JPH04249374A - Photoelectric converting element - Google Patents

Photoelectric converting element

Info

Publication number
JPH04249374A
JPH04249374A JP3014159A JP1415991A JPH04249374A JP H04249374 A JPH04249374 A JP H04249374A JP 3014159 A JP3014159 A JP 3014159A JP 1415991 A JP1415991 A JP 1415991A JP H04249374 A JPH04249374 A JP H04249374A
Authority
JP
Japan
Prior art keywords
germanium
gas
film
layer
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3014159A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nomoto
克彦 野元
Yukihiko Nakada
行彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3014159A priority Critical patent/JPH04249374A/en
Publication of JPH04249374A publication Critical patent/JPH04249374A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To contrive to increase an absorbing coefficient and enhance a light converting function by a method wherein a poly-crystal line silicon germanium thin film containing a specific amount or more of germanium atom is used in a photoelectric active region of a photoelectric converting element. CONSTITUTION:A metallic film 1-1 is formed on a surface of a glass substrate 1, and an n<+> type silicon and germanium layer 2 and an n type silicon and germanium layer 3 are formed on the surface thereof. At this time, a mixture ratio of phosphine (PH3) gas is same, and germanium (GeH4)gas other than silane (SiH4) gas is mixed as material gas at a mixture gas ratio of 10% or above to make the layers. A p<+> type silicon layer 4, a transparent conductive film 5, a collecting electrode 6, and the like are formed on the surface. Thereby, it is possible to enhance a photoelectric converting function.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光エネルギを電気エネ
ルギに変換する光電変換素子の改良に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in photoelectric conversion elements that convert light energy into electrical energy.

【0002】0002

【従来の技術】光電変換素子の一例として、太陽電池を
見ると、近年非晶質シリコンを基本とした太陽電池を初
めとして化合物半導体を使用した薄膜太陽電池が、最近
の精力的な研究,開発により、電卓等の民生用電源とし
て既に実用化されている。一方、結晶質(単結晶,多結
晶)シリコン等のウエーハを用いた太陽電池は、宇宙用
,灯台用等として実用化されている。しかしながら、こ
れら両者ともに、最も市場規模の大きい一般の電力を供
給する発電システムへ展開していくためには、(1)ウ
エーハを用いた結晶質シリコン等ではウエーハそのもの
が既に高価であるために、一般の火力,水力等による発
電コストと競合することが難しい。
[Prior Art] Looking at solar cells as an example of photoelectric conversion elements, in recent years, amorphous silicon-based solar cells and thin-film solar cells using compound semiconductors have been actively researched and developed. It has already been put into practical use as a power source for consumer electronics such as calculators. On the other hand, solar cells using wafers of crystalline (monocrystalline, polycrystalline) silicon, etc. have been put into practical use for space applications, lighthouses, and the like. However, in order to develop both of these into power generation systems that supply general electricity, which has the largest market size, (1) crystalline silicon using wafers, etc., requires the use of wafers, which are already expensive; It is difficult to compete with the power generation costs of general thermal power, hydropower, etc.

【0003】(2)また、薄膜太陽電池では、従来の非
晶質シリコン素子に見られるように、光電変換効率、信
頼性たとえば光劣化の問題等に問題があり、本来の基板
選択の自由度、低コストプロセスの利点が生かしきれて
いない。
(2) Furthermore, thin-film solar cells have problems with photoelectric conversion efficiency and reliability, such as photodegradation, as seen in conventional amorphous silicon devices, and the degree of freedom in substrate selection is limited. , the advantages of low-cost processes are not fully utilized.

【0004】最近、上述のような問題に対して、結晶質
の薄膜たとえば多結晶シリコン薄膜をガラスのような基
板上に成長させ、光電変換機能を付与するための研究が
活発化してきた。これらは、高価なシリコンウエーハを
用いないで、可能な限り安価な基板上に良質のシリコン
薄膜を堆積させ、薄膜太陽電池の本来の利点を引出そう
という試みであり、このような方向が実証されれば、太
陽電池に限らず光センサ、ホトカプラ等の一般の光電変
換素子としても有効であることは言うまでもない。
[0004]Recently, in order to solve the above-mentioned problems, there has been active research into growing a crystalline thin film, such as a polycrystalline silicon thin film, on a substrate such as glass to impart a photoelectric conversion function. These are attempts to bring out the inherent advantages of thin-film solar cells by depositing high-quality silicon thin films on the cheapest possible substrates without using expensive silicon wafers, and this direction has not been proven. Needless to say, it is effective not only for solar cells but also for general photoelectric conversion elements such as optical sensors and photocouplers.

