JPS58196923A - Power source device for discharge machining - Google Patents

Power source device for discharge machining

Info

Publication number
JPS58196923A
JPS58196923A JP57077853A JP7785382A JPS58196923A JP S58196923 A JPS58196923 A JP S58196923A JP 57077853 A JP57077853 A JP 57077853A JP 7785382 A JP7785382 A JP 7785382A JP S58196923 A JPS58196923 A JP S58196923A
Authority
JP
Japan
Prior art keywords
voltage
power source
power supply
discharge machining
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077853A
Other languages
Japanese (ja)
Other versions
JPS6339365B2 (en
Inventor
Kazuo Tsurumoto
鶴本 和夫
Yoshio Ozaki
尾崎 好雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57077853A priority Critical patent/JPS58196923A/en
Publication of JPS58196923A publication Critical patent/JPS58196923A/en
Publication of JPS6339365B2 publication Critical patent/JPS6339365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H2300/00Power source circuits or energization
    • B23H2300/20Relaxation circuit power supplies for supplying the machining current, e.g. capacitor or inductance energy storage circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To efficiently consume making electric power for interpole gap discharging machining by returning a part of the electric power to a DC power source at the time of turn-off by a rectifier coupled with a transformer instead of a resistor for consuming electric power. CONSTITUTION:In a power source device for pulse discharge between an electrode 1 and a workpiece to process the workpiece, semiconductor switching elements 9a-9d, a transformer 13, a control device 14, rectifiers 15a, 15b, a choke coil 16 and a condenser form a intermittently operating high-frequency inverter in which input voltage is contrived to be a constant voltage. The inverter is adapted to convert from AC to DC in such a manner as to keep the voltage of a condenser 7 at a reference value. A DC output thus returned to a DC power source is loaded on the DC power source to be a constant voltage, and again becomes a voltage supply source to the interpole gap 3. Thus, making electric power is efficiently consumed for interpole gap discharge machining.

