JPS60146624A - Method of electric discharge machining and device therefor - Google Patents

Method of electric discharge machining and device therefor

Info

Publication number
JPS60146624A
JPS60146624A JP78584A JP78584A JPS60146624A JP S60146624 A JPS60146624 A JP S60146624A JP 78584 A JP78584 A JP 78584A JP 78584 A JP78584 A JP 78584A JP S60146624 A JPS60146624 A JP S60146624A
Authority
JP
Japan
Prior art keywords
machining
current
workpiece
discharge
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP78584A
Other languages
Japanese (ja)
Other versions
JPH048165B2 (en
Inventor
Masakazu Kishi
岸 雅一
Hitoshi Miyahara
宮原 斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Seiko Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiko Ltd filed Critical Hitachi Seiko Ltd
Priority to JP78584A priority Critical patent/JPS60146624A/en
Publication of JPS60146624A publication Critical patent/JPS60146624A/en
Publication of JPH048165B2 publication Critical patent/JPH048165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent the surface of a workpiece from being deteriorated under electrolytic reaction, by superposing a working current in the direction reverse to that of a current which is fed between a machining electrode and the workpiece, just after dielectric breakdown of the working gap. CONSTITUTION:When an output having a waveform C is delivered from a pulse control circuit 27 to a swtiching element control circuit 20, a switch element 18 is turned on so that a voltage ES from a d.c. current source 17 is applied across the working gap. At this time, since the polarity of a workpiece is negative, and therefore no electrolysis comes about. When spark discharge is initiated, the voltage drops are indicated by a waveform (a), and a current as indicated by a waveform (b) runs, which is detected by a current detector 28 whose an output signal is delivered to the pulse control circuit 27. Accordingly, a switching element 22 is turned on at the tming as indicated by a waver form (d) so that a current as indicated by the waveform (b) runs across the working gap. In this stage even after deenergization of the element 22 electromagnetic energy is discharged through a diode 24 due to the inductance of electrical energization system wire, so that a current runs across the working gap. Thus, without lowering the electric discharge machining speed, the surface of the workpiece may be prevented from being deteriorated due to electrolytic reaction.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放電力11工方法並びにその装置に係り、さら
に詳しくは)J]1工用−極と工作物とが対向して形成
する7JU工間隙に間欠的な放電を発生させて加工を行
う放電加工方法並びにその装置に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for discharging power 11 and an apparatus therefor, and more particularly) J] 1 work - 7 JU work in which a pole and a workpiece are opposed to each other. The present invention relates to an electric discharge machining method and apparatus for machining by generating intermittent electric discharge in a gap.

〔発明の背端〕[Behind the invention]

ワイヤ放′亀加工機は、近年、カロエ速度及び加工精度
が大幅に向上しているが、JJD工速変速度上させた場
合、 JJu工稍度が低下する傾向がちる。特に最近開
発きれた高速〃ロエ用・ぐルス′亀源は〃ロエ鞘度を低
下させている原因の一つである電解作用が比較的大きい
ことが明らかになっている。本発明はこの問題を解決す
るためになされたものである。
In recent years, the speed and machining accuracy of wire free-cut machining machines have been greatly improved, but when the JJD speed change speed is increased, the JJu machining accuracy tends to decrease. In particular, it has been revealed that the recently developed high-speed loe gel source has a relatively large electrolytic action, which is one of the causes of lower loe sheath degree. The present invention has been made to solve this problem.

