JPS60212707A - Method and device for manufacturing synthetic resin optical transmitting body - Google Patents

Method and device for manufacturing synthetic resin optical transmitting body

Info

Publication number
JPS60212707A
JPS60212707A JP59068594A JP6859484A JPS60212707A JP S60212707 A JPS60212707 A JP S60212707A JP 59068594 A JP59068594 A JP 59068594A JP 6859484 A JP6859484 A JP 6859484A JP S60212707 A JPS60212707 A JP S60212707A
Authority
JP
Japan
Prior art keywords
base material
diameter
organic base
synthetic resin
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59068594A
Other languages
Japanese (ja)
Other versions
JPH0614126B2 (en
Inventor
Yukinori Watanabe
渡辺 行範
Yasuo Masuya
桝家 保男
Yuichi Aoki
裕一 青木
Koichi Maeda
浩一 前田
Ikuo Tago
田子 育良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59068594A priority Critical patent/JPH0614126B2/en
Priority to US06/626,697 priority patent/US4587065A/en
Priority to DE8484304531T priority patent/DE3466660D1/en
Priority to EP84304531A priority patent/EP0130838B1/en
Publication of JPS60212707A publication Critical patent/JPS60212707A/en
Priority to US06/827,468 priority patent/US4689000A/en
Publication of JPH0614126B2 publication Critical patent/JPH0614126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00355Production of simple or compound lenses with a refractive index gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29D11/00682Production of light guides with a refractive index gradient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive

Abstract

PURPOSE:To manufacture continuously the titled optical transmitting body by a stable wire diameter, by measuring a diameter of an organic base material extruded continuously from a forming means, and adjusting a feed quantity of a pre-polymer based on a measured value. CONSTITUTION:A cylinder 19 to which transparent glass windows 14, 15 for measuring a wire diameter of an organic base material have been installed is inserted between a diffusion layer 18 and a forming tool 12. A laser light emitting part 7 and a laser photodetecting part 6 are installed on both sides of this cylinder 19 with a window, so that a laser light 8 scans in the direction crossing the organic base material 21 through the window 14 by a tuning fork. The light 8 which has transmitted through the base material 21 is detected by the photodetecting part 6, and based on the time when the photodetecting quantity has been reduced during the scan, namely, the time of scan which has transmitted through the base material 21, its diameter is calculated. It is fed back to a driving voltage of an extruding motor 4, and an extruding speed of a piston 2 is controlled in order to align the wire diameter of the organic base material with a set value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、中心軸からの距離と共に変化する屈折率分布
を有する合成樹脂光伝送体を製造する方法及びこれに用
いる装置KfJ4する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a synthetic resin optical transmission body having a refractive index distribution that changes with distance from a central axis, and an apparatus KfJ4 used therein.

〔発明の技術背景〕[Technical background of the invention]

屈折率分布が下記(1)式で表される透明棒状体は凸レ
ンズ作用を示し、この悉明俸状体中を進む光束は中心軸
に沿って蛇行する。その周期りは次に示す(2)式で表
される。ここでnoは中心軸上の屈折率、n(r)は中
心軸がらrの距1111にある点の屈折率、Aは正の定
数(屈折率分布定数)である。
A transparent rod-like body whose refractive index distribution is expressed by the following formula (1) exhibits a convex lens action, and a light beam traveling through this round-shaped body meanderes along the central axis. The period is expressed by the following equation (2). Here, no is the refractive index on the central axis, n(r) is the refractive index at a point located at a distance 1111 of r from the central axis, and A is a positive constant (refractive index distribution constant).

n(r)−no(l−//2Ar2) fl)L−jπ
/f)、 (2) 屈折率分布が次に示す(3)式で表される場合には凹レ
ンズ作用を示す。ここでBは正の定数(屈折率分布定数
)である。
n(r)-no(l-//2Ar2) fl)L-jπ
/f), (2) When the refractive index distribution is expressed by the following equation (3), a concave lens effect is exhibited. Here, B is a positive constant (refractive index distribution constant).

