JPS61249213A - Electric power source apparatus for wire electric discharge machine - Google Patents

Electric power source apparatus for wire electric discharge machine

Info

Publication number
JPS61249213A
JPS61249213A JP8758285A JP8758285A JPS61249213A JP S61249213 A JPS61249213 A JP S61249213A JP 8758285 A JP8758285 A JP 8758285A JP 8758285 A JP8758285 A JP 8758285A JP S61249213 A JPS61249213 A JP S61249213A
Authority
JP
Japan
Prior art keywords
switching element
dielectric breakdown
power supply
machining
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8758285A
Other languages
Japanese (ja)
Inventor
Masakazu Kishi
岸 雅一
Yasuo Suzuki
鈴木 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP8758285A priority Critical patent/JPS61249213A/en
Publication of JPS61249213A publication Critical patent/JPS61249213A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Abstract

PURPOSE:To prevent the softening of the worked surface and improve energy efficiency by setting the polarity of a workpiece to negative electrode on dielectric breakdown and to positive electrode on the generation of main electric discharge, when working is performed by the main electric discharge for working which is generated in the working gap after dielectric breakdown. CONSTITUTION:A condenser 20e for electric discharge is charged by turning-ON a switching element 20b and turning-OFF a switching element 21b. Then, the electric discharge for dielectric breakdown is started in a working gap Q, and said dielectric breakdown is detected by a voltage detecting circuit 22a, and output into a pulse control circuit 22b is performed. Then, the switching element 20b is turned-OFF, and the switching element 21b is turned-ON for the time t1. At this time, the dielectric breakdown voltage can be arbitrarily set. When a prescribed time t2 lapses after the switching element 21b is turned-OFF, the switching element 20b is turned-ON, and the above-described procedures are repeated. Thus, the softening of the worked surface can be prevented, and the dimension precision can be improved, and the energy efficiency can be improved, and the dielectric breakdown voltage can be arbitrarily set.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はワイヤ放電加工機に係り、特にその放電発生に
用いられる電源装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a wire electrical discharge machine, and particularly to an improvement of a power supply device used for generating electrical discharge in the wire electrical discharge machine.

〔発明の背景〕[Background of the invention]

近年、ワイヤ放電加工機の加工速度及び加工精度は共に
大巾に高められたが、加工速度を高めると加工精度は低
下する傾向にある。特に、高速加工用・ぐルス電源装置
が用いられたものにあっては、その電源装置が比較的大
きな電解反応を生じさせることから、加工精度を低下さ
せていた。
In recent years, both the machining speed and machining accuracy of wire electric discharge machines have been greatly improved, but as the machining speed increases, the machining accuracy tends to decrease. Particularly, in those using a high-speed machining power source, the power source generates a relatively large electrolytic reaction, resulting in a reduction in machining accuracy.

以下これについて第4図に基づき説明する。第4図は従
来の上記電源装置を備えたワイヤ放電加工機の概略構成
図で、図中1はワイヤ電極を示す。
This will be explained below based on FIG. 4. FIG. 4 is a schematic configuration diagram of a conventional wire electric discharge machine equipped with the above-mentioned power supply device, and 1 in the figure indicates a wire electrode.

このワイヤ電極1は、ローラ2,3に案内されて被加工
物4の加工面に対向しており、その電極1と被加工物4
の相対位置は図示しない数値制御装置の指令により動作
する位置決め装置のモータ5゜6により制御される。前
記電極lと被加工物4により形成される加工間隙Qには
加工液供給ノズル7.8により加工液であるイオン交換
水が供給され、また前記電極lは通電端子9.lOに接
しており、電極1と被加工物4の間(加工間隙Q)には
電源装置11よシミ源供給される。電源装置11は直流
電源12、スイッチング素子13及びそのオンオフ制御
回路14、限流抵抗15及び放電用コンデンサ16より
なる放電回路から構成されている。
This wire electrode 1 is guided by rollers 2 and 3 and faces the processing surface of the workpiece 4, and the electrode 1 and the workpiece 4
The relative position of is controlled by a motor 5.6 of a positioning device operated by a command from a numerical control device (not shown). A machining fluid supply nozzle 7.8 supplies ion-exchanged water, which is a machining fluid, to the machining gap Q formed between the electrode l and the workpiece 4, and the electrode l is connected to a current-carrying terminal 9.8. 1O, and a source of stains is supplied from the power supply 11 between the electrode 1 and the workpiece 4 (machining gap Q). The power supply device 11 is composed of a DC power supply 12, a switching element 13 and its on/off control circuit 14, a current limiting resistor 15, and a discharge circuit including a discharge capacitor 16.