第1図は従来のワイヤ放電加工装置の全体構成を示した
ものであって、1はワイヤ電極を示し、このワイヤ電極
1は、ローラ2.3に案内され、工作物4に対向し、そ
の電極1と工作物4の相対位置は数値制御装置の指令に
より動作する位置決め装置のモータ5,6により制御さ
れる。前記電極1と工作物2により形成される加工間隙
Qには加工液供給ノズル7.8により7JO工液である
イオン′9S換水が供給烙れ、また前記電極lには通電
端子9.10から給電される。電源供給するノヤルス電
の11は、直流電源12.スイッチング素子13及びそ
の制御回路14 、減流抵抗15そして放電用コンデン
サより構成されている。この種のパルス電源の加工間隙
におけろ電圧と電流の波形は第2図(a)に示すように
電圧が指数関数的に増加して直流電源12の電圧まで放
電用コンデンサ16が充電されて、前記加工間隙に放電
が発生すると、第2図(幻のような振動電流が流れる。
FIG. 1 shows the overall configuration of a conventional wire electrical discharge machining device, in which 1 indicates a wire electrode, which is guided by a roller 2.3 and faces a workpiece 4. The relative position of the electrode 1 and the workpiece 4 is controlled by motors 5, 6 of a positioning device operated by commands from a numerical control device. The machining gap Q formed between the electrode 1 and the workpiece 2 is supplied with ion '9S replacement water, which is a 7JO working fluid, from the machining fluid supply nozzle 7.8, and the electrode 1 is supplied with ion '9S replacement water from the current-carrying terminal 9.10. Powered. Noyarusu Electric's 11, which supplies power, is a DC power source 12. It is composed of a switching element 13, its control circuit 14, a current reducing resistor 15, and a discharging capacitor. The voltage and current waveforms in the machining gap of this type of pulse power supply are as shown in FIG. , When an electric discharge occurs in the machining gap, an oscillating current flows as shown in Fig. 2 (phantom).

この振動電流波形は放電用コンデンサから加工間隙に至
る通電糸のインダクタンス及び抵抗値と放電用コンデン
サの容量によって決定されるが、一般に第2図(a)の
ような振動電流波形となる。
This oscillating current waveform is determined by the inductance and resistance value of the current-carrying thread from the discharge capacitor to the machining gap, and the capacity of the discharge capacitor, and is generally an oscillating current waveform as shown in FIG. 2(a).

また第1図の放電用コンデンサ16を取り除いた場合の
電源回路も従来から使用されており、その波形は第2図
の(b)のような波形となる。いずれの場合も絶縁破壊
時の印加パルスの極性は工作物が陽極である。この極性
は工作物を加工する速度が高くなる極性として選ばれて
おり、加工速度を高くするには工作物から電極へ電流を
流す方が良いことが実験により確認されている。
Furthermore, a power supply circuit in which the discharging capacitor 16 shown in FIG. 1 is removed has also been used in the past, and its waveform is as shown in FIG. 2 (b). In either case, the polarity of the applied pulse at the time of dielectric breakdown is such that the workpiece is the anode. This polarity was chosen as the polarity that increases the machining speed of the workpiece, and experiments have confirmed that it is better to flow current from the workpiece to the electrode in order to increase the machining speed.

しかし、加工液に水が用いられているため、′電圧が加
工間隙に印加されている時、電解反応が生じて、工作物
の加工表面が軟質となり〃ロエ面の品質を悪化させてい
た。この量は数μmから十数μmもあるため、寸法精度
を数μmを得る高精度加工の大きな障害となっていた。
However, since water is used in the machining fluid, an electrolytic reaction occurs when a voltage is applied to the machining gap, making the machined surface of the workpiece soft and deteriorating the quality of the loe surface. Since this amount ranges from several micrometers to more than ten micrometers, it has been a major obstacle to high-precision machining to achieve dimensional accuracy of several micrometers.

この問題に対して、極間の平均電圧が0■になるように
両極性の・やルス電圧を印加する方法もあるが、それに
よると加工に寄与する加工パルスの周波数が低下するた
めに、加工速度が低下するという問題を残していた。
To solve this problem, there is a method of applying a bipolar, slightly pulsed voltage so that the average voltage between the poles is 0, but this method lowers the frequency of the machining pulses that contribute to machining. The problem remained that the machining speed decreased.

〔発明の目的J 本発明の目的は、前記した従来技術の問題点に鑑みなさ
れたものであって、放電加工を低下させることなく加工
間隙における電解反応により生ずる加工表面の軟質層を
なくした放電加工法並びにその装置を提供するにある。
[Objective of the Invention J The object of the present invention has been made in view of the problems of the prior art described above, and is to provide an electrical discharge that eliminates the soft layer on the machining surface caused by the electrolytic reaction in the machining gap without deteriorating the electrical discharge machining performance. The purpose of the present invention is to provide a processing method and an apparatus therefor.

