタル醗ジアリル、テレフタル
酸ジアリル、ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル;トリメリド醗トリアリル、
リン酸トリアリル、亜リン酸トリアリル等のトリアリル
エステル;メタクリル酸アリル、アクリル酸アリル等の
不飽和酸アリルエステル。
(1) Allyl compound 7 Diallyl esters such as diallyl talate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate; triallyl trimelide;
Triallyl esters such as triallyl phosphate and triallyl phosphite; unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate.

(2)、R1−R2−13で表される化合物R1及びR
3がいずれもビニル基、アクリル基、ビニルエステル基
、またはメタクリル基である化合物゛;R1及びR3の
いずれか一方がビニル基、アクリル基、メタクリル基及
びビニルエステル基のψつの基のうちのいずれかであり
、他方が残りの3つの基のうちのいずれかである化合物
。ここでR2は以下に示され2価の基のうちから選択で
、きる。
(2), compounds R1 and R represented by R1-R2-13
A compound in which 3 is a vinyl group, an acrylic group, a vinyl ester group, or a methacrylic group; one of R1 and R3 is a vinyl group, an acrylic group, a methacrylic group, or a vinyl ester group; and the other is any of the remaining three groups. Here, R2 can be selected from the divalent groups shown below.

(iH3 −(0H20H:=O) m−CH2CH2−(m −
0〜20 )\0H2−OH,′ −((3H2)p−(1)−J〜/j)(OH2)jH (3)、上記(1)と(2)の単量体の混合物、または
モノビニル化合物、ビニルエステル類、アクリル醗エス
テル類及びメタクリル酸エステル類の5種のうちの少な
くとも1種と上記(1)または(2)の単量体(または
その混合物)との混合物。
(iH3-(0H20H:=O) m-CH2CH2-(m-
0-20)\0H2-OH,'-((3H2)p-(1)-J~/j)(OH2)jH (3), a mixture of the monomers of (1) and (2) above, or A mixture of at least one of the five types of monovinyl compounds, vinyl esters, acrylic esters, and methacrylic esters and the monomer (1) or (2) (or a mixture thereof).

また単量体Wbとしては、次のようなものが挙げられる
Furthermore, examples of the monomer Wb include the following.

(4)  0H2−(3−000Yで表される化合物た
だし、式中Xは水素原子またはメチル基、及び械CH2
CH2O下−CH2CH3(p−/〜6)から成る群か
ら選ばれた基、または−(CF2)a−F(a=/−4
)、−0Ig(CFg)bH(b−’−5)、−0H2
,CR20・CH2clt’3、(CH20H20)O
0F20F2H(0−/−1I)、−0H2CH20・
0H2(OF2)aF(a−/ 〜t ) 、−〇Hz
((3Fg )do (CFg MF (d −/−2
)J−/〜グ)及び−3I(OCigH5)3 から成
る群より選ばれた基を表す。
(4) A compound represented by 0H2-(3-000Y, where X is a hydrogen atom or a methyl group, and CH2
a group selected from the group consisting of -CH2CH3 (p-/~6) under CH2O, or -(CF2)a-F (a=/-4
), -0Ig(CFg)bH(b-'-5), -0H2
,CR20・CH2clt'3, (CH20H20)O
0F20F2H (0-/-1I), -0H2CH20・
0H2(OF2)aF(a-/ ~t), -〇Hz
((3Fg)do (CFg MF (d -/-2
represents a group selected from the group consisting of )J-/~g) and -3I(OCigH5)3.

(5)、(Jg−C7HOG−R4で表される化合物た
だし、式中R4は−((R2)f−CH3(f−0−2
)、−(CH2)gH(g−t〜3)、−(CH2)8
0群より選ばれた基を表す。
(5), a compound represented by (Jg-C7HOG-R4, where R4 is -((R2)f-CH3(f-0-2
), -(CH2)gH(g-t~3), -(CH2)8
Represents a group selected from group 0.

