JPS61252667A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPS61252667A
JPS61252667A JP9410685A JP9410685A JPS61252667A JP S61252667 A JPS61252667 A JP S61252667A JP 9410685 A JP9410685 A JP 9410685A JP 9410685 A JP9410685 A JP 9410685A JP S61252667 A JPS61252667 A JP S61252667A
Authority
JP
Japan
Prior art keywords
region
thin film
film transistor
semiconductor layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9410685A
Other languages
Japanese (ja)
Inventor
Toshihiko Mano
真野 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9410685A priority Critical patent/JPS61252667A/en
Publication of JPS61252667A publication Critical patent/JPS61252667A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a TFT, which has excellent contact characteristics and high performance, by forming two semiconductor layers in a region, in which contact with a source region, a drain region and wiring material is provided, and determining the thickness of a semiconductor layer, in which a channel is formed at a specified value or less. CONSTITUTION:On a transparent insulating substrate 100, a first polycrystalline silicon layer 101 is formed at a position, which is to become a part of source and drain regions, and machined in a specified pattern. Then a second polycrystalline layer 102, in which a channel region is formed, is formed and machined in a specified pattern. After a gate oxide film 103 is formed by a thermal oxidation process, a gate electrode 104 is formed with polycrystalline silicon having N-type impurities. Thereafter, with a gate electrode as a mask, N-type impurities are implanted, and source and drain regions 107 are formed. At this time, the thickness of the semiconductor layer, in which the channel is formed, is made to be 600Angstrom . Then, an interlayer insulating film 105 is formed on the entire surface and the impurities are activated. Thereafter, windows are formed, and wirings are formed with a wiring material 106. Thus the high performance TFT having a large ON/OFF ratio can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜トランジスタ(以下TPTと略す)及びそ
の製造方法に関し、さらに詳述すれば高性能の特性を提
供するTPTに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor (hereinafter abbreviated as TPT) and a method for manufacturing the same, and more particularly to a TPT that provides high performance characteristics.

〔従来の技術〕[Conventional technology]

従来のTPTの構造、製造方法、及びその特性について
説明する。
The structure, manufacturing method, and characteristics of conventional TPT will be explained.

第2凶は従来のTPTの断面図である。The second problem is a cross-sectional view of a conventional TPT.

第2図(alで、透明絶縁基板200に、多結晶シソコ
ン層201t−形成、所定のパターンに加工する。
In FIG. 2 (al), a polycrystalline silicon layer 201t is formed on a transparent insulating substrate 200 and processed into a predetermined pattern.

$2図11)lで、熱酸化工程により、ゲート酸化膜2
02を形成後、N型(P型)の不純物を有する多結晶シ
リコンくよりゲート電極205t−形成する。しかる後
に、該ゲート電極をマスクとして、イオン注入法により
、N凰(Pa)の不純物を注入することにより、ソース
領域、ドレイン領域204t−形成する。
$2 Figure 11) In the thermal oxidation process, the gate oxide film 2 is
After forming 02, a gate electrode 205t- is formed from polycrystalline silicon having N type (P type) impurities. Thereafter, using the gate electrode as a mask, an impurity of N-(Pa) is implanted by an ion implantation method to form a source region and a drain region 204t.

第2図(clで、cvD法により全面にNH3膜等の層
間絶縁膜205會形成、高温の熱処理工程和より前述の
イオン注入した不純物を活性化した後、=ンタクトをと
る為の窓を形成する@ 第21傾で、例えばAt、At−81等の配線材料20
6により配線形成する。
Figure 2 (cl) After forming an interlayer insulating film 205 such as an NH3 film on the entire surface using the CVD method and activating the impurities implanted in the ions through a high-temperature heat treatment process, a window for maintaining contact is formed. @ 21st slope, wiring material 20 such as At, At-81, etc.
6, wiring is formed.

第2図(61に上述した製造方法忙より形成した72丁
の特性について示す。トランジスタのサイズはチャンネ
ル長りが20μm、チャンネル幅Wが10μmである。
FIG. 2 (61) shows the characteristics of 72 transistors formed by the above-mentioned manufacturing method.The size of the transistor is 20 μm in channel length and 10 μm in channel width W.