〔発明の概要〕[Summary of the invention]

本発明の1つの特徴は、 jJO工用電極と工作物との
間の7JO工間隙に間欠放電を発生させて工作物の71
0王を行う放電力ロエ方法において、前記加工間隙が絶
縁破壊した直後に、前記〃11工用電極と工作物との間
に出力する電流の方向とは逆方向に加工電流を重畳する
点にある。
One feature of the present invention is to generate intermittent discharge in the 7JO machining gap between the jJO machining electrode and the workpiece to
In the discharge power Roe method for performing zero-axis, immediately after the machining gap has dielectric breakdown, a machining current is superimposed in the direction opposite to the direction of the current output between the machining electrode and the workpiece in 11. be.

本発明のもう1つの特徴は、加工用電極と工作物との間
の加工間隙に間欠放電を発生させて工作物の加工を行な
う放電7JII工装置において、絶縁破壊用・やシスI
r1l路を構成する直流電源の陰極と、主放電回路を構
成する直流電源の陽極を工作物に接続すると共に、前記
絶縁破壊用・やルス回路に挿入したスイッチング素子を
オフ制御後に、主放電回路に挿入したスイッチング素子
をオン制御するパルス制御回路を設け、絶縁破壊時の工
作物の間欠放電電圧を陰極とし、放電加工速度を低下さ
せることなく電解反応による工作物のかロエ表面の悪化
全防止するように構成した点である。
Another feature of the present invention is that the electrical discharge 7JII machining equipment generates intermittent discharge in the machining gap between the machining electrode and the workpiece to machine the workpiece.
After connecting the cathode of the DC power source constituting the r1l path and the anode of the DC power source constituting the main discharge circuit to the workpiece, and turning off the switching element inserted in the dielectric breakdown circuit, the main discharge circuit is turned off. A pulse control circuit is installed to turn on the switching element inserted in the machine, and the intermittent discharge voltage of the workpiece at the time of dielectric breakdown is used as a cathode, completely preventing deterioration of the workpiece's surface due to electrolytic reaction without reducing the discharge machining speed. The point is that it is configured like this.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図〜第6図に従って本発明を詳述する。第3
図はその一実施例を示すものであって、第1図と同一符
号を付しであるものは同一機能を有するものである。同
図においては説明をl口単にするため電源回路を主とし
て示しである。第3図においてはi#!3縁破壊用・母
ルス回路は、直流電源17 。
The present invention will be described in detail below with reference to FIGS. 3 to 6. Third
The figure shows one embodiment of the present invention, and those having the same reference numerals as those in FIG. 1 have the same functions. In the figure, the power supply circuit is mainly shown to simplify the explanation. In Figure 3, i#! DC power supply 17 is used for the three edge destruction/mother loop circuits.

スイッチング素子18.減流抵抗19及びスイッチング
素子18を制御するスイッチング制御回路か、ダイオー
ド29で構成されている。また、主放′a電流回路は直
流電#、21.スイッチング素子22及びその制御回路
る。ダイオード別、副直流?iE源かで構成されている
。また、放電が開始したことを検出する電流検出器あが
加工間隙と絶縁破壊用パルス回路の間に接続されている
Switching element 18. A switching control circuit that controls the current reducing resistor 19 and the switching element 18 or a diode 29 is configured. In addition, the main discharge 'a current circuit is DC current #, 21. Switching element 22 and its control circuit. Sub-DC by diode? It consists of an iE source. Additionally, a current detector for detecting the start of discharge is connected between the machining gap and the dielectric breakdown pulse circuit.

またかは・やルス制御回路を示し、電流検出器側の出力
信号を処理すると共に、スイッチング素子、制御回路加
、23へパルス信号を出力するためのものである。
Also shown is a pulse control circuit, which processes the output signal from the current detector and outputs a pulse signal to the switching element and control circuit 23.

次に第4図を用いて第3図の回路動作を説明する。Next, the operation of the circuit shown in FIG. 3 will be explained using FIG. 4.