(6)、体)及び(5)の単量体の混合物。(6), a mixture of monomers of (5) and (5).

単量体Maとして上記(1)〜(3)、単量体Mbとし
て(4)〜(6)のいずれも組み合わせることができる
Any of the above (1) to (3) as the monomer Ma and (4) to (6) as the monomer Mb can be combined.

また上記透明ゲル物体のゲル化状態を調節するには、(
3)項に挙げたように架橋性単量体Maに不飽和基を一
つ有する単量体を添加する方法及びCBr4、CCl4
、メルカプタン類等の連鎖移動剤を添加する方法、また
は両者を併用する方法が有効である。
In addition, in order to adjust the gelation state of the transparent gel object, (
3) A method of adding a monomer having one unsaturated group to the crosslinkable monomer Ma, and CBr4, CCl4
, a method of adding a chain transfer agent such as mercaptans, or a method of using both in combination is effective.

次に本発明の試験例について説明する。Next, test examples of the present invention will be explained.

試験例1 3.0重量%の過酸化ベンゾイル(BPO)を溶解させ
たジエチレングリコールビスアリールカーボネ−)CO
R−J9>を73”Cで35分間加温して予備重合させ
ることによりプレポリマーを作成する。
Test Example 1 Diethylene glycol bisaryl carbonate (CO) in which 3.0% by weight of benzoyl peroxide (BPO) was dissolved
A prepolymer is prepared by prepolymerizing R-J9> by heating at 73"C for 35 minutes.

このプレポリマーの粘度は40℃で/ O/ j Op
であり、前述(4)式におけるKおよびnの値はぞれぞ
れx、5yxto  c!/1dyne  sac  
および八21であった。このプレポリマー(10)を第
1図に示す装置の押出し器(1)に入れ、加熱ジャケッ
ト(2)を貫通しているテフロンチ為−ブ(3) (直
径Jmm長さJ(70mm )の中へLにx/ 0−2
m1/mmの一定流量で連続的に送り込んだ。加熱ジャ
ケット(2)には上部にl0℃の温水(16)下部に≦
f℃の温水(17)を各々流すことによって温度勾配を
形成させた。テフロンチ具−プ中を約33.5分間通過
する間にプレポリマー(10)はゲル化し、3mmφの
母材(11)に成形された。
The viscosity of this prepolymer at 40°C is / O / j Op
The values of K and n in the above equation (4) are x and 5yxto c!, respectively. /1dyne sac
and 821. This prepolymer (10) is put into the extruder (1) of the apparatus shown in Fig. 1, and inside the Teflon tube (3) (diameter J mm and length J (70 mm)) passing through the heating jacket (2). to L x/0-2
It was fed continuously at a constant flow rate of m1/mm. The heating jacket (2) has l0℃ hot water (16) at the top and ≦ at the bottom.
A temperature gradient was created by flowing hot water (17) at f°C in each case. The prepolymer (10) gelled while passing through the Teflon tip for about 33.5 minutes, and was molded into a base material (11) with a diameter of 3 mm.

この母材(11)はアセトンに不溶な成分(網状重合体
部分)−5重量%、アセトンに可溶だがメタノールに不
溶の成分(線形重合体部分)5重量%、アセトンとメタ
ノールの両方に可溶な成分(単量体および低分子量プレ
ポリマ一部分)70重量%から成っていた。
This base material (11) contains a component insoluble in acetone (reticular polymer portion) - 5% by weight, a component soluble in acetone but insoluble in methanol (linear polymer portion) 5% by weight, and soluble in both acetone and methanol. It consisted of 70% by weight of soluble components (monomers and a portion of low molecular weight prepolymer).

次いで、母材(11)を引上げ装置によって3.2mm
7分の一定速度で気相拡散装置(4)に送り込まれる。
Next, the base material (11) is pulled up to 3.2 mm by a pulling device.
It is fed into the vapor phase diffuser (4) at a constant rate of 7 minutes.