X@にチャンネル領域の多結晶シリコン層の厚みT(H
會、Y+m+にドレイン電流tOgより(Al?示す。
X@ is the thickness T(H) of the polycrystalline silicon layer in the channel region
The drain current tOg is shown at Y+m+ (Al?).

データーは、ドレイン・ソース関VDBK4Vt−印加
した状態で、ゲート電圧va8が20’V、OVの時の
11ER,値として示す。これによれば、vGB ” 
OVでの電流値工Offは、多結晶シリコン層の膜厚が
小さくなるに従って、減少する。
The data is shown as the 11ER value when the gate voltage va8 is 20'V, OV with the drain-source voltage VDBK4Vt- applied. According to this, vGB”
The current value Off at OV decreases as the thickness of the polycrystalline silicon layer decreases.

これは膜厚が小さくなると、チャンネル領域の膜抵抗が
大きくなる為である。Vcia=20Vでの電流値工す
は、膜厚が60OAまでは、膜厚に比例して工OHは減
少するが6ooa以下になると、工ONは増加傾向を示
す。これは次に述べるような理由による。多結晶シリコ
ン膜の欠陥密度、約10目〜10”/cs”から、既知
の方法で空乏層の最大厚みを求めるとほぼ600aとな
る。従って膜厚が600A以下になると空乏層の厚みも
同様に小さくなり、TPT’i動作するに必要なスレツ
シエホールド電圧も比例して小さくなる。従って、■O
Nは膜厚が600′Aよりも小さくなるに従い大きくな
る。
This is because the film resistance in the channel region increases as the film thickness decreases. Regarding the current value at Vcia = 20V, the OH decreases in proportion to the film thickness until the film thickness reaches 60OA, but when it becomes 6OOA or less, the OH tends to increase. This is due to the following reasons. The maximum thickness of the depletion layer is determined by a known method from the defect density of the polycrystalline silicon film, about 10 to 10"/cs, to be approximately 600 a. Therefore, when the film thickness becomes 600 A or less, the thickness of the depletion layer also decreases, and the threshold hold voltage required for TPT'i operation also decreases proportionally. Therefore, ■O
N increases as the film thickness becomes smaller than 600'A.

以上の結果から、多結晶シリコン漕の厚みを600A以
下にすることにより、0N10FF比のより大きな高性
11のTPT’i得ることができる。
From the above results, by setting the thickness of the polycrystalline silicon tank to 600A or less, a TPT'i with a high property of 11 with a larger 0N10FF ratio can be obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では以下のような問題点を有す
る。即ち、特性の同上を図る為、半導体層である多結晶
シリコンの膜厚を小さくしていくと、ソース領域、ドレ
イン領域の膜厚も小さくなるから、配線用材料との良好
なコンタクトを得ることが困難になり、第2区telに
示すように工ONが減少する。例えばA4AtSi等の
場合は、多結晶シリコンNIヲ突き抜けることが考えら
れるし、又、例えばITO等、透明導電膜の場合は、ソ
ース領域、ドレイン領域のシート抵抗とコンタクト抵抗
が比例関係にある為、ある提度の膜厚は、必ず確保され
ねばならない。従って、従来の技術では、半導体層の膜
厚をより小さくすること和より特性の向上全図る可能性
が有りながら、結局ソース領域、ドレイン領域と配線用
材料とのコンタクトの問題から、膜厚が制限されてしま
う。
However, the above-mentioned conventional technology has the following problems. In other words, if the thickness of the polycrystalline silicon that is the semiconductor layer is made smaller in order to maintain the same characteristics, the thickness of the source and drain regions will also become smaller, making it possible to obtain good contact with the wiring material. becomes difficult, and the work ON decreases as shown in the second section tel. For example, in the case of A4AtSi etc., it is possible to penetrate polycrystalline silicon NI, and in the case of a transparent conductive film such as ITO, the sheet resistance of the source region and drain region and the contact resistance are in a proportional relationship, so A certain degree of film thickness must be ensured. Therefore, in the conventional technology, although it is possible to completely improve the characteristics by making the film thickness of the semiconductor layer smaller, in the end, the film thickness is reduced due to the problem of contact between the source region, the drain region, and the wiring material. You will be restricted.