【0005】このような膜の作成方法は、低温(室温〜
400℃)において、プラズマ化学気相成長方法(p−
CVD法)又はスパッタ法、熱CVD法等により非晶質
の膜を堆積し、その後高温炉(500℃〜1000℃)
で熱処理を行なうことにより又はレーザーアニールによ
り多結晶薄膜を得る。
[0005] A method for forming such a film is performed at low temperatures (room temperature to
400°C), plasma chemical vapor deposition method (p-
An amorphous film is deposited by CVD method), sputtering method, thermal CVD method, etc., and then deposited in a high temperature furnace (500°C to 1000°C).
A polycrystalline thin film is obtained by heat treatment or laser annealing.

【0006】図2は、多結晶シリコン薄膜を用いた従来
の太陽電池の一例の略断面図である。これは以下のよう
にして製造される。まずガラス基板1の表面に金属膜1
−1を形成する。次にシラン(SiH4 )にホスフィ
ン(PH3 )ガスを0.1%〜1%の範囲で混入させ
たガスを用い金属膜1−1の表面に1000〜3000
オングストロームの薄膜のn+ 型シリコン層2−1を
形成する。次にその表面にn− 型シリコン層3−1を
形成する。これは光電活性層である。このとき、ホスフ
ィンガス濃度を0.1%以下とすることにより、n− 
型シリコン層3−1が得られる。さらにその上にp+ 
型シリコン層4を形成する。このときはシラン(SiH
4 )にジボラン(B2 H6 )ガスを予めガス比で
0.1〜1%混入させ、100〜1000オングストロ
ームの膜を形成する。さらにその表面に、透明導電膜5
および集電極6を形成する。
FIG. 2 is a schematic cross-sectional view of an example of a conventional solar cell using a polycrystalline silicon thin film. This is manufactured as follows. First, a metal film 1 is placed on the surface of a glass substrate 1.
-1 is formed. Next, using a gas containing silane (SiH4) mixed with phosphine (PH3) gas in the range of 0.1% to 1%, the surface of the metal film 1-1 was coated with 1000 to 3000
An angstrom thin n+ type silicon layer 2-1 is formed. Next, an n- type silicon layer 3-1 is formed on the surface. This is the photoelectrically active layer. At this time, by setting the phosphine gas concentration to 0.1% or less, n-
A mold silicon layer 3-1 is obtained. Furthermore, p+
A mold silicon layer 4 is formed. At this time, silane (SiH
4) Diborane (B2 H6) gas is mixed in advance at a gas ratio of 0.1 to 1% to form a film of 100 to 1000 angstroms. Further, on the surface, a transparent conductive film 5
and a collector electrode 6 is formed.

【0007】[0007]

【発明が解決しようとする課題】前述のような多結晶シ
リコン薄膜には次のような問題点がある。すなわち、多
結晶シリコンウエーハを用いようと、多結晶シリコン薄
膜を利用しようと、太陽光を素子内部で十分に吸収させ
るためには、同じ材料である以上、同程度の膜厚、つま
り数十ミクロン以上の膜厚が要求されるのは当然である
。しかるに、これまで報告されている多結晶シリコン薄
膜の膜質は、多結晶ウエーハに比べて各段に悪い。これ
は、一つには結晶粒径が格段に小さく、質の悪い結晶粒
径の影響が回避できないためである。
SUMMARY OF THE INVENTION The polycrystalline silicon thin film described above has the following problems. In other words, whether a polycrystalline silicon wafer or a polycrystalline silicon thin film is used, in order to sufficiently absorb sunlight inside the device, as long as the material is the same, the film thickness must be the same, that is, several tens of microns. It is natural that a film thickness greater than that is required. However, the film quality of the polycrystalline silicon thin films reported so far is much worse than that of polycrystalline wafers. This is partly because the crystal grain size is much smaller and the influence of poor quality crystal grain size cannot be avoided.

【0008】したがって、多結晶シリコン薄膜を光電活
性領域に用いた場合、多結晶ウエーハと同程度の膜厚を
用いているとすると、太陽光によって生成された電子ま
たは正孔のようなキャリアが、電極に収集される割合が
極端に低くなってしまい、多結晶ウエーハを使用する場
合と比較して、光電変換機能が著しく低下してしまうと
いう問題点がある。
[0008] Therefore, when a polycrystalline silicon thin film is used in the photoelectrically active region and the film thickness is about the same as that of a polycrystalline wafer, carriers such as electrons or holes generated by sunlight will There is a problem in that the proportion collected by the electrodes becomes extremely low, and the photoelectric conversion function is significantly reduced compared to the case where a polycrystalline wafer is used.