この気相拡散装置(4)の下部には、OR−49が30
CO/時間の一定流量で流動している液シール装置(1
5)があり母材(11)は0R−390液相を通過して
から、気相拡散装置(4)中の拡散室(4b)中に導か
れる。これにより従来のように拡散室(4b)内に満た
されている単量体Mbが母材(11)とテフロンチュー
ブのすきまから侵入して母材(11)に成形されつつあ
るプレポリマーに拡散して行ってプレポリマーに悪影響
を及ぼし、表面状態が損んじられることもなく切断され
ることもなくなった。
At the bottom of this gas phase diffusion device (4), 30 OR-49
A liquid seal device (1
5), the matrix (11) passes through the OR-390 liquid phase and is then led into the diffusion chamber (4b) in the vapor phase diffusion device (4). As a result, monomer Mb, which is filled in the diffusion chamber (4b) as before, enters through the gap between the base material (11) and the Teflon tube and diffuses into the prepolymer that is being molded into the base material (11). The prepolymer was no longer damaged and the surface condition was not degraded and the prepolymer was no longer cut.

その後拡散室(4b)中に送り込まれた有機母材はメタ
クリル酸−2,2,2−)リフルオロエチル(3FMA
)の蒸気を含む雰囲気中を約170分間を要して移動し
て、jFMAの拡散を受け、一部重合する。JFMAは
蒸気発生装置(14)内で気化させてから導入口(19
)を介して拡散室(4b)内に導入した。またJFMA
の蒸気をポンプ(15)によって排出口(20)から回
収しトラップで液化させたところ、このJFMAはほと
んど重合していなかったので繰返し使用できた。なお、
拡散室(4b)には、jFMAを導入する前に1000
ml1分の流量で窒素ガスを流入させて、県内の空気を
予め窒素置換しておいた。
Thereafter, the organic base material sent into the diffusion chamber (4b) was methacrylic acid-2,2,2-)lifluoroethyl (3FMA).
) for about 170 minutes, the jFMA is diffused and partially polymerized. JFMA is vaporized in the steam generator (14) and then passed through the inlet (19).
) into the diffusion chamber (4b). Also JFMA
When the vapor was collected from the outlet (20) by the pump (15) and liquefied in the trap, this JFMA was hardly polymerized and could be used repeatedly. In addition,
In the diffusion chamber (4b), before introducing jFMA,
Nitrogen gas was introduced at a flow rate of 1 ml to replace the air in the prefecture with nitrogen.

外側9! (4a)は3つの部分に分かれており下から
71.10,11℃の温水が流れている。
Outside 9! (4a) is divided into three parts, and hot water at 71.10 and 11°C flows from the bottom.

拡散装置(4)を経た母材(11)を、続いて窒素量℃
、lコ”Cz/30″Cに加熱し、温度勾配を形成させ
た。この熱処理管(5)内で母材を6時間熱処理して重
合を完結させた。
The base material (11) that has passed through the diffusion device (4) is then heated to a nitrogen content (°C).
, l to "Cz/30"C to form a temperature gradient. The base material was heat treated in this heat treatment tube (5) for 6 hours to complete polymerization.

このようにして直径Jmmの合成樹脂光伝送体が表面状
態良好なまま安定的に長時間に渡って得られた。この光
伝送体の開口数HAはo、3gであったO 試験例2 (3R−39の代わりにシリコンオイルをシール液(1
4)として用い、30CC/hrの流速で流動させて、
試験例1と同様にして合成樹脂光伝送体を連続製造した
ところ、試験例1と同様に表面状態良好なまま、安定的
に長時間に渡って連続製造された。この光伝送体の開口
数NAは0.39であった。
In this way, a synthetic resin optical transmission body with a diameter of J mm was obtained stably for a long period of time with a good surface condition. The numerical aperture HA of this optical transmitter was o, 3g.
4), flowing at a flow rate of 30 CC/hr,
When a synthetic resin optical transmission body was continuously produced in the same manner as Test Example 1, it was stably produced continuously for a long period of time while maintaining a good surface condition as in Test Example 1. The numerical aperture NA of this optical transmission body was 0.39.