本発明はこのような問題点上解決するもので、その目的
とするところは、良好なコンタクト特性を有し、かつ、
高性能の特性忙有するTFTt−提供するところにある
The present invention is intended to solve these problems, and its purpose is to have good contact characteristics and
TFTs with high performance characteristics are provided.

〔問題点t−解決するための手段〕[Problem t-Means for solving]

本発明によるTPTは、ソース領域、ドレイン領域と、
配線用材料とのコンタク)’t−!する領域あるいは、
前記領域を含めた、ソース領域、ドレイン領域の−f5
領域、あるいは、ソース領域、ドレイン領域1に2層の
半導体層で形成し、かつ、チャンネル領域金有する半導
体層は、前記、2層の半導体層のどちらか1層であるこ
とケ特徴とする。
The TPT according to the present invention includes a source region, a drain region,
Contact with wiring material)'t-! area or
-f5 of the source region and drain region including the above region
The semiconductor layer is formed of two semiconductor layers in the region or the source region and the drain region 1, and the semiconductor layer having the channel region gold is one of the two semiconductor layers.

この時、当然のことであるが、チャンネル領域金有する
半導体層の膜厚は、もう1万の半導体層の膜厚よりも小
さい。
At this time, as a matter of course, the thickness of the semiconductor layer including the channel region is smaller than the thickness of the other 10,000 semiconductor layer.

〔作用〕[Effect]

本発明の上記の構造によれば、ソース領域、ドレイン領
域と配線用材料とのコンタクトを有する領域は、より良
好なコンタクト特性が得られる十分な膜厚の半導体層を
有し、かつ、もう1層の半導体層26ooX以下にする
ことにより、より0N10FF比の大きい、扁性1毛の
TFτ′5t4ることかできる。本構造によるTPTの
工oNの特性t−g2図(elに破線で示す。
According to the above structure of the present invention, the region having contact between the source region, the drain region, and the wiring material has a semiconductor layer having a sufficient thickness to obtain better contact characteristics, and By making the semiconductor layer 26ooX or less, it is possible to obtain a flat one-hair TFτ'5t4 with a larger 0N10FF ratio. Characteristics of TPT of this structure t-g2 (shown by broken line in el).

〔実施例〕〔Example〕

第1図(al (blは、本発明の1実施例におけるT
PTの構造断面図である。ここで100は透明絶縁基板
、101は、多結晶シリコン層、102は、多結晶シリ
コン層、103は、ゲート酸化膜、104は多結晶シリ
コンで形成されるゲート電極、105はCVD法によっ
て形成されるI−絶縁縁膜、106はAt、 At−8
1等の配線用金属である。
FIG. 1 (al (bl is T in one embodiment of the present invention)
It is a structural sectional view of PT. Here, 100 is a transparent insulating substrate, 101 is a polycrystalline silicon layer, 102 is a polycrystalline silicon layer, 103 is a gate oxide film, 104 is a gate electrode formed of polycrystalline silicon, and 105 is a gate electrode formed by a CVD method. I-insulating film, 106 is At, At-8
It is a first-class wiring metal.

第3図に従って、第1図(alの詳細な製造方法全説明
する。
According to FIG. 3, the detailed manufacturing method of FIG. 1 (al) will be fully explained.

第3図(alで、透明絶縁基板100に、ソース領域、
ドレイン領域の一部分となる位置に1層目の多結晶シリ
コン層101を形成、所定のパターンに加工する。第3
図Cblで、チャンネル領域が形成される2層目の多結
晶シリコン層102を形成、所定のパターンに加工する
FIG. 3 (Al) A transparent insulating substrate 100 has a source region,
A first polycrystalline silicon layer 101 is formed at a position that will become a part of the drain region, and processed into a predetermined pattern. Third
In Figure Cbl, a second polycrystalline silicon layer 102 in which a channel region will be formed is formed and processed into a predetermined pattern.