【0009】また、このような薄膜を作成するには通常
600℃以上の高温を要すること、数十ミクロンの厚み
を得るための作成時間が長いこと等のプロセス上の問題
がある。
[0009] Furthermore, there are process problems such as the fact that forming such a thin film usually requires a high temperature of 600° C. or higher, and that it takes a long time to form the film to obtain a thickness of several tens of microns.

【0010】0010

【課題を解決するための手段】本発明においては、光電
変換素子の光電活性領域に、ゲルマニウム(Ge)原子
を10%以上含む多結晶シリコン・ゲルマニウム薄膜を
用いる。
In the present invention, a polycrystalline silicon germanium thin film containing 10% or more of germanium (Ge) atoms is used in the photoelectric active region of a photoelectric conversion element.

【0011】[0011]

【作用】一般に、結晶ゲルマニウムの吸収係数は、全波
長域に亘って、結晶シリコンのそれより1桁以上大きい
ことは公知の事実である。したがって、シリコンにゲル
マニウムを添加していくことにより、吸収係数の増大を
図ることができる。このことは逆に、光電変換素子とし
ての必要膜厚を吸収係数の増大の比率分だけ薄くするこ
とができることになり、光生成されたキャリアの電極へ
の収集を容易ならしめ、光電変換機能が向上する。
[Operation] It is a well-known fact that the absorption coefficient of crystalline germanium is generally more than an order of magnitude larger than that of crystalline silicon over the entire wavelength range. Therefore, by adding germanium to silicon, the absorption coefficient can be increased. Conversely, this means that the required film thickness for a photoelectric conversion element can be reduced by the proportion of the increase in the absorption coefficient, making it easier to collect photogenerated carriers to the electrodes and improving the photoelectric conversion function. improves.

【0012】0012

【実施例】図1は、本発明の一実施例例えば太陽電池(
pn構造)の略断面図である。これは以下のようにして
製造される。まず、図2の場合と同様にガラス基板1の
表面に金属膜1−1を形成する。次にその表面にn+ 
型シリコン・ゲルマニウム層2およびn− 型シリコン
・ゲルマニウム層3を形成する。このときホスフィン(
PH3 )ガスの混合比は同じで、原料ガスとしてシラ
ン(SiH4 )ガス以外にゲルマン(GeH4 )ガ
スを、混合ガス比でたとえば10%混入して作成する。 その後表面にp+ 型シリコン層4,透明導電膜5,集
電極6等を形成することは図2と同じである。
[Example] Figure 1 shows an example of an embodiment of the present invention, such as a solar cell (
FIG. 2 is a schematic cross-sectional view of a pn structure. This is manufactured as follows. First, as in the case of FIG. 2, a metal film 1-1 is formed on the surface of a glass substrate 1. Next, n+ on the surface
A type silicon germanium layer 2 and an n- type silicon germanium layer 3 are formed. At this time, phosphine (
The mixing ratio of PH3) gas is the same, and germane (GeH4) gas is mixed in, for example, at a mixed gas ratio of 10% in addition to silane (SiH4) gas as a raw material gas. Thereafter, a p+ type silicon layer 4, a transparent conductive film 5, a collector electrode 6, etc. are formed on the surface in the same manner as in FIG.

【0013】一般に、ゲルマニウムの添加量増大にとも
ない、シリコン・ゲルマニウム薄膜のバンドギャップは
減少し、その結果太陽電池素子でいえば、開放電圧の低
下が表れるために、上記の光電流の増大と、開放電圧の
低下の割合のバランスによって、このゲルマニウム添加
量が決定されるべきであることはいうまでもない。
Generally, as the amount of germanium added increases, the band gap of the silicon-germanium thin film decreases, and as a result, in the case of solar cell elements, a decrease in open-circuit voltage appears. It goes without saying that the amount of germanium added should be determined by the balance of the rate of decrease in open circuit voltage.

【0014】以上のいずれの場合でも、光の入射側のp
型層としてバンドギャップを大きくするために、CH4
 ガスを混入させ、p+ 型のSiC膜を用いてもよい
ことはいうまでもない。
In any of the above cases, p on the light incident side
In order to increase the bandgap as a type layer, CH4
It goes without saying that a p+ type SiC film may be used by mixing gas.