上記電源装置11による加工間隙Qにおける電圧波形は
、第5図(a)に示すように、スイッチング素子13の
スイッチオン後、指数関数的に増加し、直流電源12の
電圧までコンデンサ16が充電されて最大となシ、前記
加工間隙Qに放電が発生すると、第5図(b)に示すよ
うに振動電流が流れた後、0となる。振動電流波形は、
コンデンサ16から加工間隙Qに至る通電系のインダク
タンス及び抵抗値とコンデンサ16の容量によって決定
されるが、一般には第5図(b)のような波形となる。
As shown in FIG. 5(a), the voltage waveform in the machining gap Q by the power supply device 11 increases exponentially after the switching element 13 is turned on, and the capacitor 16 is charged up to the voltage of the DC power supply 12. When the electric discharge is generated in the machining gap Q, the oscillating current flows and becomes zero, as shown in FIG. 5(b). The oscillating current waveform is
It is determined by the inductance and resistance value of the current-carrying system from the capacitor 16 to the machining gap Q, and the capacitance of the capacitor 16, but generally the waveform is as shown in FIG. 5(b).

また、第4図中のコンデンサ16を取除いた回路構成の
電源装置も従来から使用されており、この場合の電圧及
び電流波形は第6図(a)及び(b)のようになる。い
ずれの電源装置の場合も絶縁破壊時の印加・ぐルスの極
性は被加工物4を陽極としたものである。これは、被加
工物4を加工する速度が高くなる極性として、被加工物
4から電極1へ電流を流す方がよいことが実験により確
認されていることによる。
Furthermore, a power supply device having a circuit configuration in which the capacitor 16 in FIG. 4 is removed has also been used in the past, and the voltage and current waveforms in this case are as shown in FIGS. 6(a) and (b). In either power supply device, the polarity of the applied current at the time of dielectric breakdown is such that the workpiece 4 is the anode. This is because it has been confirmed through experiments that it is better to flow the current from the workpiece 4 to the electrode 1 as the polarity that increases the speed at which the workpiece 4 is processed.

しかしこのような従来装置では、通常、加工液に水が用
いられていることから、電圧が加工間隙Qに印加されて
いる時に電解反応が生じ、被加工物4の加工表面が軟質
となり、加工面の品質を劣化させていた。この劣化量は
、加工面から数μm乃至十数μmにも及ぶため、寸法精
度が数μmオーダーの高精度加工を行う場合に大きな障
害となっていた。
However, in such conventional devices, since water is normally used as the machining fluid, an electrolytic reaction occurs when a voltage is applied to the machining gap Q, and the machining surface of the workpiece 4 becomes soft, resulting in a machining problem. The quality of the surface deteriorated. This amount of deterioration extends from several micrometers to more than ten micrometers from the machined surface, which has been a major obstacle when performing high-precision processing with dimensional accuracy on the order of several micrometers.

上述の問題に対しては、電源両極間の平均電圧がOvK
なるように両極性の・ぐルス電圧を印加する方法がある
が、これによると加工に寄与する加エノJ?ルスの周波
数が低下するため、加工速度が低下するという問題を残
していた。
For the above problem, the average voltage between the power supply poles is OvK
There is a method of applying a bipolar voltage to make the difference, but according to this method, there is a method of applying a bipolar voltage to make the difference. The problem remains that the machining speed decreases because the frequency of the pulse decreases.

