JPS61253870A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61253870A
JPS61253870A JP60095437A JP9543785A JPS61253870A JP S61253870 A JPS61253870 A JP S61253870A JP 60095437 A JP60095437 A JP 60095437A JP 9543785 A JP9543785 A JP 9543785A JP S61253870 A JPS61253870 A JP S61253870A
Authority
JP
Japan
Prior art keywords
film
type
type layer
layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60095437A
Other languages
Japanese (ja)
Inventor
Tadashi Saito
忠 斉藤
Shinichi Muramatsu
信一 村松
Haruo Ito
晴夫 伊藤
Sunao Matsubara
松原 直
Nobuo Nakamura
信夫 中村
Juichi Shimada
嶋田 寿一
Shigeru Kokuuchi
滋 穀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60095437A priority Critical patent/JPS61253870A/en
Publication of JPS61253870A publication Critical patent/JPS61253870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent radiation damage, by irradiating ultraviolet rays to reacting gas of compound containing at least silicon, in order to form a transparent passivation film on the surface of an Si thin film semiconductor element. CONSTITUTION:By plasma CVD using SiH4 as a main source gas, on a substrate 1 having a transparent conducting electrode film 2, a P-type layer 31, i-type layer 32 and N-type layer 33 are sequentially formed, on which SiO2 is formed by photo CVD. At this time, the substrate temperature may be 300 deg.C, and 185nm ultraviolet rays are irradiated to SiH4-N2O reaction gas from an Hg lamp. After an SiO2 film is formed, holes 5 are opened therethrough and an electrode is evaporated so that it can be obtained with the N-type Si layer 33 with a low resistance at the holes 5. Thus surface damage can be remarkably reduced and a better photovoltaic device can be provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はシリコン系薄膜半導体素子の構造及び製造方法
、詳しくは光電変換デバイスの構造及び製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure and manufacturing method of a silicon-based thin film semiconductor element, and more particularly to the structure and manufacturing method of a photoelectric conversion device.

〔発明の背景〕[Background of the invention]

シリコン系薄膜半導体素子として、太陽電池。 Solar cells as silicon-based thin film semiconductor elements.

電子写真感光材、光センサ−、薄膜トランジスタ及び撮
像素子などがあり、薄膜半導体時に非晶質半導体薄膜の
応用が注目されている(日経エレクトロニクス、198
2年2月15日号、第1.22頁参照)。この薄膜は組
成を自由に選択できるため可視域から赤外域迄の広い範
囲で感度を有し、また高い吸収係数を有するため必要な
膜厚はミクロン程度で良く、n形やp形の価電子制御も
行えるなどの特長を持っている。
There are electrophotographic photosensitive materials, optical sensors, thin film transistors, and imaging devices, and the application of amorphous semiconductor thin films to thin film semiconductors is attracting attention (Nikkei Electronics, 198
(See February 15, 2015 issue, page 1.22). Because the composition of this thin film can be freely selected, it has sensitivity in a wide range from the visible to the infrared region.It also has a high absorption coefficient, so the required film thickness is only about microns, and it has n-type and p-type valence electrons. It has features such as being able to be controlled.

かかる半導体薄膜の製造では、従来からグロー放電など
のプラズマ化学蒸着(CVD)法が一般に用いられてい
た。このプラズマCVD法では、SiH,などのグロー
放電によりプラズマを発生させガラスなどの基板上に半
導体膜を形成する。
In the production of such semiconductor thin films, plasma chemical vapor deposition (CVD) methods such as glow discharge have been commonly used. In this plasma CVD method, a semiconductor film is formed on a substrate such as glass by generating plasma by glow discharge of SiH or the like.

例えば、透明導電膜を有するガラス基板上に、B、H,
を含有するSiH,−CH,系ガスを用いp形SiC層
、SiH4のみでi形Si層及びPH,を含有するSi
H4を用いn形層を順次形成し、 pin型Si薄膜半
導体素子を作製することができる。
For example, B, H,
p-type SiC layer using SiH containing -CH, -CH, system gas, i-type Si layer using only SiH4, and Si containing PH.
By sequentially forming n-type layers using H4, a pin type Si thin film semiconductor device can be manufactured.

しかし、この種の半導体素子を太陽電池に適用した場合
、その光電変換効率は10%と低く、発電用としては更
に高い効率の実現が望まれる。結晶型Si太陽電池では
、最近19%と高い効率が得られている。この様な高い
効率が得られた一つの原因として、素子表面を酸化して
不能態化(パッシベーション)したことが挙げられる。
However, when this type of semiconductor element is applied to a solar cell, its photoelectric conversion efficiency is as low as 10%, and it is desired to achieve even higher efficiency for power generation. Crystalline Si solar cells have recently achieved efficiency as high as 19%. One of the reasons why such high efficiency was obtained is that the element surface was oxidized to make it inactive (passivation).