【0015】図3は、本発明におけるn− 型シリコン
・ゲルマニウム層3と従来のn− シリコン層3−1と
の単層薄膜での吸収係数を、光のエネルギに対して評価
した結果を示すグラフである。図1または図2のような
装置の構造とした場合、光電活性領域はほとんどがn−
 型層に形成され、この領域での光の吸収量および光電
変換機能が素子特性を大きく作用することになる。同図
から明らかなように、本発明の多結晶n− 型シリコン
・ゲルマニウム層3の特性(実線で示す)は、従来例に
よる多結晶n− 型シリコン層3−1の特性(点線で示
す)に比べ、光の吸収係数が全エネルギ範囲に亘って大
きく、特に素子の膜厚を決定する低エネルギ(1.5e
V以下)側での吸収係数は、従来例に比べて約5倍の差
があることが分かる。このことは本発明による多結晶シ
リコン・ゲルマニウム薄膜を用いることにより(本実施
例の場合、膜中のゲルマニウム濃度は約30%)、素子
の膜厚を半桁以下にできることを意味する。すなわち、
図2の素子構成であれば、少なくとも約30ミクロン以
上の膜厚を必要とするが、本発明による図1の実施例で
は、約6ミクロンの膜厚で十分光を吸収することが可能
となった。その結果、多結晶シリコン系薄膜において常
に問題となっている低質膜に起因して、光生成キャリア
の収集が困難であったことが、膜厚を半桁薄くすること
により、光生成キャリアの収集が大幅に改善されること
が分かった。pin構造にも応用できる。
FIG. 3 shows the results of evaluating the absorption coefficient of a single layer thin film of the n- type silicon germanium layer 3 according to the present invention and the conventional n- silicon layer 3-1 with respect to the energy of light. It is a graph. When the device structure is as shown in FIG. 1 or 2, the photoelectrically active region is mostly n-
It is formed in the mold layer, and the amount of light absorbed and the photoelectric conversion function in this region greatly influences the device characteristics. As is clear from the figure, the characteristics of the polycrystalline n-type silicon germanium layer 3 of the present invention (shown by the solid line) are the same as those of the polycrystalline n-type silicon layer 3-1 of the conventional example (shown by the dotted line). The light absorption coefficient is large over the entire energy range, especially at low energy (1.5e
It can be seen that there is a difference of about 5 times in the absorption coefficient on the side (V or less) compared to the conventional example. This means that by using the polycrystalline silicon germanium thin film according to the present invention (in the case of this example, the germanium concentration in the film is about 30%), the film thickness of the device can be reduced by half an order of magnitude or less. That is,
The element configuration shown in FIG. 2 requires a film thickness of at least about 30 microns, but in the embodiment shown in FIG. 1 according to the present invention, it is possible to absorb enough light with a film thickness of about 6 microns. Ta. As a result, it has been difficult to collect photogenerated carriers due to the low quality film, which has always been a problem with polycrystalline silicon thin films. was found to be significantly improved. It can also be applied to pin structures.

【0016】[0016]

【発明の効果】本発明のように、ゲルマニウムをシリコ
ンに添加することにより、上述したような光電変換機能
の向上が期待できる。さらにプロセス上の利点として、
(1)ゲルマニウムの添加により、結晶化温度を低くす
ることが可能であり(Siの場合600℃以上、SiG
eの場合550℃以下)、基板選択の自由度が大きくな
る結果、より安価な基板が利用できる、(2)素子膜厚
が薄くなる結果、工程上のスループットがよくなること
、等を挙げることができる。
[Effects of the Invention] By adding germanium to silicon as in the present invention, the above-mentioned photoelectric conversion function can be expected to be improved. Further process advantages include:
(1) By adding germanium, it is possible to lower the crystallization temperature (600°C or higher for Si,
(550°C or less in the case of e), the degree of freedom in substrate selection increases, so cheaper substrates can be used, and (2) the device film thickness becomes thinner, which improves process throughput. can.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である太陽電池の略断面図、
FIG. 1 is a schematic cross-sectional view of a solar cell that is an embodiment of the present invention;

【図2】従来の太陽電池の一例の略断面図、[Fig. 2] A schematic cross-sectional view of an example of a conventional solar cell.

【図3】多
結晶シリコン薄膜およびシリコン・ゲルマニウム薄膜の
吸収係数の比較を示すグラフである。
FIG. 3 is a graph showing a comparison of absorption coefficients of a polycrystalline silicon thin film and a silicon germanium thin film.