第51g (atで、熱酸化工程により、ゲート酸化膜
103t−形成後、N型(P型)の不純物を有する多結
晶シリコンによりゲート電極104′t−形成する。し
かる後に、該ゲート電極をマスクとして、イオン注入法
により、N型(P型)の不純物上注入することにより、
ソース領域、ドレイン領域107t−形成する。この時
、チャンネルの形bY、される半導体層の膜厚t−60
0A以下にする。
51g (at, after forming a gate oxide film 103t- by a thermal oxidation process, a gate electrode 104't- is formed from polycrystalline silicon having N-type (P-type) impurities. Thereafter, the gate electrode is masked. By implanting N-type (P-type) impurities using the ion implantation method,
A source region and a drain region 107t are formed. At this time, the shape of the channel is bY, and the thickness of the semiconductor layer is t-60.
Keep it below 0A.

@3図(+11で、O’VD法により全面にNSG膜等
の眉間絶縁膜105を形成、高温の熱処理工程により前
述のイオン注入した不純物ヲ活性化した後、コンタクト
をとる為の窓を形成する。
@Figure 3 (At +11, a glabellar insulating film 105 such as an NSG film is formed on the entire surface using the O'VD method, and after activating the aforementioned ion-implanted impurities through a high-temperature heat treatment process, a window for making contact is formed. do.

@3図telで、例えばAt、At−81等の配線材料
106により配線形成する。
At tel in Figure 3, wiring is formed using a wiring material 106 such as At or At-81.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、2層の半導体層全ソ
ース領域、ドレイン領域と配線用材料とのコンタクトを
有する領域に形成すること、又、チャンネルの形成され
る半導体層の膜厚を600λ以下にすることにより、よ
り高性能なTFTt得ることができる。従って、本構造
によるTPTは、三次元素子、あるいはアクティブマス
トリックスパネルに於ける、画素′wL極駆動用スイッ
チング素子、サラには、シフトレジスタ等の駆動用集積
回路素子として十分使用可能な特性を有するものである
As described above, according to the present invention, two semiconductor layers are formed in the entire source region, drain region, and the region having contact with the wiring material, and the thickness of the semiconductor layer in which the channel is formed is reduced. By making it 600λ or less, a TFTt with higher performance can be obtained. Therefore, the TPT with this structure has sufficient characteristics to be used as a tertiary element or a switching element for driving the pixel'wL pole in an active matrix panel, or as an integrated circuit element for driving a shift register or the like. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a+、(1)lは、本発明のTF”rの実施例
を示す主要断面図。 @2図(a1〜(+11は従来の’rlFT’i示す工
程断面図、第2図(elは、TF’Tの電気的な特性図
、43図(aJ〜(elは、本発明のTIFTを示す工
程断面図。 100 透明絶縁基板 101.102  多結晶シリコン層 103 ゲート酸化膜 104 ゲート電極105 層
間絶縁膜  106 配線用金属。 以上
Figure 1 (a+, (1)l is a main cross-sectional view showing an embodiment of TF"r of the present invention. @ Figure 2 (a1 to (+11 is a process cross-sectional view showing conventional 'rlFT'i), Figure 2 (el is an electrical characteristic diagram of TF'T, FIG. 43 (aJ~(el is a process cross-sectional view showing the TIFT of the present invention. 100 Transparent insulating substrate 101.102 Polycrystalline silicon layer 103 Gate oxide film 104 Gate Electrode 105 Interlayer insulating film 106 Wiring metal.