Description

【発明の詳細な説明】 この発明1..1 、電極と被加工物間にパルス放Ml
 ’c行−で加ニーCる放電加工用電源装置の改良に関
−4−るものである、 従来この種の装置とし−C第1図に示すものX”tL−
・1こ1図において、(1)は電極、(2)は被加工物
、(3)はこ第1らにまりで形成さr+る微小加工間隙
(以下極間と称す)、(4)はバイポーラ形トラノジス
タ、電界効果形トランジスタ等の第1の半導体スイッチ
ング素子、(5)は前記半導体スイッチツク素子(4)
L/1 ON、 OF k’ を制御する制御装置、(
叫まタイ4−ド、(71i、tコンデンサ、(8)は王
に電椋装敏より上記極間(3)までの線路における等価
的4cイノタ′ノタノスで、通常、IPH以下の低い値
を維持さねる、(9)はバイポーラ形トラノジスタ、電
界効”lA形トフノジスタ等の第2の半導体スイッチツ
ク素子で、抵抗器−と直列回路を構成(、前記」ンテノ
サ(7)と並列に接続されている、0Mは[記8@20
)半導体スイッチ・グ素子(9)のON、O1!Fを制
御−qる制御装置、(6)は変成器、整流器、コノ7シ
サ等から成る血流IIc椋装諌である。第2図はL記動
2の半導体4イノチノグ素子のりへ、OFk制御(ロ)
路の一例一〇−ある 次に動作について説明する。第1の半導体スイ、フチン
グ素子(4)がON L、て、こ0)とき極間(3)の
絶縁が破壊し7電流が流tするが、このとき電流の流れ
る回路は第1図ilこ示す通りであり、このとき電流は
時間とともには(V“−VO)t/■、で心線的に増加
していく、但り、V、は直流電源装置υの電圧、VGは
極間0)アーク電圧でほぼ20′%1%Lは線路0)イ
ン脅りタンスである、(fこがって半導体スイッチング
素子(4)がON時闇t1経過後Ip = (Vs −
VOlt +/ Lj(る電流が流t]る、ここで半導
体スイッチング素子(4)がON状態からuFF状態に
なつCも、fことえ半導体スイッチング素子(4)かタ
ーンオフ時間が零の理想スイッチであると仮定しても線
路J)イノダクタンスに蓄えら第1Tこエネルギ−1L
Ip′C))7こめに、電流は瞬間的には零になり得才
、こび1fこめに半導体スイ・チング索子(4jull
ljl端にいわゆるサージ電圧が発生【7、タイオード
(6)を通(7て」ノケンサ(7)を充電する電流12
か流れ、コノアノ′4F(7)の電圧は[昇−(る f
li制御装置αυは第2図に一部7J−ボす通りコンデ
ンサ(7)の電圧かゼナータイ4 ドのR1十R2 電圧Vzで決まる基準値■E−−−「−−Vz  より
高いか低いかを判別する比較器(CMF)により半導体
スイッチング素子(9)をON、OFF制御し、コンデ
ンサの電圧が高ければON出力+Vlを、低けねばOF
F出カーVノを半導体スイッチング素子(9)に与える
、以上のように第3図(a)に示すとおり半導体スイッ
チング素子(4)(+)ON、OFFに従って、極間(
3)には83図(b)に示す電流il12 が流れるが
、これはターン4ノ時の電流i+(第8図(C))とダ
ーツオフ時の電流凰2(第8図(d))に分解テ>、と
くにターンオフ時Q)電流12は11と同様M 間(3
)にも流ね、一部は加工に寄与オ乙が、最終的には大半
が抵抗器α0の熱エネルキーに変換される。
[Detailed Description of the Invention] This invention 1. .. 1. Pulse discharge Ml between the electrode and the workpiece
This relates to the improvement of a power supply device for electric discharge machining that performs machining in line C.
・In Figure 1, (1) is the electrode, (2) is the workpiece, (3) is the micromachined gap r+ formed by the first lump (hereinafter referred to as the gap), (4) is a first semiconductor switching element such as a bipolar transistor or a field effect transistor; (5) is the semiconductor switching element (4);
A control device that controls L/1 ON and OF k', (
The tied 4-de, (71i, t capacitor, (8) is the equivalent 4c inota'notanos on the line from Sotoshi Dengu to the above pole gap (3), and usually has a low value below IPH. (9) is a second semiconductor switching element such as a bipolar transistor or a field effect type transistor, which forms a series circuit with the resistor (connected in parallel with the transistor (7)). 0M is [Note 8 @ 20
) ON of semiconductor switch element (9), O1! A control device (6) for controlling F is a blood flow IIc system consisting of a transformer, a rectifier, a controller, etc. Figure 2 shows the OFk control (b) to the semiconductor 4-inochinog element glue of L recording movement 2.
Example 10 - Next, the operation will be explained. When the first semiconductor switch and the bordering element (4) are ON L, the insulation between the electrodes (3) is broken and a current flows, but the circuit through which the current flows is shown in Figure 1. As shown, the current increases linearly with time at (V"-VO)t/■, where V is the voltage of the DC power supply υ, and VG is the voltage between the poles. 0) The arc voltage is approximately 20'% 1%L is the line 0) Impairment resistance, (f rises, and when the semiconductor switching element (4) is turned on, after t1 has elapsed, Ip = (Vs -
VOlt +/ Lj (a current flows t), where the semiconductor switching element (4) changes from the ON state to the uFF state. Even assuming that there is, the energy stored in the inductance of the line J) is
Ip'C)) At the 7th moment, the current instantaneously becomes zero, and at the 1st moment the semiconductor switching cable (4jull)
A so-called surge voltage occurs at the ljl terminal [7, current 12 passes through the diode (6) and charges the sensor (7)
, the voltage of Konoano'4F(7) rises.
The li control device αυ is determined by the voltage of the capacitor (7) as shown in Figure 2 or the R10R2 voltage of the Zener Tide.Is it higher or lower than the voltage Vz? The semiconductor switching element (9) is ON/OFF controlled by a comparator (CMF) that determines the voltage, and if the voltage of the capacitor is high, the ON output +Vl is turned on, and if it is low, it is turned OFF.
As shown in FIG. 3(a), as shown in FIG. 3(a), the contact gap (
3), the current il12 shown in Fig. 83 (b) flows, but this is the current i+ at turn 4 (Fig. 8 (C)) and the current il12 at the time of dart off (Fig. 8 (d)). Disassembly>, especially at turn-off Q) Current 12 is similar to 11 between M (3
), some of it contributes to processing, but ultimately most of it is converted into thermal energy of resistor α0.

