JPS6125789B2 - - Google Patents

Info

Publication number
JPS6125789B2
JPS6125789B2 JP55139138A JP13913880A JPS6125789B2 JP S6125789 B2 JPS6125789 B2 JP S6125789B2 JP 55139138 A JP55139138 A JP 55139138A JP 13913880 A JP13913880 A JP 13913880A JP S6125789 B2 JPS6125789 B2 JP S6125789B2
Authority
JP
Japan
Prior art keywords
manganese
layer
oxide
electrode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55139138A
Other languages
Japanese (ja)
Other versions
JPS5658983A (en
Inventor
Hideo Tamura
Chiaki Iwakura
Noryuki Yokota
Shingo Tokuda
Yasuhiro Kanetani
Toshio Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP13913880A priority Critical patent/JPS5658983A/en
Publication of JPS5658983A publication Critical patent/JPS5658983A/en
Publication of JPS6125789B2 publication Critical patent/JPS6125789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は種々の電解に使用される不溶性陽極に
関する。すなわち塩化アルカリ電解における塩
素、次亜塩素酸塩、塩素酸塩、過塩素酸塩の製
造、過硫酸塩の製造、有機化合物の電解酸化、電
解採取、海水の淡水化、海水電解、水電解等の陽
極として使用可能な不溶性陽極に関する。従来か
ら塩化アルカリ電解工業では黒鉛が陽極として用
いられていたが、電解消耗が激しく十分な耐食性
が得られなかつた。近年ルテニウム酸化物などの
白金族金属酸化物でチタン等のバルブ金属基体の
表面を被覆した電極(DSA)が使用されている
が、一定以上の厚みのルテニウム層を必要とする
ため経済的に難点がある。したがつて現在では、
これらに代る安価でかつ性能の優れた不溶性陽極
の出現が望まれている。また、一般にバルブ金属
基体に白金族金属酸化物の薄膜被着層を形成させ
た場合、ピンホールがいたるところにでき、この
状態で陽極環境に曝すと、短時間のうちにバルブ
金属基体の不働態化現象が起り陽極として使用に
耐えない。 また白金族金属酸化物の剥離、摩耗、溶解によ
る損失も陽極の不働態化を促進する。この様に不
働態化した電極を再利用するためには不働態化皮
膜を除去し、その後白金族金属酸化物層を再被覆
しなければならない。 本発明は上記の問題点を解決するためのもので
あつて(a)バルブ金属基体 (b)MnOx(xは1.5
以上で2.0より小)で表わされる非化学量論的化
合物を含むマンガン酸化物の中間層 (c)白金族
金属またはその酸化物の表面層よりなる不溶性陽
極である。 (a)のバルブ金属基体としてはチタン、タンタ
ル、ジルコニウム、ニオブ、タングステン、モリ
ブデン、アンチモン等の不働態性被膜を形成する
金属またはその合金が適しているが経済性、電気
的機械的性質、加工性からみてチタンまたはその
合金が好ましい。電極として採用しうる形態は板
状、棒状、エキスパンド状、多孔状等種々の形状
が可能である。(b)の中間層形成は次のごとくに行
なう。上記導電性金属基体の表面を脱脂後、酸処
理、砂吹き処理等の方法でエツチングを行ないマ
ンガン化合物の溶液をハケ塗り、スプレー法、浸
漬法等の手段で塗布する。マンガン化合物として
は硝酸マンガン、塩化マンガン、硫酸マンガン、
リン酸マンガン、酢酸マンガン、ギ酸マンガン、
ナフテン酸マンガン、n―酪酸マンガン等の無機
あるいは有機のマンガン化合物が使用される。溶
媒としては水、エチルアルコール、メチルアルコ
ール、プロピルアルコール、プチルアルコール、
ベンゼン、トルエン、メチルエーテル、エチルエ
ーテル等が用いられ特にアルコール類が好まし
い。上記溶液を塗布後、溶媒を蒸発させるため温
度200℃以下好ましくは150℃以下で充分乾燥させ
る。次いで空気または酸素等の酸化性雰囲気中で
170〜600℃に加熱することにより、これらの化合
物の熱分解により中間層を被着させる。この塗
布、乾燥、熱分解をくり返すことにより中間層が
数10μの厚さで形成される。上記温度未満では酸
化物の生成が充分でなく、600℃を超えると酸化
物の分解が起る。 このようにして得られた中間層の好ましい重量
は約5〜50g/m2である。この場合生成するマン
ガン酸化物の結晶構造はX線解析によりα―
Mn2O3とβ―MnO2との混合酸化物であり、
MnOx(xは1.5以上で2.0より小)の一般式で表
わされ、分析の結果α―Mn2O3が全酸化物中の90
%以上であることが判明している。上記一般式中
のxは約1.5〜1.6程度の場合が多い。同時にこの
マンガン酸化物は非化学量論的化合物であるので
格子欠陥を多く有し良導電性であり、また基体に
対する密着性も良好である。このように多くの格
子欠陥を有する中間層は上記のように焼付温度で
マンガン化合物の熱分解を行なうことによつての
み形成可能であり、このような加熱分解法によら
ず電着法によればほとんど二酸化マンガンMnO2
のみが形成され目的を達成することができない。
しかしながらこの電極をそのまま塩素発生用電極
として用いた場合、塩素過電圧が高く、特にマン
ガン酸化物層のみ形成させた電極においては1〜
100A/dm2の電流密度域で塩素過電圧500〜
1000mVもあることが判つた。(c)の表面層は触媒
活性を高めるために設けられ、白金族金属または
その酸化物の薄層よりなる。すなわち白金、ルテ
ニウム、、ロジウム、イリジウム、パラジウム、
オスミウムの中よりえらばれた1種または2種以
上の金属塩の水溶液または非水溶液よりなる塗布
液が中間層上に塗布される。上記白金族金属のう
ち好ましいのは白金、ルテニウム、イリジウムで
あり、溶媒としては水またはアルコール類が好ま
しい。塗布後、溶媒を蒸発させるために200℃以
下好ましくは150℃以下で充分乾燥し、次いで300
〜700℃に加熱焼成を行なうことにより表面層が
被覆される。加熱焼成温度が300℃未満であるこ
とこれら金属の酸化物層を形成せず、700℃を超
えると中間層との剥離を生じやすく、かつ電極触
媒能が損われる。 この操作をくり返すことにより白金族金属また
はその酸化物の数μ厚さの表面層を得ることがで
きる。この様にして得られた表面層は中間層との
密着性も優秀であり剥離試験の結果、剥れが認め
られない。また表面層の厚みは中間層厚みの1/
10もあれば充分であり、これ以上厚くしても効果
は変りない。 このようにして得らた複層電極の塩素過電圧は
1〜100A/dm2の電流密度域で20〜100mVであ
つて、表面層による電極触媒活性が顕著に現われ
た。またこの中間層の存在は表面層の粗面度
(roughness factor)を増加させ触媒能を助長す
るものと思われる。 また本発明電極は上記のような複層構造を有す
るので、バルブ金属基体に直接白金族金属酸化物
層が被着された電極に比べ、次のような点で有利
である。すなわち電極が陽極環境に曝されて表面
層の脱離、摩耗、溶解等による脱落が起つても、
露出する中間層は陽極環境に対して耐食性が良
く、かつ基体に対する密着性が良好なので剥離は
起らない。それ故、この場合においてもバルブ金
属基体よりも低い中間層自体の電位を示す。した
がつてその様な陽極電位を示すようになつた場
合、電解操作を中止して表面層の再被覆のみ行え
ばよく、かつ電極の交換時期が遅れても電圧の急
上昇することがないので電極の保守性を著しく改
善することができる。 さらに表面層を形成する白金族金属酸化物層が
きわめて薄層でよいことは、これらの金属が比較
的高価であることに起因する経済的不利を最小限
におさえることが可能となる。なお以下示す実施
例の%はいずれも重量%を示す。 実施例 1 市販チタン板(1×10×0.1cm)4枚をアセト
ンで脱脂後、H2O2 10%、HF 5%の混合水溶液
中でエツチング処理を30分間行ない、次いでその
表面に硝酸マンガン0.5mol/水溶液を塗布し、
95℃で20分間乾燥させた。その後、温度200℃の
電気炉中で10分間熱処理を行なつた。この操作を
各チタン板につき、塗布膜の厚さが10μ、20μ、
30μ、40μになるまでくり返しマンガン酸化物層
を形成させた。次にこれらの表面に塩酸(20%)
酸性の塩化ルテニウム0.1mol/を含むエチルア
ルコール溶液を塗布し、95℃で乾燥し、温度450
℃の電気炉中で10分間熱処理を行なつた。 この操作をくり返し厚さ1μの表面層を形成さ
せた。この様にして製造した各電極を飽和食塩水
(NaC 310g/、PH=1.0)中80℃で陽分極
させ陽極電位を測定した。ルギン毛管と電極間と
のオーム損はカーレントインターラプターを使用
してブラウン管オシロスコープに現われる波形よ
り除去した。これりの電極はいずれもマンガン酸
化物中間層の厚さに関係なく第1表(第1図の曲
線A)で表わされるように塩素過電圧の低い陽極
電位を示した。