Claims (1)

【特許請求の範囲】 1)ソース領域、ドレイン領域、ゲート絶縁膜、ゲート
絶縁膜に接するゲート電極を有する薄膜トランジスタに
於いて、少なくとも、該ソース領域、ドレイン領域と、
配線用材料とのコンタクトを有する領域が、2層の半導
体層で形成されかつ、チャンネル領域の形成される半導
体層は前記2層の半導体層のどちらか1層であることを
特徴とする薄膜トランジスタ。 2)前記ソース領域ドレイン領域と、配線用材料とのコ
ンタクトを有する領域を含む一部領域が、2層の半導体
層で形成されることを特徴とする特許請求の範囲第1項
記載の薄膜トランジスタ。 3)前記ソース領域及びドレイン領域が2層の半導体層
で形成されることを特徴とする特許請求の範囲第1項記
載の薄膜トランジスタ。 4)2層の半導体層が同一の半導体層で形成されること
を特徴とする特許請求の範囲第1項記載の薄膜トランジ
スタ。 5)2層の半導体層が多結晶シリコン層で形成されるこ
とを特許請求の範囲第1項記載の特徴とする薄膜トラン
ジスタ。 6)チャンネル領域の形成される半導体層の膜厚が、も
う一方の半導体層の膜厚よりも小さいことを特徴とする
特許請求の範囲第1項記載の薄膜トランジスタ。 7)チャンネル領域の形成される半導体層の膜厚が60
0Å以下であることを特徴とする特許請求の範囲第1項
記載の薄膜トランジスタ。 8)アクティブマトリックス型液晶表示装置の画素電極
駆動用スイッチング素子として用いられることを特徴と
する特許請求の範囲第1項記載の薄膜トランジスタ。 9)前記薄膜トランジスタは、駆動用集積回路を同一基
板上に有するアクティブマトリックス型液晶表示装置の
画素電極駆動用スイッチング素子、及び、駆動用集積回
路として用いられることを特徴とする特許請求の範囲第
1項記載の薄膜トランジスタ。 10)電気絶縁基板上に、ソース領域及びドレイン領域
の一部となる第1層の半導体層を形成、所定のパターン
に加工する工程と、チャンネル領域の形成される第2層
の半導体層を積層、所定のパターンに加工する工程と、
熱酸化によりゲート絶縁膜を形成し、該ゲート絶縁膜に
接するよう導電層を積層してゲート電極を形成する工程
と、イオン注入法、あるいは、熱拡散法によりN型ある
いはP型の不純物をチャンネル領域を除く、第1層及び
第2層の半導体層に拡散し、ソース、及び、ドレイン領
域を形成する工程を含むことを特徴とする薄膜トランジ
スタの製造方法。 11)電気絶縁基板上に、チャンネル領域の形成される
第1層の半導体層を形成、所定のパターンに加工する工
程と、ソース領域及びドレイン領域の一部となる第2層
の半導体層を形成、所定のパターンに加工する工程と、
熱酸化によりゲート絶縁膜を形成し、該ゲート絶縁膜に
接するよう導電層を積層してゲート電極を形成する工程
もイオン注入法、あるいは、熱拡散法によりN型あるい
はP型の不純物をチャンネル領域を除く第1層及び第2
層の半導体層に拡散し、ソース及びドレイン領域を形成
する工程を含むことを特徴とする薄膜トランジスタの製
造方法。
[Claims] 1) In a thin film transistor having a source region, a drain region, a gate insulating film, and a gate electrode in contact with the gate insulating film, at least the source region, the drain region,
A thin film transistor characterized in that a region having contact with a wiring material is formed of two semiconductor layers, and a semiconductor layer in which a channel region is formed is one of the two semiconductor layers. 2) The thin film transistor according to claim 1, wherein a part of the region including the source region and the drain region and a region having contact with a wiring material is formed of two semiconductor layers. 3) The thin film transistor according to claim 1, wherein the source region and the drain region are formed of two semiconductor layers. 4) The thin film transistor according to claim 1, wherein the two semiconductor layers are formed of the same semiconductor layer. 5) A thin film transistor according to claim 1, wherein the two semiconductor layers are formed of polycrystalline silicon layers. 6) The thin film transistor according to claim 1, wherein the thickness of the semiconductor layer in which the channel region is formed is smaller than the thickness of the other semiconductor layer. 7) The thickness of the semiconductor layer in which the channel region is formed is 60 mm.