従来Q)放電加工用電源装置は以上のように構成されて
いるυ)で、極間電流のパルス巾を制御するために、半
導体スイッチ°ツク素子のターンオフ時の電流をコンデ
ンサに一担蓄積し、最終的には抵抗器で熱工不ルキーと
し、で消費する1こめ、装置への全投入電力に対(て実
際に極間(3)で放電加工の1コめに消費される電力の
割合すなイ)ち電力の効率の向上が原理的に望めないば
かりか、半導体を多く含む電源装置自身の発熱により信
頼性低下U1原因となるなどの欠点があった。
Conventional electric discharge machining power supplies are configured as described above.In order to control the pulse width of the current between the machining electrodes, the current at the time of turn-off of the semiconductor switching element is stored in a capacitor. , and finally, the resistor is used to make the heat work stable, and the amount of power actually consumed in the first part of electrical discharge machining at the machining gap (3) is calculated from the total power input to the device. In other words, not only is it impossible to expect an improvement in power efficiency in principle, but the power supply device itself, which contains a large amount of semiconductors, generates heat, which causes a decrease in reliability U1.

この発明は上記のような従来のもののIX点を除去する
f、:y)になさtl、1こもので、ターンオフ時に電
力の一部を消費ζる抵抗器の代わり≦こ これを変成器
結合した整流器によって元の直流電源側に戻すことによ
り、無駄な抵抗器による発熱ノ、)なく、投入電力う一
効率的に極間の放電加工の1コめに消費できる放電〃1
4工用電源装置を提供することを目的と(、でいる。
This invention eliminates the IX point of the conventional one as described above, instead of a resistor that consumes part of the power at turn-off, it is coupled to a transformer. By returning it to the original DC power supply side using a rectifier, there is no unnecessary heat generation caused by resistors, and the input power can be more efficiently consumed in the first process of electric discharge machining between machining electrodes.
The purpose is to provide power supply equipment for 4-hour construction.

以下、この発明の一実施例を図について説明する。第4
図にj:3いて(9B)、 (9b)、 (91,(9
d) l! イずれも半導体ス・fソ=ング素子で、変
成器α3(711次側がたオ〜がitに;Jいるまうに
接続さn°Jノテノサ(7)(’)層圧が基準値以上に
なると所定の周波数でON、OFFを繰り返すように制
御装置α◆により制御されろ。半導体スイッチツク素子
と(7て電界効果形トランジスタを使用し1こ場合の制
御装置を第5図に示す、 (15a)、 +15b)は
上記変成器0の2次側に接続さtlだ整流器で、チョー
クコイルOfiを経てコンデンサαηに接続されている
。コンデンサQηは元の自流電源装置!103の出力に
血列に接続され、さらにその後段には血流出力を安定化
するトフーノジスタチョノバ方式の定電圧装置(ト)が
接続されでいる。01はこのトー77ジスタチョノバl
j式C11制御装置を示し、第6図にその構成図を示す
2ダイオード(20a) 、  f20b) 、  (
20c) 、  +20d) j、を半導体スイッチフ
グ素子(9a)、 +9b)、 (9c)、 (9d)
 rh保護用タイ4−ドである、 半導体スイッチング素子(9a)、 (9b)、 (9
c >、 (9d)目制御装wtO引こまってON、(
J)“)゛を制御さ第1るが、fbil III装置0
4JIJ第5図にボ4−とおり」シーrノサ(7)の電
圧Viaがセづダイオードで決まる基準電圧kVzより
低けilば、半導体スイッチング素子(9a)+19”
 +。
An embodiment of the present invention will be described below with reference to the drawings. Fourth
In the figure, j:3 is (9B), (9b), (91, (9
d) l! Both of them are semiconductor switching elements, and the transformer α3 (711 primary side is connected to it; Then, it should be controlled by the control device α◆ so as to repeat ON and OFF at a predetermined frequency.The control device in this case is shown in Fig. 5, using a semiconductor switching element (7) and a field effect transistor (1). 15a), +15b) are tl rectifiers connected to the secondary side of the transformer 0, and are connected to the capacitor αη via the choke coil Ofi.The capacitor Qη is connected to the output of the original free-current power supply!103. 01 is connected to this toe 77 distachonova type constant voltage device (g) which stabilizes the blood flow output.
2 diodes (20a), f20b), (
20c), +20d) j, semiconductor switch blowfish element (9a), +9b), (9c), (9d)
Semiconductor switching elements (9a), (9b), (9
c >, (9d) Eye control device wtO withdrawn and ON, (
J) “)” is controlled by the FBI III device 0.
4JIJ As shown in Figure 5, if the voltage Via of the sensor (7) is lower than the reference voltage kVz determined by the diode, the semiconductor switching element (9a) +19''
+.