The present invention relates to an insoluble anode used for various electrolysis. Namely, production of chlorine, hypochlorite, chlorate, perchlorate in alkali chloride electrolysis, production of persulfate, electrolytic oxidation of organic compounds, electrowinning, seawater desalination, seawater electrolysis, water electrolysis, etc. This invention relates to an insoluble anode that can be used as an anode. Graphite has traditionally been used as an anode in the alkali chloride electrolysis industry, but it suffers from severe electrolytic consumption and cannot provide sufficient corrosion resistance. In recent years, electrodes (DSA) in which the surface of a valve metal substrate such as titanium is coated with a platinum group metal oxide such as ruthenium oxide have been used, but this is economically difficult as it requires a ruthenium layer with a certain thickness or more. There is. Therefore, at present,
It is desired that an inexpensive insoluble anode with excellent performance be developed to replace these. Additionally, when a thin film adhesion layer of platinum group metal oxide is generally formed on a valve metal substrate, pinholes are formed everywhere, and if exposed to an anode environment in this state, damage to the valve metal substrate will occur within a short period of time. A phenomenon of activation occurs and it cannot be used as an anode. In addition, loss of platinum group metal oxides due to exfoliation, abrasion, and dissolution also promotes passivation of the anode. In order to reuse such a passivated electrode, the passivation film must be removed and then the platinum group metal oxide layer must be recoated. The present invention is intended to solve the above problems, and consists of (a) valve metal base (b) MnOx (x is 1.5
(c) An insoluble anode consisting of a surface layer of a platinum group metal or its oxide. Metals that form a passive film, such as titanium, tantalum, zirconium, niobium, tungsten, molybdenum, and antimony, or their alloys are suitable for the valve metal base in (a), but they are suitable for economic efficiency, electromechanical properties, and processing. From the viewpoint of properties, titanium or its alloy is preferable. Various shapes can be adopted as the electrodes, such as a plate shape, a rod shape, an expanded shape, and a porous shape. The intermediate layer (b) is formed as follows. After the surface of the conductive metal substrate is degreased, it is etched by acid treatment, sand blasting, etc., and then a solution of a manganese compound is applied by brushing, spraying, dipping, or the like. Manganese compounds include manganese nitrate, manganese chloride, manganese sulfate,
manganese phosphate, manganese acetate, manganese formate,
Inorganic or organic manganese compounds such as manganese naphthenate and manganese n-butyrate are used. As a solvent, water, ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol,
Benzene, toluene, methyl ether, ethyl ether, etc. are used, and alcohols are particularly preferred. After coating the above solution, it is sufficiently dried at a temperature of 200° C. or lower, preferably 150° C. or lower, to evaporate the solvent. Then in an oxidizing atmosphere such as air or oxygen
The interlayer is deposited by thermal decomposition of these compounds by heating to 170-600°C. By repeating this coating, drying, and thermal decomposition, an intermediate layer with a thickness of several tens of microns is formed. Below the above temperature, oxides are not sufficiently produced, and above 600°C, oxides decompose. The preferred weight of the intermediate layer thus obtained is approximately 5 to 50 g/m 2 . The crystal structure of the manganese oxide produced in this case was determined by X-ray analysis.
It is a mixed oxide of Mn 2 O 3 and β-MnO 2 ,
It is expressed by the general formula of MnOx (x is 1.5 or more and less than 2.0), and as a result of analysis, α-Mn 2 O 3 is 90% of the total oxide.
% or more. In most cases, x in the above general formula is about 1.5 to 1.6. At the same time, since this manganese oxide is a non-stoichiometric compound, it has many lattice defects, has good conductivity, and also has good adhesion to the substrate. The intermediate layer having many lattice defects can only be formed by thermally decomposing the manganese compound at the baking temperature as described above, and it is not possible to form it by thermally decomposing the manganese compound at the baking temperature. Almost manganese dioxide MnO 2
only is formed and the purpose cannot be achieved.
However, when this electrode is used as it is as an electrode for chlorine generation, the chlorine overvoltage is high, especially in the case of an electrode with only a manganese oxide layer formed.
Chlorine overvoltage 500~ in the current density range of 100A/ dm2