また、上述従来装置では、絶縁破壊電圧を変化させると
加工電流も変化してしまうため、絶縁破壊電圧の設定が
加工電流により制約を受けるという問題点もあった。
Further, in the conventional apparatus described above, when the dielectric breakdown voltage is changed, the machining current also changes, so there is a problem that the setting of the dielectric breakdown voltage is restricted by the machining current.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解消するためになされた
もので、加工速度を低下させることなく加工間隙におけ
る電解反応により生ずる加工表面の軟質化を防止し、加
工面の品質を向上して寸法精度の高度化が計れると共に
、絶縁破壊電圧が加工電流により制約されず、任意に設
定できるワイヤ放電加工機用電源装置を提供することを
目的とする。
The present invention was made to solve the above-mentioned problems, and it prevents softening of the machined surface caused by electrolytic reaction in the machining gap without reducing the machining speed, and improves the quality of the machined surface. It is an object of the present invention to provide a power supply device for a wire electric discharge machine, which can improve the dimensional accuracy, and whose dielectric breakdown voltage can be arbitrarily set without being restricted by the machining current.

〔発明の概要〕[Summary of the invention]

本発明装置は、加工間隙の絶縁破壊を行った後、その加
工間隙に加工用の主放電を発生させ、これを繰り返して
加工を行うワイヤ放電加工機用電源装置であって、被加
工物の極性を、前記絶縁破壊を行うときは陰極とし、主
放電を発生させるときは電極とすることにより、加工速
度を低下させずに電解反応による加工表面の軟質化を防
止し、かつ、加工間隙に放電を発生させる主放電回路の
スイッチング素子のオフ時に通電系に生ずる電磁エネル
ギをダイオードにより絶縁破壊用・臂ルス回路の直流電
源に再利用すべく導入してエネルイ効率を高め、さらに
、前記ダイオードによる前記電磁エネルギの直流電源へ
の導入路外に前記絶縁破壊・譬ルス回路の出力電圧可変
手段を設け、絶縁破壊電圧の任意設定を可能としたもの
である。
The device of the present invention is a power supply device for a wire electric discharge machine that performs dielectric breakdown of a machining gap, then generates a main discharge for machining in the machining gap, and repeatedly performs machining. By setting the polarity to the cathode when performing the dielectric breakdown and the electrode when generating the main discharge, it is possible to prevent the machining surface from softening due to electrolytic reaction without reducing the machining speed, and to prevent the machining gap from becoming soft. The electromagnetic energy generated in the current-carrying system when the switching element of the main discharge circuit that generates discharge is turned off is introduced by a diode to be reused as a DC power source for the dielectric breakdown/earth circuit to improve energy efficiency. An output voltage variable means of the dielectric breakdown/fault circuit is provided outside the introduction path of the electromagnetic energy to the DC power supply, thereby making it possible to arbitrarily set the dielectric breakdown voltage.

〔発明の実施例〕[Embodiments of the invention]

以下第1図ないし第3図を参照して本発明の詳細な説明
する。第1図は本発明によるワイヤ放電加工機用電源装
置の一実施例を示す回路図で、図中1.4.9及び10
は第4図と同様である。20はワイヤ電極!及び被加工
物4間の加工間隙Qの絶縁破壊を行う絶縁破壊用・譬ル
ス回路で、直流電源20m 、スイッチング素子20b
、そのオンオフ制御回路20c 、限流抵抗20d、放
電用コンデンサ20e。
The present invention will be described in detail below with reference to FIGS. 1 to 3. FIG. 1 is a circuit diagram showing an embodiment of a power supply device for a wire electrical discharge machine according to the present invention, and 1.4.9 and 10 in the figure.
is the same as in FIG. 20 is a wire electrode! and a dielectric breakdown circuit that performs dielectric breakdown of the machining gap Q between the workpieces 4, a DC power supply of 20 m, and a switching element 20b.
, its on/off control circuit 20c, current limiting resistor 20d, and discharge capacitor 20e.