n(r)−’no(/+//、2Br2) (31上記
有機母材を成形する′に際し、まず屈折率Naの網状重
合体paを生成する単量体Maを予備重合させて、塑性
流動を表わす一般式 %式%(4) (式中りはずり速度、αはずり応力、Kは塑性粘度の逆
数、nは定数をそれぞれ表わす。)Kおける20’Cで
のnの値がへ10以上である塑性流動を示す粘性流体(
以下においてはプレポリマー流体と称する)を得る。次
いで、このプレポリマー流体を押出し装置に入れ、押し
出し装置のピストン移動モータに一定電圧をかけて連続
的にプレポリマー流体を押し出し、成形装置に供給して
、この成形装置内通路を進行させつつ加熱重合させると
によって前記有機母材を得る。
n(r)-'no(/+//, 2Br2) (31 When molding the above-mentioned organic matrix, first, a monomer Ma that produces a reticular polymer pa having a refractive index Na is prepolymerized to obtain plasticity. General formula expressing flow % Formula % (4) (In the formula, shear rate is shear rate, α is shear stress, K is the reciprocal of plastic viscosity, and n is a constant.) The value of n at 20'C at K is A viscous fluid exhibiting plastic flow with a value of 10 or more (
(hereinafter referred to as prepolymer fluid) is obtained. Next, this prepolymer fluid is put into an extrusion device, and a constant voltage is applied to the piston moving motor of the extrusion device to continuously extrude the prepolymer fluid, which is then supplied to a molding device and heated while moving through a passage in the molding device. The organic matrix is obtained by polymerization.

この有機母材KMaと異なる屈折率を有する重合体を形
成する単量体Mbを、上記有機母材表面がら液相または
気相により拡散させた後または拡散と同時に重合させる
ことにより、屈折率が表面から内部に向かって連続的に
変化する合成樹脂光伝送体を製造することができる。
By diffusing the monomer Mb that forms a polymer having a refractive index different from that of the organic matrix KMa through the surface of the organic matrix in a liquid phase or gas phase, or by polymerizing it at the same time as the diffusion, the refractive index can be changed. It is possible to manufacture a synthetic resin light transmitting body that changes continuously from the surface to the inside.

上記のようにして連続的に合成樹脂光伝送体を製造する
方法は、先に特願昭55−/2062!、特願昭!;l
’−/20t2&、特願昭31−/20A27で本発明
者らが提案している。しかし、この方法には次のような
問題がある。即ち、押出し装置は、シリンダとピストン
から構成されているが、送りネジのピッチ誤差、モータ
ーの速度誤差を0にすることは不可能で、ピストンを一
定の速度で動がすKは限度がある。
The method for continuously manufacturing synthetic resin optical transmitters as described above was first disclosed in Japanese Patent Application No. 55-/2062. , Tokugansho! ;l
'-/20t2&, the present inventors have proposed in Japanese Patent Application No. 31-/20A27. However, this method has the following problems. In other words, the extrusion device is composed of a cylinder and a piston, but it is impossible to reduce the pitch error of the feed screw and the speed error of the motor to 0, and there is a limit to the amount of K required to move the piston at a constant speed. .

また、シリンダの内径精度にも限界があり、バラつきの
あることが予想される。
Furthermore, there is a limit to the accuracy of the inner diameter of the cylinder, and it is expected that there will be variations.

従って、押出し装置から押し出されるプレポリマー流体
の体積速度は一定となりにくい。
Therefore, the volume velocity of the prepolymer fluid extruded from the extrusion device is difficult to be constant.

さらに、このプレポリマー流体は、有機母材を形成する
ために加熱重合されるために1体積変動が生じその変化
率も常に一定とは限らない。
Furthermore, since this prepolymer fluid is heated and polymerized to form an organic matrix, the volume changes and the rate of change is not always constant.

このために1上記有機母材の体積速度の安定性がより一
層低下している。上記有機母材は一定速度で引張られて
いるために、有機母材の体積速度に経時変化があると、
有機母材の径む変動することKなる。
For this reason, the stability of the volumetric velocity of the above-mentioned organic base material 1 is further reduced. Since the above organic matrix is stretched at a constant speed, if there is a change in the volumetric velocity of the organic matrix over time,
The change in diameter of the organic matrix becomes K.

また、有機母材の径の変動のあるまま、Maの重合体と
異なる屈折率を有する重合体を形成する単量体Mbを上
記母材に拡散させると、屈折率分布にも変動を生じる事
になる。
Furthermore, if the monomer Mb, which forms a polymer having a refractive index different from that of the Ma polymer, is diffused into the base material while the diameter of the organic base material remains variable, the refractive index distribution will also change. become.