It was found that the voltage was as high as 1000mV. The surface layer (c) is provided to increase catalytic activity and is made of a thin layer of platinum group metal or its oxide. i.e. platinum, ruthenium, rhodium, iridium, palladium,
A coating liquid consisting of an aqueous solution or a non-aqueous solution of one or more metal salts selected from osmium is applied onto the intermediate layer. Preferred among the platinum group metals are platinum, ruthenium, and iridium, and water or alcohols are preferred as the solvent. After coating, dry thoroughly at 200°C or lower, preferably 150°C or lower, to evaporate the solvent, and then dry at 300°C or lower, preferably at 150°C or lower.
The surface layer is coated by heating and baking at ~700°C. The heating and calcination temperature should be less than 300°C, without forming an oxide layer of these metals, and if it exceeds 700°C, separation from the intermediate layer will easily occur and the electrode catalytic ability will be impaired. By repeating this operation, a surface layer of platinum group metal or its oxide with a thickness of several micrometers can be obtained. The surface layer thus obtained has excellent adhesion to the intermediate layer, and no peeling was observed as a result of a peel test. Also, the thickness of the surface layer is 1/ of the thickness of the intermediate layer.
10 is sufficient, and even if it is thicker than this, the effect will not change. The chlorine overvoltage of the thus obtained multilayer electrode was 20 to 100 mV in the current density range of 1 to 100 A/dm 2 , and the electrocatalytic activity due to the surface layer was remarkable. It is also believed that the presence of this intermediate layer increases the roughness factor of the surface layer and promotes catalytic performance. Furthermore, since the electrode of the present invention has the multilayer structure as described above, it has the following advantages over an electrode in which a platinum group metal oxide layer is directly deposited on a valve metal base. In other words, even if the electrode is exposed to the anode environment and the surface layer falls off due to detachment, abrasion, dissolution, etc.
The exposed intermediate layer has good corrosion resistance against the anode environment and good adhesion to the substrate, so no peeling occurs. Therefore, in this case as well, the potential of the intermediate layer itself is lower than that of the valve metal substrate. Therefore, if the anode potential shows such an anode potential, it is sufficient to stop the electrolytic operation and recoat the surface layer.Also, even if it is too late to replace the electrode, the voltage will not rise suddenly, so the electrode maintainability can be significantly improved. Furthermore, the fact that the platinum group metal oxide layer forming the surface layer can be an extremely thin layer makes it possible to minimize the economic disadvantage caused by the relatively high cost of these metals. Note that all percentages in the examples shown below indicate weight percentages. Example 1 Four commercially available titanium plates (1 x 10 x 0.1 cm) were degreased with acetone, etched in a mixed aqueous solution of 10% H 2 O 2 and 5% HF for 30 minutes, and then manganese nitrate was applied to the surface. Apply 0.5mol/aqueous solution,
Dry at 95°C for 20 minutes. Thereafter, heat treatment was performed for 10 minutes in an electric furnace at a temperature of 200°C. Repeat this operation for each titanium plate, depending on the thickness of the coating film: 10μ, 20μ,
Manganese oxide layers were repeatedly formed until the thickness became 30μ and 40μ. Then apply hydrochloric acid (20%) to these surfaces
Apply an ethyl alcohol solution containing 0.1 mol of acidic ruthenium chloride, dry at 95℃, and heat to 450℃.
Heat treatment was performed in an electric furnace at ℃ for 10 minutes. This operation was repeated to form a surface layer with a thickness of 1 μm. Each electrode thus produced was anodically polarized in saturated saline (NaC 310g/, PH=1.0) at 80°C, and the anode potential was measured. Ohmic loss between the Luggin capillary and the electrode was removed from the waveform appearing on the cathode ray tube oscilloscope using a current interrupter. All of these electrodes exhibited low anodic potentials with low chlorine overpotentials, as shown in Table 1 (curve A in Figure 1), regardless of the thickness of the manganese oxide intermediate layer.