結晶型では、約800℃の高温での素子表面の酸化工程
が採用されている。しかし、薄膜素子特に非晶質型素子
の場合、約500’C以上の高温処理ではH脱離などの
構造変化が生じ半導体素子の性能が著しく低下してしま
う。
For the crystal type, a process of oxidizing the element surface at a high temperature of about 800° C. is used. However, in the case of a thin film element, particularly an amorphous type element, high-temperature treatment at a temperature of about 500'C or higher causes structural changes such as H elimination, resulting in a significant deterioration in the performance of the semiconductor element.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる従来の問題点を解決できる光起
電力素子の構造及びその製造方法を提供することにある
An object of the present invention is to provide a structure of a photovoltaic device and a method for manufacturing the same that can solve the conventional problems.

〔発明の概要〕[Summary of the invention]

一般の薄膜半導体素子の不動態化膜として、酸化シリコ
ン、窒化シリコン、酸化窒化シリコンや酸化チタンなど
の使用が知られている。これらの不動態化膜を低温で形
成する方法としてプラズマCVD法、スパッター法や電
子ビーム蒸着法があるが1反応系内に高エネルギー粒子
を含むため、基板表面及び形成される膜に放射線損傷を
与える。
It is known to use silicon oxide, silicon nitride, silicon oxynitride, titanium oxide, and the like as a passivation film for general thin-film semiconductor devices. Plasma CVD, sputtering, and electron beam evaporation methods are available to form these passivation films at low temperatures, but because each reaction system contains high-energy particles, they may cause radiation damage to the substrate surface and the formed film. give.

本発明では、かかる放射線損傷を防ぐため、光励起化学
反応法を用いる。光励起化学反応法は、紫外光等を用い
て化学反応を行わせ、低温で酸化シリコンなどの薄膜を
形成する方法である。
In the present invention, a photoexcitation chemical reaction method is used to prevent such radiation damage. The photo-excited chemical reaction method is a method of forming a thin film of silicon oxide or the like at a low temperature by causing a chemical reaction using ultraviolet light or the like.

例えば、光励起法でSin、膜を形成する時の反応は下
記の通りである。
For example, the reaction when forming a film of Sin using a photoexcitation method is as follows.

0、+h v (185nm) →20 (”P)  
 ・=(1)SiH,+40(”P)   4SiO,
+2H,0−(2)S i+ 20 (” P )  
  →S x Ox     ・・*3)式(2)は0
ラジカルとSiH4の反応でSin、が形成される場合
1式(3)は0ラジカルでSi表面が酸化される場合で
ある。S i O。
0, +h v (185nm) →20 (”P)
・=(1)SiH,+40(”P)4SiO,
+2H,0-(2)S i+ 20 ("P)
→S x Ox...*3) Equation (2) is 0
When Si is formed by the reaction between radicals and SiH4, Equation 1 (3) is a case where the Si surface is oxidized by zero radicals. S i O.

以外の例えば窒化膜の場合0□の代わりにNH。For example, in the case of a nitride film, use NH instead of 0□.

又は(cH2)i を用いれば良い。他の膜桃えばT 
i O,の場合イソプロピルチタネートと02を用いれ
ば良い。
Or (cH2)i may be used. Other membranes are T
In the case of i O, isopropyl titanate and 02 may be used.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

基板1上に透明導電電極膜2を有するものを用い、S 
i H4を主ソースガスとするプラズマCVD法により
、p形層31、i形層32、n形層33を順次形成する
。プラズマCVD時の基板温度は200℃〜300℃に
保持して膜形成を行うと通常は非晶質Si又はSiC層
が形成される。このシリコン層上に、光CVD法を用い
約100人厚さのSin、を形成する。この際、基板温
度を300℃とし、Hgランプからの185nmの紫外
光をSiH,−N、O系反応ガスに照射する。
Using a substrate having a transparent conductive electrode film 2 on the substrate 1,
A p-type layer 31, an i-type layer 32, and an n-type layer 33 are sequentially formed by a plasma CVD method using iH4 as a main source gas. When film formation is performed while maintaining the substrate temperature at 200° C. to 300° C. during plasma CVD, an amorphous Si or SiC layer is usually formed. On this silicon layer, a Si layer having a thickness of approximately 100 nm is formed using a photo-CVD method. At this time, the substrate temperature is set to 300° C., and the SiH, —N, O-based reaction gas is irradiated with 185 nm ultraviolet light from an Hg lamp.