ダイオード20f及び出力電圧可変手段としての可変直
流電源20gからなる。21は加工間隙Qに加工用の主
放電を発生させる主放電回路で、直流電源21a1スイ
ッチング素子21b及びそのオンオフ制御回路21cか
らなる。nは加工制御回路で、電極1及び被加工物4の
電圧検出回路22mと、オンオフ制御回路20c 、 
 21eを制御する・やルス制御回路22bとからなシ
、前記絶縁破壊後に主放電を発生させる動作を繰返し行
うべく前記スイッチング素子20b、  21bを、即
ち前記ノ4ルス回路加及び主放電回路21を制御する。
It consists of a diode 20f and a variable DC power supply 20g as an output voltage variable means. A main discharge circuit 21 generates a main discharge for machining in the machining gap Q, and is composed of a DC power supply 21a, a switching element 21b, and its on/off control circuit 21c. n is a processing control circuit, which includes a voltage detection circuit 22m for the electrode 1 and the workpiece 4, an on/off control circuit 20c,
21e and the pulse control circuit 22b, the switching elements 20b and 21b, that is, the pulse control circuit 21 and the pulse control circuit 22b, are connected to the switching elements 20b and 21b, that is, the pulse control circuit 21 and the pulse control circuit 22b to repeatedly generate the main discharge after the dielectric breakdown. Control.

23はダイオードで、前記スイッチング素子21bのオ
フ時に通電系に生ずる電磁エネルギを前記直流電源20
mへ導入するために前記主放電回路21及び・やルス回
路加間に接続されている。あけ前記直流電源20mの陰
極及び前記直流電源21mの陽極に接続された被加工物
接続用出力端子である。25はワイヤ電極接続用出力端
子で、前記ダイオード20f 、限流抵抗20d及びス
イッチング素子20bを各々介し、さらに可変直流電源
20gを介して直流電源20mの陽極に接続されると共
K、前記スイッチング素子21bを介して直流電源21
aの陰極に接続される。なお、前記ダイオード23は、
前記パルス回路20の出力電圧(絶縁破壊電圧)の設定
により加工電流が変化しないようにスイッチング素子2
1bの出力端子δ側と直流電源20&の陽極との間に接
続されている。
Reference numeral 23 denotes a diode, which transfers electromagnetic energy generated in the current-carrying system when the switching element 21b is turned off to the DC power supply 20.
The main discharge circuit 21 is connected to the main discharge circuit 21 and the loop circuit 21 in order to introduce it into the main discharge circuit 21. This is an output terminal for connection to a workpiece connected to the cathode of the DC power source 20m and the anode of the DC power source 21m. Reference numeral 25 denotes an output terminal for connecting wire electrodes, which is connected to the anode of the DC power source 20m via the diode 20f, current limiting resistor 20d, and switching element 20b, and further via the variable DC power source 20g. DC power supply 21 via 21b
connected to the cathode of a. Note that the diode 23 is
The switching element 2 is configured so that the machining current does not change due to the setting of the output voltage (breakdown voltage) of the pulse circuit 20.
It is connected between the output terminal δ side of 1b and the anode of the DC power supply 20&.

次に上述本発明装置の動作について説明する。Next, the operation of the above-mentioned device of the present invention will be explained.

まず、・譬ルス制御回路22bから第2図(c)に示す
信号がスイッチング素子オンオフ制御回路20aへ入力
されて、スイッチング素子20bがオン状態となる。こ
の時スイッチング素子21bはオフしている(第2図(
d)参照)。直流電源20a 、  20gからスイッ
チング素子20b及び抵抗20dを介して放電用コンデ
ンサ20eが第2図(、)に示すように充電される。
First, the signal shown in FIG. 2(c) is input from the pulse control circuit 22b to the switching element on/off control circuit 20a, and the switching element 20b is turned on. At this time, the switching element 21b is off (Fig. 2 (
d)). A discharge capacitor 20e is charged from the DC power sources 20a and 20g via a switching element 20b and a resistor 20d as shown in FIG.