【符号の説明】[Explanation of symbols]

1  ガラス基板 1−1  金属膜 2  N+ 型シリコン・ゲルマニウム層3  n− 
型シリコン・ゲルマニウム層4  p+ 型シリコン層 5  透明導電膜 6  集電極
1 Glass substrate 1-1 Metal film 2 N+ type silicon germanium layer 3 n-
Type silicon/germanium layer 4 P+ type silicon layer 5 Transparent conductive film 6 Collector electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  基板上に異なる導電型の半導体薄膜を
積層し、その光エネルギを電気エネルギに変換する層に
ゲルマニウム原子を10%以上含む結晶質のシリコン・
ゲルマニウム薄膜を用いることを特徴とする光電変換素
子。
Claim 1: Semiconductor thin films of different conductivity types are stacked on a substrate, and the layer that converts light energy into electrical energy is made of crystalline silicon containing 10% or more of germanium atoms.
A photoelectric conversion element characterized by using a germanium thin film.
JP3014159A 1991-02-05 1991-02-05 Photoelectric converting element Withdrawn JPH04249374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3014159A JPH04249374A (en) 1991-02-05 1991-02-05 Photoelectric converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3014159A JPH04249374A (en) 1991-02-05 1991-02-05 Photoelectric converting element

Publications (1)

Publication Number Publication Date
JPH04249374A true JPH04249374A (en) 1992-09-04

Family

ID=11853374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3014159A Withdrawn JPH04249374A (en) 1991-02-05 1991-02-05 Photoelectric converting element

Country Status (1)

Country Link
JP (1) JPH04249374A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738732A (en) * 1995-06-05 1998-04-14 Sharp Kabushiki Kaisha Solar cell and manufacturing method thereof
JP2006041108A (en) * 2004-07-26 2006-02-09 Air Water Inc Method of manufacturing solar cell
CN104362298A (en) * 2014-12-03 2015-02-18 京东方科技集团股份有限公司 Electrode slice and preparation method thereof as well as energy storage device
CN104465874A (en) * 2014-12-03 2015-03-25 京东方科技集团股份有限公司 Solar cell and manufacturing method thereof
CN107071659A (en) * 2017-05-26 2017-08-18 明志科技大学 Acoustic diaphragm and the loudspeaker arrangement containing this acoustic diaphragm

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738732A (en) * 1995-06-05 1998-04-14 Sharp Kabushiki Kaisha Solar cell and manufacturing method thereof
JP2006041108A (en) * 2004-07-26 2006-02-09 Air Water Inc Method of manufacturing solar cell
CN104362298A (en) * 2014-12-03 2015-02-18 京东方科技集团股份有限公司 Electrode slice and preparation method thereof as well as energy storage device
CN104465874A (en) * 2014-12-03 2015-03-25 京东方科技集团股份有限公司 Solar cell and manufacturing method thereof
US10205045B2 (en) 2014-12-03 2019-02-12 Boe Technology Group Co., Ltd. Solar cell and method of manufacturing the same
US10395849B2 (en) 2014-12-03 2019-08-27 Boe Technology Group Co., Ltd. Electrode plate using germanium film, manufacturing method thereof, and energy storage device
CN107071659A (en) * 2017-05-26 2017-08-18 明志科技大学 Acoustic diaphragm and the loudspeaker arrangement containing this acoustic diaphragm
CN107071659B (en) * 2017-05-26 2020-03-27 明志科技大学 Acoustic diaphragm and loudspeaker device comprising same

Similar Documents

Publication Publication Date Title
JP2740337B2 (en) Photovoltaic element
JP2951146B2 (en) Photovoltaic devices
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
WO2010151478A1 (en) Method of making a semiconductor optical detector structure
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JPH0370183A (en) Photovoltaic element
JP2011501407A (en) Manufacturing method of solar cell
Rath et al. Low-temperature deposition of polycrystalline silicon thin films by hot-wire CVD
JPH04266066A (en) Photoelectromotive force element
Sritharathikhun et al. Surface passivation of crystalline and polycrystalline silicon using hydrogenated amorphous silicon oxide film
JPH04130671A (en) Photovoltaic device
KR100927428B1 (en) Solar cell and manufacturing method
US7352044B2 (en) Photoelectric transducer, photoelectric transducer apparatus, and iron silicide film
JPS6334632B2 (en)
JPH04249374A (en) Photoelectric converting element
Angadi et al. A review on different types of materials employed in solar photovoltaic panel
KR100921703B1 (en) Method For Manufacturing Solar Cell
JP2001250968A (en) Crystal silicon thin film semiconductor device, crystal silicon thin film photovoltaic element, and method of manufacturing for crystal silicon thin film semiconductor device
JPH11145498A (en) Silicon thin-film photoelectric converting device
JPH0864851A (en) Photovoltaic element and fabrication thereof
JPH11103080A (en) Solar cell
Fujimoto et al. Development of thin film silicon solar cells using PCVD process
Kuraseko et al. Development of flexible fiber-type poly-Si solar cell
JPH03284882A (en) Semiconductor thin film and manufacture thereof
JP4098386B2 (en) Thin film silicon photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514