【表】 実施例 2 タンタル板(1×10×0.1cm)3枚を実施例1
と同様に処理して厚み20μのマンガン酸化物の中
間層を形成させた。これらの表面にそれぞれ塩酸
(10%)酸性の(1)塩化白金酸0.1mol/水溶液、
(2)塩化ロジウム0.1mol/水溶液(3)塩化ルテニウ
ム0.05mol/と塩化イリジウム0.05mol/との
混合水溶液を塗布し95℃で20分間乾燥後、温度
500℃の電気炉中で10分間熱処理を行なつた。表
面酸化物層が厚み2μになるまで塗布、乾燥、熱
処理をくり返した。これらの陽極電位を実施例1
と同様にして飽和食塩水(PH=1.0)中80℃で測
定したところ(2),(3)については実施例1と同様の
陽極電位、(1)については第2表(第1図曲線B)
で表わされる陽極電位を示した。
[Table] Example 2 Three tantalum plates (1 x 10 x 0.1 cm) were prepared in Example 1.
An intermediate layer of manganese oxide with a thickness of 20 μm was formed by the same treatment as above. Hydrochloric acid (10%) acidic (1) chloroplatinic acid 0.1 mol/aqueous solution was applied to these surfaces, respectively.
(2) Rhodium chloride 0.1 mol/aqueous solution (3) A mixed aqueous solution of ruthenium chloride 0.05 mol/ and iridium chloride 0.05 mol/ is applied and dried at 95℃ for 20 minutes, then the temperature
Heat treatment was performed for 10 minutes in an electric furnace at 500°C. Coating, drying, and heat treatment were repeated until the surface oxide layer had a thickness of 2 μm. These anode potentials were determined in Example 1.
Measurements were made at 80°C in saturated saline solution (PH=1.0) in the same manner as in Example 1. (2) and (3) were measured at the same anode potential as in Example 1, and (1) was measured at 80°C in saturated saline (PH = 1.0). B)
The anode potential is expressed as .