以上より合成樹脂光伝送体を一定の品質で連続製造する
ためには、まず上記有機母材の径を安定化させるべく、
制御しなければならない。
From the above, in order to continuously manufacture synthetic resin optical transmitters with constant quality, first of all, in order to stabilize the diameter of the organic base material,
Must be controlled.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の上述のような欠点を除去して、上
記合成樹脂光伝送体を安定した線径で連続的に製造する
方法、及びこれに用いる装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and provide a method for continuously manufacturing the synthetic resin optical transmission body with a stable wire diameter, and an apparatus used therefor.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する本発明方法は、プレポリマー流体
を成形手段に圧送し、形状を保持し、且つその内部に添
加剤を拡散させ得る状態にある有機母材を上記成形手段
から連続的に押し出し、この顔的に押し出される有機母
材に拡散手段と加熱手段とを連続的に通過させ、この際
、上記拡散手段によって上記有機母材中に添加剤を拡散
させると共に、上記加熱手段によって上記有機母材を加
熱して上記有機母材中の上記添加剤の分布を固定させる
ようにした合成樹脂光伝送体の製造方法において、上記
成形手段から連続的に押し出された有機母材の径を成形
手段の出口付近でI1m定し、該測定値に基づいて前記
成形手段へのプレポリマー送給量を調整することにより
、上記有機母材の径を制御することを要旨としている。
The method of the present invention achieves the above objects by pumping a prepolymer fluid into a molding means, and continuously extracting an organic matrix from the molding means in a state that retains its shape and allows the diffusion of additives therein. The extruded organic matrix is passed through a diffusion means and a heating means in succession, wherein the diffusion means diffuses the additive into the organic matrix, and the heating means diffuses the additive into the organic matrix. In a method for manufacturing a synthetic resin light transmitting body in which the distribution of the additive in the organic base material is fixed by heating the organic base material, the diameter of the organic base material continuously extruded from the molding means is The gist is to control the diameter of the organic base material by determining I1m near the exit of the molding means and adjusting the amount of prepolymer fed to the molding means based on the measured value.

また、本発明は上記方法を実施する好適な装置として、
プレポリマー流体を成形手段に圧送するとともに成形さ
れた母材を押し出す押し出し装置と押し出し装置から供
給されるプレポリマー流体を成形するとともに成形され
た母材を押し出す押し出し装置と、成形装置で成形され
た母材の径を測定する母材径測定装置と、径測定信号に
応じて前記押し出し装置のプレポリマー流体吐出量を制
御する制御装置とを備えた合成樹脂光伝送体の製造装置
を提供する。
Further, the present invention provides a suitable apparatus for carrying out the above method,
An extrusion device that pumps prepolymer fluid to a molding means and extrudes the molded base material; and an extrusion device that molds the prepolymer fluid supplied from the extrusion device and extrudes the molded base material; An apparatus for manufacturing a synthetic resin optical transmission body is provided, which includes a base material diameter measuring device that measures the diameter of a base material, and a control device that controls the amount of prepolymer fluid discharged from the extrusion device in accordance with a diameter measurement signal.

〔実施例〕〔Example〕

以下本発明に係る合成樹脂光伝送体を製造する方法及び
これ圧用いる装置の一実施例につき、図面を参照しなが
ら説明す 第1図において、冷却水によ′っで冷却されているシリ
ンダ(1)の中には、合成樹脂光伝送体の原料として用
いられるプレポリマー流体(30)が入れられており、
ピストン(コ)によって供給管(9)内に上記プレポリ
マー流体(30)を圧送し得るようKなっている。また
、このピストン(2)は第2図に示すように1送りネジ
(J/)を介して、押出しモーター(4)Kよって動か
されるようになっている。
Hereinafter, an embodiment of the method for manufacturing a synthetic resin optical transmission body according to the present invention and an apparatus using the same pressure will be explained with reference to the drawings. In FIG. 1, a cylinder ( 1) contains a prepolymer fluid (30) that is used as a raw material for synthetic resin optical transmission bodies.
The prepolymer fluid (30) can be pumped into the supply pipe (9) by means of a piston (K). Further, as shown in FIG. 2, this piston (2) is moved by an extrusion motor (4)K via a single feed screw (J/).

次に黄銅製の円柱から成る成形手段としての成形具(7
,2)の中心には既述の供給管(q)の外径よりも少し
径の大きい貫通孔(3)が形成されていて、この貫通孔
(3)の中にはさらKこの貫通孔(3)ト・同径のテフ
ロンチューブからなる成形管(13)が取り付けられて
いる。そして供給管(ワ)から押し出された上記プレポ
リマー流体(30)がこのテフロンチューブ(/3)の
中を通過するようKなっている。また、上記成形具(/
2)、の上部及び下部にはそれぞれ比較的温度の高い温
水を通すジャケラ(12)の下部から上部に向かって温
度が次第に高くなるような温度勾配が付けられている。
Next, a forming tool (7
, 2) is formed with a through hole (3) having a diameter slightly larger than the outer diameter of the supply pipe (q) mentioned above, and inside this through hole (3) there is a further hole K. (3) A molded tube (13) made of a Teflon tube of the same diameter is attached. The prepolymer fluid (30) pushed out from the supply pipe (W) passes through this Teflon tube (/3). In addition, the above molding tool (/
2) A temperature gradient is provided at the upper and lower parts of the jacket (12) through which relatively high-temperature hot water passes, so that the temperature gradually increases from the lower part to the upper part.