この充電は可変直流電源20gにより設定される電圧(
電源20mの電圧E□と電源20gの電圧EI12の和
)に至るまで行われる。そしてこれにより加工間隙Qに
絶縁破壊用の放電が開始すると、放電用コンデンサ2Q
eからダイオード20fを介して加工間隙QK放放電泥
流流れ出す。その放電が開始したこと、すなわち加工間
隙Qの絶縁破壊がされたことを電圧検出回路22aが検
出し、信号を・9ルス制御回路22bへ出力する。そし
て・譬ルス制御回路22bからスイッチング素子20b
をオフする信号をスイッチング素子オンオフ制御回路2
0cに出力すると共に、第2図(d)に示す信号をスイ
ッチング素子オンオフ制御回路21eへ出力してスイッ
チング素子21bをt1時間オン状態とする。その時加
工間隙QK流れる加工電流は第2−Ql+)に示す波形
となる。スイッチング素子21bをオフした後でも加工
間隙Qに電流が流れているのは、通電系に発生し、その
布線のインダクタンスに蓄積した電磁エネルギがダイオ
ード23を通って直流電源20a Ic流れ込むからで
ある。この時の主放電回路21からの電流の波形は第2
図伽)に示すようにほぼ三角形となり、その傾きβは直
流電源20&の電圧Ea1で決まる。
This charging is carried out at a voltage (
This is continued until the voltage reaches the sum of the voltage E□ of the power source 20m and the voltage EI12 of the power source 20g. As a result, when a dielectric breakdown discharge starts in the machining gap Q, the discharge capacitor 2Q
The discharge mudflow flows out from the machining gap QK through the diode 20f. The voltage detection circuit 22a detects that the discharge has started, that is, that the dielectric breakdown of the machining gap Q has occurred, and outputs a signal to the 9 pulse control circuit 22b. And, from the pulse control circuit 22b to the switching element 20b
Switching element on/off control circuit 2
0c, and also outputs the signal shown in FIG. 2(d) to the switching element on/off control circuit 21e to turn on the switching element 21b for a time t1. At that time, the machining current flowing through the machining gap QK has a waveform shown in 2-Ql+). The reason why current flows through the machining gap Q even after the switching element 21b is turned off is because electromagnetic energy generated in the current-carrying system and accumulated in the inductance of the wiring flows through the diode 23 to the DC power supply 20a Ic. . The waveform of the current from the main discharge circuit 21 at this time is the second waveform.
As shown in Figure 3), it is approximately triangular, and its slope β is determined by the voltage Ea1 of the DC power supply 20&.

すなわち、ノJ?ルス回路加の出力電圧Eat + E
s2(絶縁破壊電圧)を電源20gの調整により変化さ
せても加工電流は電源20gを通らず、電源20mに流
れるので第2図(b)に示す波形は変化せず、絶縁破壊
電圧は任意に設定可能である。
In other words, NoJ? Output voltage Eat + E of loop circuit
Even if s2 (breakdown voltage) is changed by adjusting the power supply 20g, the machining current does not pass through the power supply 20g and flows to the power supply 20m, so the waveform shown in Figure 2 (b) does not change, and the breakdown voltage can be adjusted arbitrarily. Configurable.

スイッチング素子21bがオフし、所定時間t2経過す
ると、・やルス制御回路22bから再び第2図(0)に
示す信号がスイッチング素子オンオフ制御回路20cに
入力されてスイッチング素子20bがオン状態となシ、
上述動作が行われ、以下これを繰返すことにより放電加
工が行われる。
When the switching element 21b is turned off and a predetermined time t2 has elapsed, the signal shown in FIG. ,
The above-mentioned operation is performed, and electrical discharge machining is performed by repeating this operation.