2. The thin film transistor according to claim 1, wherein the thin film transistor has a thickness of 0 Å or less. 8) The thin film transistor according to claim 1, which is used as a switching element for driving a pixel electrode of an active matrix liquid crystal display device. 9) The thin film transistor is used as a pixel electrode driving switching element and a driving integrated circuit of an active matrix liquid crystal display device having a driving integrated circuit on the same substrate. The thin film transistor described in Section 1. 10) Forming a first semiconductor layer that will become part of the source and drain regions on an electrically insulating substrate and processing it into a predetermined pattern, and laminating a second semiconductor layer that will form a channel region. , a step of processing into a predetermined pattern;
A gate insulating film is formed by thermal oxidation, a conductive layer is stacked in contact with the gate insulating film to form a gate electrode, and an N-type or P-type impurity is added to the channel by ion implantation or thermal diffusion. 1. A method of manufacturing a thin film transistor, comprising the step of diffusing into first and second semiconductor layers excluding regions to form source and drain regions. 11) Forming a first semiconductor layer on which a channel region will be formed on an electrically insulating substrate and processing it into a predetermined pattern, and forming a second semiconductor layer that will become part of a source region and a drain region. , a step of processing into a predetermined pattern;
The process of forming a gate insulating film by thermal oxidation and stacking a conductive layer in contact with the gate insulating film to form a gate electrode can also be done by adding N-type or P-type impurities to the channel region using ion implantation or thermal diffusion. 1st layer and 2nd layer excluding
1. A method for manufacturing a thin film transistor, comprising the step of diffusing into a semiconductor layer to form source and drain regions.
JP9410685A 1985-05-01 1985-05-01 Thin film transistor and manufacture thereof Pending JPS61252667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9410685A JPS61252667A (en) 1985-05-01 1985-05-01 Thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9410685A JPS61252667A (en) 1985-05-01 1985-05-01 Thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61252667A true JPS61252667A (en) 1986-11-10