(9c)、(9d)全てを()に’に’+cシ、Vin
かゼナ・−タ・イ4−1 テ決、iる基*wLff k
Vz 、L’ tl 篩it t+ ハ半導体スイッチ
ツク素子(9a )+ (9d ) I、−(J N、
19b)、(9c)を(丹゛l゛、その後(9a l、
 (9d ) ?□ (丹゛ル、(9b)、(9c)を
りNと(・うようにfこすきかC目こ接続さオIfこ半
導体スイッチング素子を交互に繰り返しON、OFF動
作させ、変成器(至)の入力に交流電圧を印加する、し
たがって極間(3)での放電周波数が上昇するか、各放
電電流のピーク値が高いときにはコンテ・すの電圧が上
昇【11、半導体スイッチング素子(9a)。
(9c), (9d) all () to 'to' + c shi, Vin
Kazena-ta-i 4-1 Te decision, iru group *wLff k
Vz, L' tl sieve it t+ C semiconductor switching element (9a) + (9d) I, - (J N,
19b), (9c) (dan゛l゛, then (9a l,
(9d)? □ (9b), (9c) are connected to N and C, and the semiconductor switching elements are alternately turned ON and OFF, and the transformer (to ). Therefore, when the discharge frequency between the electrodes (3) increases or the peak value of each discharge current is high, the voltage across the connector increases [11. Semiconductor switching element (9a) .

(9b)、(9c)、t9d)は繰り返しスイッチンク
動作を行ないコンデンサの電圧を一定値に維持するよう
番こ動作する、変成器(至)の2次側には整流器(15
a)。
(9b), (9c), t9d) perform repeated switching operations to maintain the capacitor voltage at a constant value.On the secondary side of the transformer (to) is a rectifier (15).
a).

(15b)及び高周波スイッチングノイズを除去−(る
チョークコイル曲、コンデンサαηか接続さ)1、高周
波スイッチングノイズを多く含む交流を血流に変換゛(
る、以上のように半導体スイッチング素子(9a)、 
(9b)、(9c)、(9d)、変成器(至)、制御装
!1(14)。
(15b) and remove high-frequency switching noise - (connect choke coil, connect capacitor αη) 1. Convert alternating current that contains a lot of high-frequency switching noise into blood flow (
As described above, the semiconductor switching element (9a),
(9b), (9c), (9d), transformer (to), control equipment! 1 (14).