成形具(/2)の上方には拡散手段としての拡散管(/
I)が設けられていて、成形具(/2)VCよって成形
された円柱状の有機母材(21)は、この拡散管<iB
内で所定の拡散を行なわれるようになっている。
Above the molding tool (/2) is a diffusion tube (/2) as a diffusion means.
I), and the cylindrical organic base material (21) formed by the forming tool (/2) VC has this diffusion tube <iB
A predetermined diffusion is performed within the area.

この拡散管(/Ir)と成形具(12)の間には、有機
母材の線径を測定するための透明ガラス窓(ハ0゜(/
!;)が取り付けられている円管(/9)が、はさみ込
まれている。λつの窓(ハt>I<mは、有機母材(2
1)を間にはさんで平行に向きあった形で取り付けられ
ている。
Between this diffusion tube (/Ir) and the forming tool (12), there is a transparent glass window (H0° (/
! The circular tube (/9) to which ;) is attached is inserted. λ windows (hat>I<m are the organic matrix (2
1) are installed parallel to each other with the parts in between.

この窓つき円管(/9)の両側に、レーザ発光部(7)
、レーザ受光部(6)が設置されており1、レーザ光(
lr)は音叉によって窓(ハ・を通して有機母材(21
)を横切る方向に走査するようになっている。
On both sides of this windowed circular tube (/9), there are laser emitting parts (7).
, a laser light receiving section (6) is installed 1, and a laser light receiving section (6) is installed.
lr) is the organic matrix (21) through the window (c) with a tuning fork.
) is designed to scan in the direction across.

母材(2/)を透過した光lIl!(ざ)は受光部(≦
)で検出され、走査の間に受光量が低減した時間つまり
母材(2/)を透過した走査時間をもとにその直径が算
出される。
Light transmitted through the base material (2/) lIl! (za) is the light receiving part (≦
), and its diameter is calculated based on the time during which the amount of light received decreases during scanning, that is, the scanning time during which the light passes through the base material (2/).

このレーザ受光部(≦)は線径コントローラD)rcつ
ながれており、有機母材の線径測定値と設定値の偏差が
線径コントローラ<S)に送られる。そしてこの入力信
号を基にして制御信号が計算され、押出しモータ(41
)の駆動電圧にフィードバックされ、有機母材の線径を
設定値に合わせるべくピストン(2)の押出し速度を制
御する。
This laser light receiving section (≦) is connected to a wire diameter controller D)rc, and the deviation between the measured value of the wire diameter of the organic base material and the set value is sent to the wire diameter controller<S). Then, a control signal is calculated based on this input signal, and the extrusion motor (41
) to control the extrusion speed of the piston (2) in order to adjust the wire diameter of the organic base material to the set value.

ピストン(2)の押圧力で成形具(/J)から連続的に
押出される母材(21)は保形性を有しており、またそ
の内部に添加剤を拡散させ得る状態にある0 成形具(12)を出た母材(21)は次いで拡散管(l
ざ)に入る。この拡散管(/J)内には、母材を構成す
る単量体Maの重合体とは屈折率の異なる重合体を形成
する単量体Mbが気相状態あるいは液相状態で供給され
ている。この単量体Mbは母材(21)の表面から内部
へ拡散し、母材中にはMbの濃度が表面から中心に向け
て次第に減少する分布が形成される。
The base material (21) that is continuously extruded from the molding tool (/J) by the pressing force of the piston (2) has shape retention properties and is in a state where additives can be diffused into the base material (21). The base material (21) exiting the forming tool (12) is then passed through a diffusion tube (l).
Enter the Into this diffusion tube (/J), monomer Mb, which forms a polymer having a different refractive index from the polymer of monomer Ma constituting the base material, is supplied in a gas phase or liquid phase. There is. This monomer Mb diffuses from the surface of the base material (21) to the inside, and a distribution is formed in the base material in which the concentration of Mb gradually decreases from the surface toward the center.

拡散管(/ざ)を出た母材(2/)は次に加熱管(20
)に入りここで加熱されて重合が進行し、母材中に拡散
した上記単量体Hbの分布が固定される。
The base material (2/) leaving the diffusion tube (/za) is then passed through the heating tube (20
), where it is heated and polymerization proceeds, fixing the distribution of the monomer Hb diffused into the base material.

加熱11(20)を通過する間に重合がほぼ完結した母
材(21)は引き出しローラー(#)+ (/7)で引
き出され、図外の切断装置で所定長さに切断される。
The base material (21), which has almost completed its polymerization while passing through the heating 11 (20), is pulled out by a pull-out roller (#) + (/7) and cut into a predetermined length by a cutting device (not shown).