Family

ID=14101184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9410685A Pending JPS61252667A (en) 1985-05-01 1985-05-01 Thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61252667A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281473A (en) * 1986-05-30 1987-12-07 Sony Corp Manufacture of field-effect type transistor
JPS6455867A (en) * 1987-08-27 1989-03-02 Mitsubishi Electric Corp Semiconductor device
JPH025572A (en) * 1988-06-24 1990-01-10 Matsushita Electron Corp Semiconductor device
JPH05114734A (en) * 1991-10-22 1993-05-07 Mitsubishi Electric Corp Semiconductor device
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture
JPH07161999A (en) * 1993-10-06 1995-06-23 Micron Semiconductor Inc Method for forming thin-film field effect transistor
US5488005A (en) * 1994-05-06 1996-01-30 Samsung Electronics Co., Ltd. Process for manufacturing an offset gate structure thin film transistor
US5561075A (en) * 1991-05-08 1996-10-01 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5858821A (en) * 1993-05-12 1999-01-12 Micron Technology, Inc. Method of making thin film transistors
KR19990088504A (en) * 1998-05-26 1999-12-27 모리시타 요이찌 Thin film transistor and manufacturing method thereof
US6043507A (en) * 1997-09-24 2000-03-28 Micron Technology, Inc. Thin film transistors and methods of making
US6344378B1 (en) 1999-03-01 2002-02-05 Micron Technology, Inc. Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62281473A (en) * 1986-05-30 1987-12-07 Sony Corp Manufacture of field-effect type transistor
JPS6455867A (en) * 1987-08-27 1989-03-02 Mitsubishi Electric Corp Semiconductor device
JPH025572A (en) * 1988-06-24 1990-01-10 Matsushita Electron Corp Semiconductor device
US5561075A (en) * 1991-05-08 1996-10-01 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5583366A (en) * 1991-05-08 1996-12-10 Seiko Epson Corporation Active matrix panel
US6136625A (en) * 1991-05-08 2000-10-24 Seiko Epson Corporation Method of manufacturing an active matrix panel
US5814539A (en) * 1991-05-08 1998-09-29 Seiko Epson Corporation Method of manufacturing an active matrix panel
JPH05136167A (en) * 1991-09-20 1993-06-01 Mitsubishi Electric Corp Thin film transistor and its manufacture
JPH05114734A (en) * 1991-10-22 1993-05-07 Mitsubishi Electric Corp Semiconductor device
US5858821A (en) * 1993-05-12 1999-01-12 Micron Technology, Inc. Method of making thin film transistors
US6376287B1 (en) 1993-05-12 2002-04-23 Micron Technology, Inc. Method of making field effect
US6150201A (en) * 1993-10-06 2000-11-21 Micron Technology, Inc. Methods of forming top-gated thin film field effect transistors
US6235562B1 (en) 1993-10-06 2001-05-22 Micron Technology, Inc. Method of making field effect transistors
US5923965A (en) * 1993-10-06 1999-07-13 Micron Technology, Inc. Thin film transistors and method of making
JPH07161999A (en) * 1993-10-06 1995-06-23 Micron Semiconductor Inc Method for forming thin-film field effect transistor
US6025215A (en) * 1993-10-06 2000-02-15 Micron Technology, Inc. Method of making field effect transistors
US6251714B1 (en) 1993-10-06 2001-06-26 Micron Technology, Inc. Method of making thin film field effect transistors
US5807769A (en) * 1993-10-06 1998-09-15 Micron Technology, Inc. Methods of making thin film transistors
US5847406A (en) * 1993-10-06 1998-12-08 Micron Technology, Inc. Thin film field effect transistor
US5488005A (en) * 1994-05-06 1996-01-30 Samsung Electronics Co., Ltd. Process for manufacturing an offset gate structure thin film transistor
US6043507A (en) * 1997-09-24 2000-03-28 Micron Technology, Inc. Thin film transistors and methods of making
US6331476B1 (en) 1998-05-26 2001-12-18 Mausushita Electric Industrial Co., Ltd. Thin film transistor and producing method thereof
KR19990088504A (en) * 1998-05-26 1999-12-27 모리시타 요이찌 Thin film transistor and manufacturing method thereof
US6344378B1 (en) 1999-03-01 2002-02-05 Micron Technology, Inc. Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors
US6504170B1 (en) 1999-03-01 2003-01-07 Micron Technology, Inc. Field effect transistors, field emission apparatuses, and a thin film transistor
US7329552B2 (en) 1999-03-01 2008-02-12 Micron Technology, Inc. Field effect transistor fabrication methods, field emission device fabrication methods, and field emission device operational methods

Similar Documents

Publication Publication Date Title
US5734177A (en) Semiconductor device, active-matrix substrate and method for fabricating the same
EP0738012A2 (en) Thin film transistor and liquid crystal display using the same
US6713825B2 (en) Poly-crystalline thin film transistor and fabrication method thereof
JPH0338755B2 (en)
EP0249204A2 (en) Thin film field effect transistor
JPS61252667A (en) Thin film transistor and manufacture thereof
JPH0688972A (en) Liquid crystal display device
JPH0645603A (en) Mos thin-film transistor
US6288413B1 (en) Thin film transistor and method for producing same
US5677547A (en) Thin film transistor and display device including same
JPH0722627A (en) Thin film semiconductor device and active matrix liquid crystal display device
JPS625661A (en) Thin film transistor
JPS58182272A (en) Thin film transistor
JP3128939B2 (en) Thin film transistor
JP2767413B2 (en) Thin film transistor and method of manufacturing the same
EP0302659A1 (en) Semiconductor memory device and process for producing same
KR0179066B1 (en) Thin film transistor and manufacturing method of the same
JP2622661B2 (en) LCD panel
JP2761496B2 (en) Thin film insulated gate semiconductor device and method of manufacturing the same
KR960019778A (en) Thin film transistor for liquid crystal display device and manufacturing method thereof
JP2001177104A (en) Thin film transistor, method of manufacturing the same, and liquid crystal display device equipped therewith
JPH0786532A (en) Semiconductor device and its manufacture
KR960026968A (en) Thin film transistor with double gate and manufacturing method
JPS63284865A (en) Thin film semiconductor element
JP3824704B2 (en) Thin film semiconductor device