整流器(15a)、  (15b)、f q−り:] 
4 ルQf9. J ノテンサαηは一種の入力電圧の
定電圧化をはかつfコ間欠勤作を行なう高周波インバー
タを形成し、コンデンサ(7)の電圧を基準値に維持オ
ろように交流直流変換動作を行なう、このときの制御回
路Q41の電源はコンデンサ(7)より供給を受け、特
別lこ外部よれ供給を受ける必要はない、このようにし
て直流電源側に返され1こ直流出力は元の直流電源に[
槓みするかたちで一列に接続さ第1るtこめ定電圧装置
−によって定電圧化され、再び極間(3)=のtIIt
汁供給線供給源。第6図はこの定電圧装置の制御装置t
Q1で、出力電圧によってfヨノバスイソナのパルス幅
を変更するいわゆるパルス巾変調(1’WM)の動作を
行なう、 なお上記実施例では、半導体スイノチノグ素子(9)と
して電界効果形トランジスタを使用[2fこ例をボt−
f二が、通常のハイポーフ杉トランジスタを使用【でも
丁く、ま1こ半導体スイノチノグ素子の接続をIこ−C
きかけでな(、第7図に示−イま一]に一方向性ス・イ
ノチとし−Cもよく、変成器の2次側にJjい“(も整
流器ら一変成器との接続は半波整流方式であって゛もよ
い、さらに定電f上装置(至)はトランジスタをスイッ
チング動作させる、チョッパ方式tごけQ /j (能
動 城で使用するトロツバh式のものでも1く、同様υ
)効果を秦−(る5 以りのようIこ、この発明によ)1は半導体スイッチン
グ素子のター747時のせ−ジェ不ルキーをコンデンサ
に蓄え、こ0)コンデンサの電圧を定電圧化するととも
に入力端に電力を帰すtコめに一種の高周波インバータ
を設けたので従来の装置のように抵抗器が不要となり、
電力効率が高く自己発熱量が少なく小形化が可能な放電
加工用電源装置が得られろという効果がある、
Rectifier (15a), (15b), fq-ri:]
4 LeQf9. J Notensa αη forms a high-frequency inverter that stabilizes the input voltage and performs intermittent operation, and performs AC/DC conversion to maintain the voltage of the capacitor (7) at a reference value. At this time, the power of the control circuit Q41 is supplied from the capacitor (7), and there is no need to receive a special external supply.In this way, the power is returned to the DC power supply side, and the DC output is returned to the original DC power supply. [
The voltage is regulated by the first voltage regulator connected in a row in a row, and again the voltage is tIIt between the poles (3) =
Juice supply line source. Figure 6 shows the control device t for this constant voltage device.
Q1 performs a so-called pulse width modulation (1'WM) operation in which the pulse width of the f Yonova isona is changed depending on the output voltage. In the above embodiment, a field effect transistor is used as the semiconductor Suinotinog element (9). Below is an example.
f2 uses a normal Hypofusugi transistor.
At the beginning (as shown in Figure 7), a unidirectional switch is connected to the secondary side of the transformer. It may be a half-wave rectification system, and furthermore, the constant current f upper device (to) operates a transistor in a switching operation, a chopper type tgoke Q/j (active.
1) To store the effect of the semiconductor switching element 747 in a capacitor, 0) to make the voltage of the capacitor a constant voltage. At the same time, a type of high-frequency inverter was installed at the input terminal to return power, eliminating the need for a resistor like in conventional devices.
This has the effect of providing a power supply device for electrical discharge machining that has high power efficiency, low self-heat generation, and can be miniaturized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放電加工用電源装置の構成をネオ回路図
、第2図はm1図における第2の半導体スイッチング素
子の制御装置の構成を示す回路図、第3図は放電電流波
形を示す説明図、第4図はこの発明の一実施例に誹る放
電加工用電源装置の構成を示す回路図、第5図は第4図
ICJ、; i Tる半導体スイッチジグ素子制御装置
の構成を示す回路図、第6図は第4図における定電圧装
置の制御装置の構成を示す回路図、m7図I、″【この
発明の他の実施例の構成を示す回路図である、 図中、(1)は電極、(2)は被加二1.物、(3)t
、s微牛加1゜間隙、(4)は第1の半導体ス・イ、ノ
チノグ素子、(6)はダイ4−ド、(7)はコンデンサ
、(9)は第2の半導体スイノチノグ素子、@は直流電
源装置、叫11変成器、(至)は整流器である、 なお図中、同一符号は向−又は相当部分を示す。 代理人  葛 野 信 −・ V  L:  抽 由 潟(自発) 1.    1 ′ノ 昭和  71   月  [I 4’l”j’l’  l!’  Iど自 殿     
                         