切断された内部に屈折率分布を有する母材は両端を研磨
してレンズ、光伝送ファイバ等に用いるかあるいはさら
に加熱延伸して径を細くした後に上記処理を施してレン
ズ、光伝送ファイバ等に使用される。
The cut base material, which has a refractive index distribution inside, can be used for lenses, optical transmission fibers, etc. by polishing both ends, or it can be heated and stretched to make the diameter thinner and then subjected to the above treatment to be used for lenses, optical transmission fibers, etc. used.

上述の実施例における有機母材としての透明ゲル物体の
原料となるべき単量体)4aとしては、アリル基、アタ
リル酸基、メタクリル酸基またはビニル基のうちの2種
類以上の基を有する単量体を用いることができる。次に
単量体Haの具体例を挙げる。
The monomer (4a) to be the raw material of the transparent gel body as the organic matrix in the above examples is a monomer having two or more types of groups selected from the group consisting of an allyl group, an atarylic acid group, a methacrylic acid group, and a vinyl group. mer can be used. Next, specific examples of monomer Ha will be given.

(1)、アリル化合物 7タル酸ジアリル、イソフタル酸ジアリル、テレフタル
酸シアリル、ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル:トリメリト省トリアリル、
リン酸トリアリル、亜リン酸トリアリル等のトリアリル
エステル:メタクリル醗アリル、アクリル酸アリル等の
不飽和酸アリルエステル。
(1) Allyl compound 7 Diallyl esters such as diallyl talate, diallyl isophthalate, sialyl terephthalate, diethylene glycol bisallyl carbonate: triallyl trimellitate,
Triallyl esters such as triallyl phosphate and triallyl phosphite: Unsaturated acid allyl esters such as allyl methacrylate and allyl acrylate.

(2)、Rl−R2−R3で表わされる化合物R1及び
R3がいずれもビニル基、アクリル基、ビニルエステル
基またはメタクリル基である(1物;R1及びR3のい
ずれか一方がビニル基、アクリル基、メタクリル基及び
ビニルエステル基の参つの基のうちのいずれかであり、
他方が残りの3つの基のうちのいずれかである化合物。
(2) The compound R1 and R3 represented by Rl-R2-R3 are both a vinyl group, an acrylic group, a vinyl ester group, or a methacrylic group (1 compound; either one of R1 and R3 is a vinyl group, an acrylic group) , a methacrylic group and a vinyl ester group,
A compound where the other is any of the remaining three groups.

ここでR2は以下に示され2価の基のうちから選択でき
る。
Here, R2 can be selected from the divalent groups shown below.

■ O− OHg −(OHgOHgO)m−OH20H2−(m−0−2
0)\0H2−CI(2/ −(OHg)p−(P=J〜/U (OH2)in 一0H2−0−OH2−(1,j−/へ3)(OH2)
jH OHs 0H3 (3)、上記fl)と(2)の単量体の混合物、または
モノビニル化合物、ビニルエステル類、アクリル酸エス
テル類及びメタクリル酸エステル類の5種のうちの少な
くとも/alと上記(1)または(2)の単量体(また
はその混合物)との混合物。
■ O- OHg -(OHgOHgO)m-OH20H2-(m-0-2
0)\0H2-CI(2/ -(OHg)p-(P=J~/U (OH2)in -0H2-0-OH2-(1,j-/to3)(OH2)
jH OHs 0H3 (3), a mixture of the above fl) and (2) monomers, or at least /al of the five types of monovinyl compounds, vinyl esters, acrylic esters and methacrylic esters and the above ( A mixture of 1) or (2) with a monomer (or a mixture thereof).

また単量体Mbとしては、次のようなものが挙げられる
Furthermore, examples of the monomer Mb include the following.

(4)、0I(2−G−GOOYで表される化合物ただ
し、式中Xは水素原子またはメチル基、−(OH2)l
H(j−/−1)、1−プロピル基、i−ブチル 基、
S−ブチル基、t−ブチル基、及C1+ OH20B 
20 昨−OH20H3(P−/ 〜t ) カラ成る
群から選ばれた基、または−(OF2)、 F(a−/
−4)、−0RB(OFg)bH(b−/〜l )、−
0H20H20−OH2GF3、 (CI(20H20
)COFgOF2H(0−/ 〜+)、 −OH20H20−OHg(CFg)aF (a−/ 
〜G)、OHg(CFg)do(OFg)jF(d−/
 〜J、l−/−4)及び−f31(002H5)sか
ら成る群より選ばれた基を表す。
(4), 0I (compound represented by 2-G-GOOY, where X is a hydrogen atom or a methyl group, -(OH2)l
H(j-/-1), 1-propyl group, i-butyl group,
S-butyl group, t-butyl group, and C1+ OH20B
20 -OH20H3(P-/~t) A group selected from the group consisting of -(OF2), F(a-/
-4), -0RB(OFg)bH(b-/~l),-
0H20H20-OH2GF3, (CI(20H20
) COFgOF2H (0-/ ~+), -OH20H20-OHg(CFg)aF (a-/
~G), OHg(CFg)do(OFg)jF(d-/
~J, l-/-4) and -f31(002H5)s.