試験例3 ポリエチレングリコール(分子量100>をシール液(
14)として用い1.t Occ/hrの流速で流動さ
せて試験例1と同様にして合成樹脂光伝送体を連続製造
したところ、試験例/と同様に表面状態良好なまま安定
的に長時間に渡って連続製造できた。この光伝送体の開
口数HAはO,J#であった。
Test Example 3 Polyethylene glycol (molecular weight 100>) was added to the sealing liquid (
14) Used as 1. When a synthetic resin optical transmitter was continuously manufactured in the same manner as Test Example 1 by flowing at a flow rate of t Occ/hr, it was found that the same as in Test Example 1, it was possible to stably and continuously manufacture the material for a long period of time with good surface condition. Ta. The numerical aperture HA of this optical transmission body was O, J#.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は光伝送体連続
製造装置の全体を示す縦断面図、第2図は第1図の装置
の要部を示す断面図である。 (1)・・・・・押出し器 (2)・・φ・−加熱ジャケット (3)・・・・・成形管 (4)・・・・・気相拡散装置 (5)・・・・・熱処理管 ゛(10)・eφ・嗜プレポリマー (11)・・・・・母 材 (12)・・・・・合成樹脂光伝送体 (14)・・・・eシール液 (15)・・・・・液シール装置 (16)・・・・・シール液導入口 (17)・・・・・シール液排出口 第1図 瞥 第2図
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view showing the entire optical transmission body continuous manufacturing apparatus, and FIG. 2 is a cross-sectional view showing the main part of the apparatus shown in FIG. 1. (1)...Extruder (2)...φ-heating jacket (3)...Forming tube (4)...Vapor phase diffusion device (5)... Heat-treated tube (10), eφ, prepolymer (11), base material (12), synthetic resin light transmitter (14), e-sealing liquid (15), etc. ...Liquid sealing device (16)...Sealing liquid inlet (17)...Sealing liquid outlet Fig. 1 View of Fig. 2

Claims (6)

【特許請求の範囲】[Claims] (1)成形手段によって成形されかつその内部に添加剤
を拡散させ得る状態にある有機母材を上記成形手段から
連続的に引き出し、この連続的に引き出しつつある有機
母材に拡散手段と加熱手段とを連続的に通過させ、この
際、上記拡散手段によって上記有機母材中に添加剤を拡
散させると共に、上記加熱手段によって上記有機母材を
加熱して上記有機母材中の上記添加剤の分布を画定させ
るようにした合成樹脂光伝送体の製造方法において、前
記成形手段の出口部で成形母材と成形手段内壁との隙間
を液体シール層で封止し、これにより前記添加剤の成形
手段中への侵入を防止したことを特徴とする合成樹脂光
伝送体の製造方法。
(1) The organic base material that has been molded by the molding means and is in a state where the additive can be diffused into the molding means is continuously drawn out from the molding means, and the organic base material that is being continuously drawn is heated by the diffusion means and the heating means. At this time, the additive is diffused into the organic base material by the diffusion means, and the organic base material is heated by the heating means to remove the additive in the organic base material. In the method for manufacturing a synthetic resin light transmitting body in which the distribution is defined, the gap between the molding base material and the inner wall of the molding means is sealed at the exit portion of the molding means with a liquid sealing layer, thereby molding the additive. A method for manufacturing a synthetic resin light transmitting body, characterized in that it prevents intrusion into the means.
(2)特許請求の範囲第1項において、前記液体シール
層として母体と同一の単量体を用いる合成樹脂光伝送体
の製造方法。
(2) A method for manufacturing a synthetic resin optical transmission body according to claim 1, in which the liquid seal layer uses the same monomer as the base material.
(3)特許請求の範囲第1項において、前記液体シール
層として母材の単量体よりも単量体反応性比が小さい単
量体を用いる合成樹脂光伝送体の製造方法。
(3) A method for manufacturing a synthetic resin light transmitting body according to claim 1, in which a monomer having a monomer reactivity ratio lower than that of the monomer of the base material is used as the liquid sealing layer.
(4)特許請求の範囲第1項において、前記液体シール
層として、化学的に不活性な液体を用いる合成樹脂光伝
送体の製造方法。
(4) A method for manufacturing a synthetic resin optical transmission body according to claim 1, in which a chemically inert liquid is used as the liquid sealing layer.
(5)特許請求の範囲第4項において、液体シール層と
して分子容が母材を構成する単量体よりも大な化学的不
活性液を用いる合成樹脂光伝送体の製造方法。
(5) A method for producing a synthetic resin light transmitting body according to claim 4, using a chemically inert liquid having a molecular volume larger than that of the monomer constituting the base material as the liquid seal layer.
(6)特許請求の範囲第1項において、前記液体シール
層は、所定液体を成形手段の出口近傍で前記母材の進行
を横切る方向に継続的に流動させることにより形成する
合成樹脂光伝送体の製造方法。
(6) In claim 1, the liquid seal layer is a synthetic resin optical transmission body formed by continuously flowing a predetermined liquid in a direction transverse to the progress of the base material near the exit of a molding means. manufacturing method.
JP59198338A 1984-09-21 1984-09-21 Method for manufacturing synthetic resin optical transmitter Expired - Lifetime JPH0629885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59198338A JPH0629885B2 (en) 1984-09-21 1984-09-21 Method for manufacturing synthetic resin optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198338A JPH0629885B2 (en) 1984-09-21 1984-09-21 Method for manufacturing synthetic resin optical transmitter