          (l ・I;il・・人小   
  ’l’lll;1Illlr(57−778588
!、  ’kl 1lJj u’l CFl、    
放電加工用*m装置:L  1111+1’、、、4る
古 ・It f’lい]閂1,7    持、1′1出願ノ
、代ノd1   °−−−−2− 1代 理  ノ、             片  山
  仁へ部5、補正の対象 (1)  明細書の発明の詳細な説明の橋。 (2)  図面 S 補正の内容 (2)図面中、第1図及び15図を別紙の通り10才る
、 乙 添付書類の目録 (1)  訂正図thI(第1図及び第5図+    
121iI以1−
Figure 1 is a neo circuit diagram showing the configuration of a conventional electric discharge machining power supply device, Figure 2 is a circuit diagram showing the configuration of the control device for the second semiconductor switching element in the m1 diagram, and Figure 3 is a discharge current waveform. An explanatory diagram, FIG. 4 is a circuit diagram showing the configuration of a power supply device for electric discharge machining according to an embodiment of the present invention, and FIG. 5 is a circuit diagram showing the configuration of a semiconductor switch jig element control device according to FIG. FIG. 6 is a circuit diagram showing the configuration of the control device of the constant voltage device in FIG. 4, and FIG. (1) is an electrode, (2) is an applied object, (3) t
, s-1 degree gap, (4) is the first semiconductor switch element, (6) is the die 4-de, (7) is the capacitor, (9) is the second semiconductor switch element, @ is a DC power supply, 11 is a transformer, and (to) is a rectifier. In the drawings, the same reference numerals indicate directions or corresponding parts. Agent Makoto Kuzuno - VL: Yugata (voluntary) 1. 1 'No Showa 71 month [I 4'l"j'l'l!'

(l・I;il・・人小
'l'llll;1Illr(57-778588
! , 'kl 1lJj u'l CFl,
Electrical discharge machining *m equipment: L 1111+1',,, 4 old, It f'l] bolts 1, 7, 1'1 application, d1 °----2- 1, Hitoshi Katayama Part 5, Subject of amendment (1) Bridge of detailed explanation of the invention in the specification. (2) Drawing S Contents of amendment (2) Figures 1 and 15 in the drawing are 10 years old as shown in the attached sheet.
121iI and above 1-

Claims (1)

【特許請求の範囲】[Claims] 電極と加工液を介し、て被加工物との間に形成さねる加
工間隙に間欠的なパルス電圧を供給する放電加工用電源
装置を、直流電源と、該電源に直列に接続されオノ、オ
フ動作を繰り返す第1の半導体スイッチング素子と、前
記第1の半導体スイッチジグ素子とダイオードを介(7
で並列に接続さ711こコンデンサと、上記コンデンサ
に並列に接続され、且つこのコノアノサの電圧か基準値
以上でスイッチジグ動作を行なう半導体ス、イノアノグ
素子及び変成器から成る直列回路と、前記変成器の二次
側に接続さJl、且つ前記直流電源電圧番こ電圧を上積
みするように接続した整流回路とから構成[7rコ放電
加工用電譚装置。
A power supply device for electric discharge machining that supplies an intermittent pulse voltage to the machining gap formed between the electrode and the workpiece via the machining fluid is connected to a DC power supply in series with the power supply, and is connected in series to the power supply. A first semiconductor switching element that repeats operation, and a diode (7
a series circuit consisting of a semiconductor device, an inoanograph element, and a transformer connected in parallel to the capacitor and which performs a switch jig operation when the voltage of the inoanosa is equal to or higher than a reference value; and the transformer. The electric discharge machining device consists of a rectifier circuit connected to the secondary side of the electric discharge machining circuit and a rectifier circuit connected to add the DC power supply voltage.
JP57077853A 1982-05-10 1982-05-10 Power source device for discharge machining Granted JPS58196923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077853A JPS58196923A (en) 1982-05-10 1982-05-10 Power source device for discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077853A JPS58196923A (en) 1982-05-10 1982-05-10 Power source device for discharge machining

Publications (2)

Publication Number Publication Date
JPS58196923A true JPS58196923A (en) 1983-11-16
JPS6339365B2 JPS6339365B2 (en) 1988-08-04

Family

ID=13645614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077853A Granted JPS58196923A (en) 1982-05-10 1982-05-10 Power source device for discharge machining

Country Status (1)