SiO□膜形成後、S i O,の1部に開孔部5を設
け、電極(例えば、AQ)を蒸着し、開孔部5でn形S
i層33との低抵抗接触を得る。この方法で試作した太
陽電池では、特に開放電圧値に改善が見られた。
After forming the SiO□ film, an opening 5 is provided in a part of the S
Obtain a low resistance contact with the i-layer 33. The solar cells prototyped using this method showed an improvement, especially in the open-circuit voltage value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、薄膜半導体の表面パッシベーション特
性向上が得られた。更に、パッシベーション膜形成のた
め光CVD法を採用することにより、従来プラズマなど
の中に存在する高エネルギー粒子による表面損傷を著し
く低減でき、良好な光起電力素子を作製できた。又、電
極6として光反射率の汚れたAgを被着すれば光の繰返
し利用による特性向上も期待されるなど本発明による実
用価値は高い。
According to the present invention, improvement in surface passivation characteristics of a thin film semiconductor was obtained. Furthermore, by employing the photo-CVD method for forming the passivation film, surface damage caused by high-energy particles conventionally present in plasma etc. could be significantly reduced, and a good photovoltaic element could be produced. In addition, if Ag with a dirty light reflectance is deposited as the electrode 6, it is expected that the characteristics will be improved by repeated use of light, so the practical value of the present invention is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に関する素子の断面図である。 FIG. 1 is a sectional view of an element related to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、少なくともシリコンを含む化合物から構成された反
応ガスに紫外線を照射し、透明不動態化膜をシリコン薄
膜半導体素子表面に形成した光起電力素子。 2、上記透明不動態化膜をシリコンを主要元素を含むも
のとする特許請求の範囲第1項記載の光起電力素子。
[Scope of Claims] 1. A photovoltaic device in which a transparent passivation film is formed on the surface of a silicon thin film semiconductor element by irradiating ultraviolet rays to a reactive gas composed of a compound containing at least silicon. 2. The photovoltaic device according to claim 1, wherein the transparent passivation film contains silicon as a main element.
JP60095437A 1985-05-07 1985-05-07 Photovoltaic device Pending JPS61253870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60095437A JPS61253870A (en) 1985-05-07 1985-05-07 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60095437A JPS61253870A (en) 1985-05-07 1985-05-07 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS61253870A true JPS61253870A (en) 1986-11-11

Family

ID=14137673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60095437A Pending JPS61253870A (en) 1985-05-07 1985-05-07 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61253870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216416A1 (en) * 2012-03-05 2013-09-05 Roth & Rau Ag Process for the production of optimized solar cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996300A (en) * 1973-01-19 1974-09-12
JPS58212127A (en) * 1982-06-03 1983-12-09 Hitachi Ltd Manufacture of silicon thin film semiconductor device
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film
JPS59141278A (en) * 1983-02-02 1984-08-13 Fuji Xerox Co Ltd Photoelectric conversion element and manufacture thereof
JPS59147435A (en) * 1983-02-10 1984-08-23 Mitsui Toatsu Chem Inc Formation of silicon oxide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4996300A (en) * 1973-01-19 1974-09-12
JPS58212127A (en) * 1982-06-03 1983-12-09 Hitachi Ltd Manufacture of silicon thin film semiconductor device
JPS5958819A (en) * 1982-09-29 1984-04-04 Hitachi Ltd Formation of thin film
JPS59141278A (en) * 1983-02-02 1984-08-13 Fuji Xerox Co Ltd Photoelectric conversion element and manufacture thereof
JPS59147435A (en) * 1983-02-10 1984-08-23 Mitsui Toatsu Chem Inc Formation of silicon oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012216416A1 (en) * 2012-03-05 2013-09-05 Roth & Rau Ag Process for the production of optimized solar cells

Similar Documents

Publication Publication Date Title
JP3046965B1 (en) Manufacturing method of amorphous silicon-based thin film photoelectric conversion device
US4409605A (en) Amorphous semiconductors equivalent to crystalline semiconductors
JPS6249672A (en) Amorphous photovoltaic element
US6043105A (en) Method for manufacturing semiconductor sensitive devices
US4710786A (en) Wide band gap semiconductor alloy material
Schropp Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost
US5282993A (en) Light-stable semiconductor material based on amorphous germanium and a method for its production
US4965225A (en) Method of stabilizing amorphous semiconductors
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
JPS6334632B2 (en)
US7038238B1 (en) Semiconductor device having a non-single crystalline semiconductor layer
JPS61253870A (en) Photovoltaic device
JP2001284619A (en) Phtovoltaic device
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JPH04249374A (en) Photoelectric converting element
JPS62179164A (en) Photoelectric conversion device
JP2702304B2 (en) Method for forming polycrystalline semiconductor layer and method for manufacturing photovoltaic device using the same
JP2675552B2 (en) Amorphous semiconductor, amorphous semiconductor device and manufacturing method thereof
KR880002131B1 (en) Photo responsive device processing method
JPS59101879A (en) Thin film solar battery
JPS6135569A (en) Photovoltaic device
JPS62224981A (en) Amorphous semiconductor device
JPS635914B2 (en)
JPH0323679A (en) Photoelectric transducer
JPS63283119A (en) Amorphous semiconductor, amorphous semiconductor device and manufacture thereof