Publications (2)

Publication Number Publication Date
JPS61267704A true JPS61267704A (en) 1986-11-27
JPH0629885B2 JPH0629885B2 (en) 1994-04-20

Family

ID=16389452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198338A Expired - Lifetime JPH0629885B2 (en) 1984-09-21 1984-09-21 Method for manufacturing synthetic resin optical transmitter

Country Status (1)

Country Link
JP (1) JPH0629885B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180722A (en) * 1989-12-08 1991-08-06 Yamato Scale Co Ltd Scale

Also Published As

Publication number Publication date
JPH0629885B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
US4689000A (en) Apparatus for producing light transmitting article of synthetic resin
CS260213B1 (en) Method of polymerization casting of articles especially lenses from hydrophilic gels and equipment for realization of this method
JPS61267704A (en) Production of optical transmission body made of synthetic resin
JPH11505628A (en) Method of manufacturing graded index polymer optical fiber
KR19980032683A (en) Inclined refractive index fiber manufacturing method
JPH0259961B2 (en)
JPS62215204A (en) Production of plastic optical transmission body
JPH0579962B2 (en)
JPS6012507A (en) Manufacture of synthetic resin optical transmission body
JPH0614125B2 (en) Method for manufacturing synthetic resin optical transmitter
JPH0727928A (en) Production of plastic optical transmission body
JP2889136B2 (en) Method for producing composite monofilament for light / image transmission and composite monofilament produced by the method
JPH09218312A (en) Production of preform for graded index plastic optical fiber
JPH09218311A (en) Production of preform for graded index plastic optical fiber and apparatus therefor
JP3981355B2 (en) Manufacturing method of plastic optical member
KR20050071713A (en) Preform for producing plastic optical components, method of fabricating the preform, and plastic optical fiber
JPH08146235A (en) Manufacture of graded-index fiber for macromolecular material
JPS60212707A (en) Method and device for manufacturing synthetic resin optical transmitting body
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
JPH0546523B2 (en)
JPH09178959A (en) Production of preform for distributed refractive index plastic optical fiber
JPH09133820A (en) Manufacture of preform for gradient index plastic optical fiber
JPS60249103A (en) Preparation of light divergent synthetic resin body
JPH0675125B2 (en) Manufacturing method for plastic optical fiber
JPS6073502A (en) Manufacture of light transmitter by synthetic resin