Country Link
JP (1) JPS58196923A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168423A (en) * 1985-01-23 1986-07-30 Hitachi Seiko Ltd Power source device for wire electric discharge machine
JPS61249213A (en) * 1985-04-25 1986-11-06 Hitachi Seiko Ltd Electric power source apparatus for wire electric discharge machine
US4713516A (en) * 1984-05-11 1987-12-15 Ag Fur Industrielle Elektronik Agie Losone B. Locarno Pulse generator for spark erosive metal working
JPS63139615A (en) * 1986-12-01 1988-06-11 Mitsubishi Electric Corp Source device for electric discharge machining
US4788399A (en) * 1984-06-29 1988-11-29 Nicolas Mironoff Electrical circuit for electro-discharge machines
JPS6445522A (en) * 1987-08-14 1989-02-20 Mitsubishi Electric Corp Power supply device for electric discharge machining
JPH05220619A (en) * 1992-02-05 1993-08-31 Stanley Electric Co Ltd Regenerative circuit for electric discharge machining
EP2939781A1 (en) * 2014-04-30 2015-11-04 Fanuc Corporation Machining power supply device for electric discharge machine
US9440300B2 (en) 2012-10-30 2016-09-13 Mitsubishi Electric Corporation Electric discharge machining apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395858U (en) * 1990-01-17 1991-09-30

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0585519U (en) * 1984-05-11 1993-11-19 アーゲー フユア インドストリエルレ エレクトロニク アギー ロソーネ ベー. ロカルノ Pulse generator for electric discharge machine
US4713516A (en) * 1984-05-11 1987-12-15 Ag Fur Industrielle Elektronik Agie Losone B. Locarno Pulse generator for spark erosive metal working
US4788399A (en) * 1984-06-29 1988-11-29 Nicolas Mironoff Electrical circuit for electro-discharge machines
JPS61168423A (en) * 1985-01-23 1986-07-30 Hitachi Seiko Ltd Power source device for wire electric discharge machine
JPS61249213A (en) * 1985-04-25 1986-11-06 Hitachi Seiko Ltd Electric power source apparatus for wire electric discharge machine
JPS63139615A (en) * 1986-12-01 1988-06-11 Mitsubishi Electric Corp Source device for electric discharge machining
JPS6445522A (en) * 1987-08-14 1989-02-20 Mitsubishi Electric Corp Power supply device for electric discharge machining
JPH05220619A (en) * 1992-02-05 1993-08-31 Stanley Electric Co Ltd Regenerative circuit for electric discharge machining
US9440300B2 (en) 2012-10-30 2016-09-13 Mitsubishi Electric Corporation Electric discharge machining apparatus
EP2939781A1 (en) * 2014-04-30 2015-11-04 Fanuc Corporation Machining power supply device for electric discharge machine
CN105033369A (en) * 2014-04-30 2015-11-11 发那科株式会社 Machining power supply device for electric discharge machine
US10220458B2 (en) 2014-04-30 2019-03-05 Fanuc Corporation Machining power supply device for electric discharge machine
EP3566805A1 (en) * 2014-04-30 2019-11-13 Fanuc Corporation Machining power supply device for electric discharge machine

Also Published As

Publication number Publication date
JPS6339365B2 (en) 1988-08-04

Similar Documents

Publication Publication Date Title
JPS5934070B2 (en) Power supply circuit with capacitor type filter
US6493245B1 (en) Inrush current control for AC to DC converters
JPS58196923A (en) Power source device for discharge machining
JP2888729B2 (en) Output short circuit protection circuit
US3930194A (en) Inverter control circuit
JPH036718U (en)
EP0736959B1 (en) Low dissipation power controller
JP2560530B2 (en) Power converter
JPH01311864A (en) Switching system stablizing electric source device
JPH08308219A (en) Chopper type dc-dc converter
JPH10285914A (en) Rectifying circuit
JP3134913B2 (en) Switching device
JPS5843182A (en) Dc power source circuit
JP2773534B2 (en) DC power supply
JP2003088113A (en) Switching power supply unit
RU2068215C1 (en) Power supply source for devices with two power leads-in
JP3413547B2 (en) Power supply for electromagnetic equipment
JPH06335245A (en) Insulated switching power spray
JPH0611188B2 (en) Energy converter
JPH10174438A (en) Power supply unit for ac input
JPH0362006B2 (en)
JPH0230376A (en) Power unit for arc machining
JPH09182417A (en) Power supply device and electric apparatus using it
JPH01243849A (en) Method of controlling resonance converter
JPH0666293U (en) Switching power supply