【表】 実施例 3比較例 実施例1と同じチタン板に砂吹き処理を行なつ
た後、同様の方法で厚み20μのマンガン酸化物の
中間層を形成させた。この表面に実施例1と同様
にして厚み1μの酸化ルテニウムの表面層を形成
させた。一方同じチタン板に中間層を省略し、そ
の表面に直接厚み1μの酸化ルテニウム層を形成
させた。この2種類の電極を陽極としてHeO4
2mol/+NaC 1mol/混合溶液の電解を
電流密度100A/dm2にて行なつたところ、前者
の電極は約26時間使用可能であつたが、後者の電
極は約11時間で表面層が消耗した。このように本
発明陽極は直接酸化ルテニウム層を被着させたチ
タン電極の2倍以上の耐食性を示した。
[Table] Example 3 Comparative Example After sandblasting the same titanium plate as in Example 1, an intermediate layer of manganese oxide having a thickness of 20 μm was formed in the same manner. A ruthenium oxide surface layer having a thickness of 1 μm was formed on this surface in the same manner as in Example 1. On the other hand, the intermediate layer was omitted from the same titanium plate, and a 1 μm thick ruthenium oxide layer was formed directly on the surface. HeO 4 using these two types of electrodes as anodes
When a mixed solution of 2 mol/+1 mol of NaC was electrolyzed at a current density of 100 A/ dm2 , the former electrode could be used for about 26 hours, but the surface layer of the latter electrode was consumed in about 11 hours. . As described above, the anode of the present invention exhibited corrosion resistance more than twice that of a titanium electrode on which a ruthenium oxide layer was directly deposited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1,2における本発明電極の陽
分極特性を示す電流―電位曲線図である。
FIG. 1 is a current-potential curve diagram showing the anodic polarization characteristics of the electrodes of the present invention in Examples 1 and 2.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)バルブ金属基体 (b)MnOx(xは1.5以
上で2.0より小)で表わされる非化学量論的化合
物を含むマンガン酸化物の中間層 (c)白金族金
属またはその酸化物の表面層、よりなる不溶性陽
極。
1 (a) Valve metal substrate (b) Intermediate layer of manganese oxide containing a non-stoichiometric compound represented by MnOx (x is 1.5 or more and less than 2.0) (c) Surface of platinum group metal or its oxide layer, consisting of an insoluble anode.
JP13913880A 1980-10-03 1980-10-03 Insoluble anode Granted JPS5658983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13913880A JPS5658983A (en) 1980-10-03 1980-10-03 Insoluble anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13913880A JPS5658983A (en) 1980-10-03 1980-10-03 Insoluble anode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7992978A Division JPS558427A (en) 1978-06-30 1978-06-30 Insoluble anode