なお第2図に示すように、コンデンサ20eの放電が開
始してから、スイッチング素子21bがオンするまでに
t3時間だけ遅れているが、これは、電圧検出回路22
mで放電開始を検出してから、スイッチング素子21b
をオンするまでの信号処理時間が、使用する素子の信号
処理時間で最短時間でも200〜500nsかかるため
であり、時間t3は200〜500 ns以上となる。
As shown in FIG. 2, there is a delay of time t3 from when the capacitor 20e starts discharging until the switching element 21b turns on. This is because the voltage detection circuit 22
After detecting the start of discharge at m, the switching element 21b
This is because the signal processing time required for turning on the element used is 200 to 500 ns at the shortest, and the time t3 is 200 to 500 ns or more.

また時間11とt2又はt2’は、通常一定になるよう
に制御されるが、放電の状態に応じて変化させてもよい
。また、第2図の(d)の信号を(d′)のようにtl
′をts + t3あるいはtx + ta’ (ここ
でO(ts’ (t3)としても良い。
Further, the time 11 and t2 or t2' are usually controlled to be constant, but may be changed depending on the state of discharge. Also, the signal of (d) in Fig. 2 is changed to tl as shown in (d').
' may be set to ts + t3 or tx + ta' (here, O(ts' (t3)).