(5)、OH2−Cj HOO−R4テ表される化合物
1 ただし、式中R4は−(OH2) f−OHs (f−
o−,2)、(OHg)gill (g−’〜3)、群
より選ばれた基を表わす。
(5), OH2-Cj HOO-R4 compound 1, where R4 is -(OH2) f-OHs (f-
o-, 2), (OHg)gill (g-' to 3), represents a group selected from the group.

(61、+41及び(5)の単量体の混合物。(61, +41 and (5) monomer mixture.

単量体Maとして上記(1)〜(3)、単量体Hbとし
て(4)(6)のいずれも組み合わせることができる。
Any of the above (1) to (3) as the monomer Ma and (4) and (6) as the monomer Hb can be combined.

また、上記透明ゲル物体のゲル化状態を調節するには、
(3)項に挙げたように架橋性単量体MaK不飽和基を
一つ有する単量体を添加する方法及びCBr4.CCl
4、メルカプタン類等の連鎖移動剤を添加する方法、ま
たは両者を併用する方法が有効である。
In addition, in order to adjust the gelation state of the transparent gel object,
As mentioned in section (3), the method of adding a crosslinking monomer MaK monomer having one unsaturated group and CBr4. CCl
4. A method of adding a chain transfer agent such as mercaptans, or a method of using both in combination is effective.

〔試験例〕[Test example]

次に本発明に係る合成樹脂光伝送体の製造における有機
母材の線径の制御方法及び制御装置による、有機母材の
制御実施例につき説明する。
Next, an example of controlling the organic base material using the method and control device for controlling the wire diameter of the organic base material in the production of a synthetic resin optical transmission body according to the present invention will be described.

3.0重量%の過酸化ベンゾイル(BPO)を溶解させ
たジエチレングリコールビスアリルカーボネート(OR
−j9)を73″Cで63分間加温して、予備重合させ
ることKよりプレポリマー流体を作製した。
Diethylene glycol bisallyl carbonate (OR) in which 3.0% by weight of benzoyl peroxide (BPO) was dissolved
-j9) was prepolymerized by heating at 73''C for 63 minutes to prepare a prepolymer fluid.

この°プレポリマー流体は、粘度が約1000CpB(
コ0°C)で(菊式におけるnの値がn−八20の粘性
流体である。このプレポリマー流体をシ!J ンタ(1
)K入れ、成形具(3)を貫通している直径<zmm、
長さroommのテフロンチューブ(13)中に14、
JX/(7−2mj/minの一定流量で連続的に送り
込んだ。
This ° prepolymer fluid has a viscosity of approximately 1000 CpB (
It is a viscous fluid in which the value of n in the Kiku equation is n-820 at (0°C).This prepolymer fluid is
)K insert, diameter passing through the forming tool (3)<zmm,
14 in a Teflon tube (13) of length roomm,
It was continuously fed at a constant flow rate of JX/(7-2 mj/min).

上記成形具(lλ)の上部ジャケット管(//)Kは7
J”Cの温水が、また下部ジャケット管(10)にはS
1℃の温水がそれぞれ流されていて、成形具(/2)の
下部から上部に向かって次第K111度が高くなる温度
勾配がつけられている。上記テフロンチューブ(13)
中を170分間かけて通過する間に、上記プレポリマー
流体はゲル化され直径約41mmの有機母材に成形され
た。
The upper jacket pipe (//) K of the above forming tool (lλ) is 7
There is hot water in J”C, and S in the lower jacket pipe (10).
1°C hot water is flowing through each molding tool (/2), and a temperature gradient is created in which the temperature gradually increases from the bottom to the top of the molding tool (/2). Above Teflon tube (13)
During the 170 minute passage through the tube, the prepolymer fluid gelled and formed into an organic matrix approximately 41 mm in diameter.

この有機母材は、アセトン不溶な成分く網状構造重合体
) 2日重量%、アセトン可溶、メタノール不溶の成分
(!I形重重合体5重量%、アセトン可溶、メタノール
可溶の成分(単量体・数量体)70重量%から成ってい
た。
This organic matrix consists of acetone-insoluble components, network structure polymers), acetone-soluble, methanol-insoluble components (!I-type polymers, 5% by weight, acetone-soluble, methanol-soluble components (monomer), It consisted of 70% by weight.

この有機母材を引き上げ用ローラー(八<)、(/7)
によってo、 52cm/minの一定速度で拡散管(
7g)中に引き上げた。
Rollers for pulling up this organic base material (8<), (/7)
o, at a constant speed of 52 cm/min through the diffusion tube (
7g).