Publications (2)

Publication Number Publication Date
JPS5658983A JPS5658983A (en) 1981-05-22
JPS6125789B2 true JPS6125789B2 (en) 1986-06-17

Family

ID=15238421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13913880A Granted JPS5658983A (en) 1980-10-03 1980-10-03 Insoluble anode

Country Status (1)

Country Link
JP (1) JPS5658983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0131030Y2 (en) * 1986-08-20 1989-09-22
JPH0420223Y2 (en) * 1987-05-12 1992-05-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1213567B (en) * 1986-12-19 1989-12-20 Permelec Spa PERMANENT ANODE FOR HIGH DENSITY CURRENT GALVANIC PROCEDURES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0131030Y2 (en) * 1986-08-20 1989-09-22
JPH0420223Y2 (en) * 1987-05-12 1992-05-08

Also Published As

Publication number Publication date
JPS5658983A (en) 1981-05-22

Similar Documents

Publication Publication Date Title
US3773555A (en) Method of making an electrode
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
JP2713788B2 (en) Oxygen generating electrode and method for producing the same
US3882002A (en) Anode for electrolytic processes
US4125449A (en) Transition metal oxide electrodes
US4297195A (en) Electrode for use in electrolysis and process for production thereof
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
JP2574699B2 (en) Oxygen generating anode and its manufacturing method
JP2596807B2 (en) Anode for oxygen generation and its production method
JP2768904B2 (en) Oxygen generating electrode
US5665218A (en) Method of producing an oxygen generating electrode
EP0046449A1 (en) Dimensionally stable coated electrode for electrolytic process, comprising protective oxide interface on valve metal base, and process for its manufacture
US4670122A (en) Low over-voltage electrodes for alkaline electrolytes
US4265728A (en) Method and electrode with manganese dioxide coating
JP2925938B2 (en) Oxygen generating electrode and method for producing the same
US4208450A (en) Transition metal oxide electrodes
JPS6125789B2 (en)
JP2596821B2 (en) Anode for oxygen generation
JPS62243790A (en) Anode for electrolysis
WO1985000838A1 (en) Manufacture of oxygen evolving anodes with film-forming metal base and catalytic oxide coating comprising ruthenium
KR890003514B1 (en) Cathode for electrolysis and a process for making the said cathode
JPS6134519B2 (en)
JPH0499294A (en) Oxygen generating anode and its production
JPH0343353B2 (en)
US3969217A (en) Electrolytic anode