なお上述実施例では、絶縁破壊用パルス回路20中に放
電用コンデンサ20eを使っているが、これを使用しな
くても同様の効果が得られる。また上述実施例では、放
電用コンデンサ30の放電開始の検出に電圧検出回路2
2mを用いたが、加工間隙Qに流れる電流あるいは放電
用コンデンサ30からの放電々流検出するようにしても
同様の効果が得られるる さらに上述実施例では、・9ルス回路加中の出力電圧可
変手段として可変直流電源20gを用いたが、これのみ
に限られず、例えば第3図に示すように、分圧用抵抗2
0h1分圧用可変抵抗201及びコンデンサ20jで構
成してもよい。この場合は、直流電源20&の電圧El
fが可変抵抗20%で調整される電圧に分圧されてコン
デンサ20jに印加され、充電されてその充電電圧が・
9ルス回路20の出力電圧(絶縁破壊電圧)となる。な
お、この第3図に例示の出力電圧可変手段は、直流電源
20mの電圧Eslが、設定される可能性のある最大の
絶縁破壊電圧(最大設定電圧)よシ大きい場合に適用さ
れ、また第1図に例示の出力電圧可変手段は、上記El
llが上記最大設定電圧以下である場合に適用される。
In the above embodiment, the discharging capacitor 20e is used in the dielectric breakdown pulse circuit 20, but the same effect can be obtained even without using this. Further, in the above embodiment, the voltage detection circuit 2 is used to detect the start of discharge of the discharge capacitor 30.
2 m is used, but the same effect can be obtained by detecting the current flowing in the machining gap Q or the discharge current from the discharge capacitor 30.Furthermore, in the above-mentioned embodiment, the output voltage when the 9 pulse circuit is applied. Although a variable DC power supply of 20 g was used as the variable means, it is not limited to this, for example, as shown in FIG. 3, a voltage dividing resistor of 2
It may be configured by the 0h1 voltage dividing variable resistor 201 and the capacitor 20j. In this case, the voltage El of the DC power supply 20 &
f is divided into voltages adjusted by a variable resistor of 20% and applied to the capacitor 20j, charged, and the charging voltage becomes
This is the output voltage (breakdown voltage) of the 9-rus circuit 20. Note that the output voltage variable means illustrated in FIG. The output voltage variable means illustrated in FIG.
This is applied when ll is less than or equal to the maximum set voltage.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は、加工間隙の絶縁破壊を行っ
た後、その加工間隙に加工用の主放電を発生させ、これ
を繰返して加工を行うワイヤ放電加工機用電源装置であ
って、被加工物の極性を、前記絶縁破壊を行うときは陰
極とし、主放電を発生させるときは陽極とするようにし
たので、放電加工速度を低下させることなく加工間隙に
おける電解反応により生ずる加工表面の軟質化を防止で
きる。従って、加工面の品質が向上し、寸法精度を高度
化できるという効果がある。また、主放電回路のスイッ
チング素子のオフ時に通電系に生ずる電磁エネルギをダ
イオードにより絶縁破壊用・譬ルス回路の直流電源に導
入するようにしたのでエネルギ効率が高いという効果も
ある。さらに、前記ダイオードによる電磁エネルギの直
流電源への導入路外に出力電圧(絶縁破壊電圧)可変手
段を設けたので、加工電流を変化させずに絶縁破壊電圧
を任意に設定できるという効果もある。
As described above, the present invention is a power supply device for a wire electric discharge machine that generates a main discharge for machining in the machining gap after dielectric breakdown of the machining gap, and repeatedly performs machining. The polarity of the workpiece is set to cathode when performing dielectric breakdown and anode when generating main discharge, so that the polarity of the machined surface caused by electrolytic reaction in the machining gap can be reduced without reducing the electrical discharge machining speed. It can prevent softening. Therefore, the quality of the machined surface is improved and the dimensional accuracy can be improved. Furthermore, since the electromagnetic energy generated in the current-carrying system when the switching element of the main discharge circuit is turned off is introduced into the DC power supply of the dielectric breakdown/mirror circuit by means of a diode, there is also the effect of high energy efficiency. Furthermore, since the output voltage (breakdown voltage) variable means is provided outside the introduction path of the electromagnetic energy to the DC power supply by the diode, there is an effect that the breakdown voltage can be arbitrarily set without changing the machining current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す回路図、第2図は
同装置の動作を説明するためのタイミングチャート、第
3図は本発明装置の他の実施例を示す回路図、第4図は
従来装置を備えたワイヤ放電加工機の概略構成図、第5
図及び第6図は各々第4図中の従来装置における加工間
隙の電圧及び電流波形図である。 1・・・ワイヤ電極、4・・・被加工物、20・・・絶
縁破壊用・ぐルス回路、21・・・主放電回路、22・
・・加工制御回路、23・・・ダイオード、Q・・・加
工間隙。
FIG. 1 is a circuit diagram showing one embodiment of the device of the present invention, FIG. 2 is a timing chart for explaining the operation of the device, and FIG. 3 is a circuit diagram showing another embodiment of the device of the present invention. Figure 4 is a schematic configuration diagram of a wire electrical discharge machine equipped with a conventional device;
6 and 6 are voltage and current waveform diagrams of the machining gap in the conventional apparatus shown in FIG. 4, respectively. DESCRIPTION OF SYMBOLS 1... Wire electrode, 4... Workpiece, 20... Dielectric breakdown/Grus circuit, 21... Main discharge circuit, 22...
... Processing control circuit, 23... Diode, Q... Processing gap.

Claims (1)