この有機母材に円管(19)の窓(ハ0、(lj)を通
してレーザ発光部から、出力/mWの)(e−Meレ−
fを音叉によって走査させて、その受光量変化 グを受
光部で捕えると線径が測定される。
The e-Me laser (output/mW) (output/mW) is emitted from the laser emitting part through the window (C0, (lj)) of the circular tube (19) into this organic base material.
The wire diameter is measured by scanning f with a tuning fork and capturing the change in the amount of light received by the light receiving section.

線径測定器から、この有機母材の線径測定値と設定値の
偏差に比例して偏差出力が発生される。この偏差出力は
線径コントローラ(、t)K送り込まれ、PID制御演
算を行ない、押出しモータ(4’)へ送る駆動電圧を決
定する。この場合、P、I、Dの各係数は30%+7分
、0.1分とした。
The wire diameter measuring device generates a deviation output in proportion to the deviation between the measured value of the wire diameter of the organic base material and the set value. This deviation output is sent to the wire diameter controller (,t)K, performs PID control calculation, and determines the drive voltage to be sent to the extrusion motor (4'). In this case, the coefficients of P, I, and D were set to 30%+7 minutes and 0.1 minutes.

上記のフィードバンク制御操作を行なう事により、有機
母材の線径の偏差は設定値?、00mmに対して±60
μmから±SμmK改善された。更に重合が完結し、製
品となって引上げローラー(#)、(/7)から出て来
た合成樹脂光伝送体の直径の偏差もの製造における有機
母材の線径の制御方法及び制御装置によれば、線径の整
った有機母材を連続的に製造することができ、ひいては
直径及び光学性能が均一な合成樹脂伝送体を安定的に連
続製造することができる。
By performing the above feedbank control operation, the deviation of the wire diameter of the organic base material is set to the set value? , ±60 for 00mm
Improved from μm to ±SμmK. Furthermore, the present invention provides a method and a control device for controlling the wire diameter of an organic base material in the production of deviations in diameter of synthetic resin light transmitters that are produced as products after completion of polymerization and come out of pulling rollers (#) and (/7). Accordingly, it is possible to continuously manufacture an organic base material with a uniform wire diameter, and in turn, it is possible to stably and continuously manufacture a synthetic resin transmission body having a uniform diameter and optical performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の一例を示す縦断面図、
第2図は第1図の装置の要部拡大図である。 なお、図面に用いた符号において、 (1) シリンダ (2) ピストン (3)貫通孔 (4) 押出しモータ (51、Ij径フントローラ (6) レーザ受光部(
7) レーザ発光部 (8) レーザ光(9)供給管 
(10) 、 (11) 温水ジャケット管(12)成
形具 (13) 成形管 (t4)M径itl定Jt[(15) ls径測定用窓
(16)引き上げ用モータ (17) 引き上げ用モー
タ(1日)拡散管 (19) 窓つき円管(20)熱処
理管 (21) 送りネジである。 I+ ど l 特開昭GO−212707(6) 第2図
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for carrying out the present invention;
FIG. 2 is an enlarged view of the main parts of the apparatus shown in FIG. 1. In addition, in the symbols used in the drawings, (1) cylinder (2) piston (3) through hole (4) extrusion motor (51, Ij diameter feed roller (6) laser light receiving part (
7) Laser emitting part (8) Laser light (9) Supply pipe
(10), (11) Hot water jacket pipe (12) Forming tool (13) Forming pipe (t4) M diameter itl constant Jt [(15) ls diameter measuring window (16) Lifting motor (17) Lifting motor ( 1st) Diffusion tube (19) Circular tube with window (20) Heat treatment tube (21) Feed screw. I+ Do l JP-A-Sho GO-212707 (6) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1) プレポリマー流体を成形手段に圧送し、形状を
保持しI且つその内部に添加剤を拡散させ得る状etc
ある有機母材を上記成形手段から連続的に押し出し、こ
の連続的に押し出される有機母材に拡散手段と加熱手段
とを連続的に通過させ、この際上記拡散手段によって上
記有機母材中に添加剤を拡散させると共に1上記加熱手
段によって上記有機母材を加熱して上記有機母材中の上
記添加剤の分布を固定させるようにした合成樹脂光伝送
体の製造方法において、上記成形手段から連続的に押し
出された有機母材の径を成形手段の出口付近で測定し、
該測定値に基づいて前記成形手段へのプレポリマー送給
量を調整することにより上記有機母材Wの径を制御する
ことを特徴とする合成樹脂光伝送体の製造方法。
(1) A state in which the prepolymer fluid can be pumped into a molding means, retaining its shape, and allowing additives to diffuse therein, etc.
An organic matrix is continuously extruded from the forming means, and the continuously extruded organic matrix is continuously passed through a diffusion means and a heating means, and at this time, the organic matrix is added to the organic matrix by the diffusion means. In the method for manufacturing a synthetic resin optical transmitter, the method comprises: diffusing the additive and fixing the distribution of the additive in the organic base material by heating the organic base material using the heating means; The diameter of the extruded organic matrix material is measured near the exit of the forming means,
A method for manufacturing a synthetic resin optical transmission body, characterized in that the diameter of the organic base material W is controlled by adjusting the amount of prepolymer fed to the molding means based on the measured value.
(2) プレポリマー流体を成形手段に圧送するととも
に成形された母材を押し出す押し出し装置と、押し出し
装置から供給されるプレポリマー流体を成形する成形装
置と、成形装置で成形された母材の径を測定する母材径
m定装置と、径測定信号に応じて前記押し出し装置のプ
レポリマー流体吐出量を制御する制御装置とを備えた合
成樹脂光伝送体の製造装置。
(2) An extrusion device that pumps the prepolymer fluid to the molding means and extrudes the molded base material, a molding device that molds the prepolymer fluid supplied from the extrusion device, and the diameter of the base material molded by the molding device. 1. An apparatus for manufacturing a synthetic resin optical transmission body, comprising: a base material diameter determination device for measuring the diameter of a base material; and a control device for controlling the amount of prepolymer fluid discharged from the extrusion device in accordance with a diameter measurement signal.
JP59068594A 1983-07-02 1984-04-06 Method for manufacturing synthetic resin optical transmitter Expired - Lifetime JPH0614126B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59068594A JPH0614126B2 (en) 1984-04-06 1984-04-06 Method for manufacturing synthetic resin optical transmitter
US06/626,697 US4587065A (en) 1983-07-02 1984-07-02 Method for producing light transmitting article of synthetic resin
DE8484304531T DE3466660D1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
EP84304531A EP0130838B1 (en) 1983-07-02 1984-07-02 Method and apparatus for producing light transmitting article of synthetic resin
US06/827,468 US4689000A (en) 1983-07-02 1986-02-10 Apparatus for producing light transmitting article of synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59068594A JPH0614126B2 (en) 1984-04-06 1984-04-06 Method for manufacturing synthetic resin optical transmitter

Publications (2)

Publication Number Publication Date
JPS60212707A true JPS60212707A (en) 1985-10-25
JPH0614126B2 JPH0614126B2 (en) 1994-02-23

Family

ID=13378269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59068594A Expired - Lifetime JPH0614126B2 (en) 1983-07-02 1984-04-06 Method for manufacturing synthetic resin optical transmitter

Country Status (1)

Country Link
JP (1) JPH0614126B2 (en)

Also Published As

Publication number Publication date
JPH0614126B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
JPH08510763A (en) Molded articles with progressive refractive index and low dispersibility
JPH0576602B2 (en)
JP3005808B2 (en) Manufacturing method of synthetic resin optical transmission body
JP4270571B2 (en) Fabrication method of refractive index distribution type optical transmitter by spontaneous frontal polymerization using heat storage effect
JPS60212707A (en) Method and device for manufacturing synthetic resin optical transmitting body
KR100460720B1 (en) Plastic optical fiber preform and method for preparing the same
EP0863416A2 (en) Method of manufacturing a graded index-type plastic-optical fiber and device therefor
US20090238525A1 (en) Production method of preform of plastic optical member and plastic optical fiber
CN1197002A (en) Method for manufacturing graded refractive index plastic optical-fiber and apparatus therefor
KR20060027406A (en) Plastic optical fibers and processes for producing them
EP1583654B1 (en) Method of fabricating a preform for producing plastic optical components
JPH05173025A (en) Production of synthesized resin light transmission body
JP3981355B2 (en) Manufacturing method of plastic optical member
JPH0259961B2 (en)
US5863993A (en) Preparation method of polymeric rod and gradient-index rod lens using free radical bulk polymerization with temperature gradient
KR100586362B1 (en) Apparatus and Method for Preparing Plastic Optical Fiber using successive UV polymerization
JPH08201637A (en) Continuous production of synthetic resin light transmission body
JP2003329856A (en) Method for manufacturing optical transmission body
KR100327867B1 (en) The preparing method of preform for plastic optical fiber
JPH0629885B2 (en) Method for manufacturing synthetic resin optical transmitter
JP2003329857A (en) Method and device for manufacturing optical transmission body
CN110187435A (en) A kind of long distance illumination multinode optical fiber and its manufacturing method
JP2003195065A (en) Method for manufacturing plastic optical member
JP2004184500A (en) Polymerization composition for optical member, and optical member using the same
JP2004094254A (en) Method of manufacturing preform for plastic optical fiber