【特許請求の範囲】[Claims] 陰極が被加工物に接続された第1直流電源と第1スイッ
チング素子との間に出力電圧可変手段を有し、この手段
により設定された電圧を前記第1スイッチング素子によ
りワイヤ電極及び前記被加工物間の加工間隙に印加して
その絶縁破壊を行う絶縁破壊用パルス回路と、陽極が前
記被加工物に接続された第2直流電源を第2スイッチン
グ素子により前記加工間隙に印加して加工用の主放電を
発生させる主放電回路と、前記絶縁破壊後に主放電を発
生させる動作を繰返し行うべく前記第1及び第2スイッ
チング素子を制御する加工制御回路と、前記第2スイッ
チング素子のオフ時に通電系に生ずる電磁エネルギを前
記第1直流電源へ導入すべくこの第1直流電源及び前記
出力電圧可変手段相互間と前記第2スイッチング素子及
び前記ワイヤ電極相互間との間に接続されたダイオード
とを具備することを特徴とするワイヤ放電加工機用電源
装置。
An output voltage variable means is provided between a first DC power supply whose cathode is connected to the workpiece and a first switching element, and the voltage set by this means is applied to the wire electrode and the workpiece by the first switching element. A dielectric breakdown pulse circuit that applies voltage to the machining gap between objects to cause dielectric breakdown thereof, and a second DC power source whose anode is connected to the workpiece through a second switching element to apply the voltage to the machining gap for machining. a main discharge circuit that generates a main discharge; a processing control circuit that controls the first and second switching elements to repeatedly generate the main discharge after the dielectric breakdown; and a processing control circuit that controls the first and second switching elements to repeatedly generate the main discharge after the dielectric breakdown; a diode connected between the first DC power supply and the output voltage variable means and between the second switching element and the wire electrodes in order to introduce electromagnetic energy generated in the system into the first DC power supply; A power supply device for a wire electrical discharge machine, comprising:
JP8758285A 1985-04-25 1985-04-25 Electric power source apparatus for wire electric discharge machine Pending JPS61249213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8758285A JPS61249213A (en) 1985-04-25 1985-04-25 Electric power source apparatus for wire electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8758285A JPS61249213A (en) 1985-04-25 1985-04-25 Electric power source apparatus for wire electric discharge machine

Publications (1)

Publication Number Publication Date
JPS61249213A true JPS61249213A (en) 1986-11-06

Family

ID=13918991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8758285A Pending JPS61249213A (en) 1985-04-25 1985-04-25 Electric power source apparatus for wire electric discharge machine

Country Status (1)

Country Link
JP (1) JPS61249213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312018A (en) * 1987-06-11 1988-12-20 Fanuc Ltd Power source for electric discharge machine
JP2010005705A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Power supply unit for wire electric discharge machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
JPS58196923A (en) * 1982-05-10 1983-11-16 Mitsubishi Electric Corp Power source device for discharge machining

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining
JPS58196923A (en) * 1982-05-10 1983-11-16 Mitsubishi Electric Corp Power source device for discharge machining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312018A (en) * 1987-06-11 1988-12-20 Fanuc Ltd Power source for electric discharge machine
JP2010005705A (en) * 2008-06-24 2010-01-14 Mitsubishi Electric Corp Power supply unit for wire electric discharge machine

Similar Documents

Publication Publication Date Title
CN100562394C (en) Electric discharge machining power supply and discharge-treating method
CA1287119C (en) Electric discharge machining apparatus
CA2020816C (en) Power supply circuit for discharge machining
US3705287A (en) Process for shaping workpiece by electrical discharge and apparatus therefor
JPH0761568B2 (en) Waveform control device for electrical discharge machine
TW590833B (en) Power unit for discharge processing
EP2883641B1 (en) Electric discharge machining device
US5380975A (en) Electric discharge machining apparatus
KR0158285B1 (en) Electrical discharge machining method and apparatus with non-load time calculation
JPS61249213A (en) Electric power source apparatus for wire electric discharge machine
KR860000619B1 (en) Wire-cut electric discharge machining device
JP4437612B2 (en) EDM machine
JPS61274814A (en) Electric discharge machining power supply
JPH0564032B2 (en)
JPH0120013B2 (en)
US6211481B1 (en) Power supply device for electric discharge machining apparatus
JPS60146624A (en) Method of electric discharge machining and device therefor
JPH059209B2 (en)
JP2017061023A (en) Machining power supply of wire electric discharge machine
EP0185101B1 (en) Power source for discharge machining
JPS61168423A (en) Power source device for wire electric discharge machine
JP2002154015A (en) Contact detecting device for electric discharge machine
JPS5973226A (en) Machining power supply of electric discharge machining device
JPH07290317A (en) Electric discharge machining method and device therefor
JPH081438A (en) Electric discharge machining method and device therefor