まず、i4ルス制御回路27から第4図の波形(e)の
出力がスイッチング素子制両回路加へ入力されて、スイ
ッチング素子18がオン状態となる。この時スイッチン
グ素子22はオフしている。直流型#t17の電源電圧
E、が加工間隙に印加される。この時工作物の極性は陰
極であるため、工作物は電解されない。放電が開始する
と第4図の(a)波形のように電圧が低下し、そして(
b)波形のように電流が流れ出し、その電流は電流検出
器路で検出器れ、その信号はノ4ルス制呻回路へ入力さ
れて、スイッチング素子Uを制御する信号がスイッチン
グ素子制御回路るへ出力される。その結果、スイッチン
グ素子22は第4図の(d)波形のタイミングでオン状
態となり、その時の加工間隙に流れる電流は第4図の(
bJrHL形のようになる。第4図の(b)波形でスイ
ッチング素子四をオフした後でも電流が流れているのは
、通電系の布線のインダクタンスに蓄積した電磁エネル
ギーがダイオ−トムを通って放出するからである。
First, the output of the waveform (e) in FIG. 4 from the i4 pulse control circuit 27 is input to the switching element control circuit, and the switching element 18 is turned on. At this time, the switching element 22 is off. A power supply voltage E of the DC type #t17 is applied to the machining gap. At this time, since the polarity of the workpiece is cathode, the workpiece is not electrolyzed. When the discharge starts, the voltage decreases as shown in the waveform (a) in Figure 4, and then (
b) A current flows out like a waveform, the current is detected by the current detector path, the signal is input to the noise suppression circuit, and the signal to control the switching element U is sent to the switching element control circuit. Output. As a result, the switching element 22 is turned on at the timing of the waveform (d) in FIG. 4, and the current flowing through the machining gap at that time is (
It will look like bJrHL type. The reason why current continues to flow even after switching element 4 is turned off in the waveform (b) of FIG. 4 is that electromagnetic energy accumulated in the inductance of the wiring in the current-carrying system is released through the diome.

第4図で示すように放電が開始してから、スイッチング
素子22がオンするまでにt3時間だけ遅れているが、
電流検出器あて放電開始を検出してからスイッチング素
子をオンするまでの信号処理時間は使用する素子の信号
処理時間で最短時間でも200〜500naかかるため
であり、時間t3は2()0〜500 ns以上となる
。また時間1.とt2は、通常一定になるように制御さ
れる。
As shown in FIG. 4, there is a delay of time t3 from the start of discharge until the switching element 22 turns on.
This is because the signal processing time from when the current detector detects the start of discharge until the switching element is turned on takes 200 to 500 na at the shortest due to the signal processing time of the element used, and the time t3 is 2()0 to 500 na. ns or more. Also time 1. and t2 are usually controlled to be constant.

次に本発明の他の実施例を第5図に従って説明する。同
実施例は絶縁破壊用・やルス回路に放電用コンデンサを
使用した場合で、第3図の回路と異なる点は放電用コン
デンサ加が追加しである点である。インダクタンス31
及び抵抗32は、放電用コア7′7″j0から加工間隙
に至る通電路0イ″′rタンスと抵抗であり、放電電流
が十分振動条件を満す111になるように設定されてい
る。第5図の回路の動作を第6図で説明する。
Next, another embodiment of the present invention will be described with reference to FIG. This embodiment uses a discharging capacitor in the dielectric breakdown/loss circuit, and differs from the circuit shown in FIG. 3 in that a discharging capacitor is added. inductance 31
The resistor 32 is the resistance of the current conduction path 0'''r from the discharge core 7'7''j0 to the machining gap, and is set so that the discharge current becomes 111, which sufficiently satisfies the vibration condition. The operation of the circuit shown in FIG. 5 will be explained with reference to FIG.

第6図の波形(a)は〃ロエ間隙の電圧、波形(b)は
加工間隙の電流、波形(c) 、 fd)はスイッチン
グ素子18スイツチング素子乙のオン、オフ信号状態を
示すものである。
The waveform (a) in Figure 6 shows the voltage in the Loe gap, the waveform (b) shows the current in the machining gap, and the waveforms (c) and fd) show the on and off signal states of switching element 18 and switching element B. .

第6図の波形(C)のようにスイッチング素子18がオ
ンすると、放電用コンデンサIに直流型@、 17から
抵抗19を介して充電される。そして、放電が開始する
と放電用コンデンサ加から加工間隙Qに放電電流が流れ
出すが、それを電流検出器路が検出し、ノクルス制御回
路nへ出力する。そしてパルス制御回路から、スイッチ
ング素子18をオフする信号を出力すると共に、第6図
の波形(d)のように放電が開始してからスイッチング
素子Uがオンするまでの時間がt′3 となるように、
パルス制御回路27はタイミングの信号をスイッチング
素子制御回路おを介してスイッチング素子Uへ出力する
。その時の放電電流は第6図の波形(b)のようになり
、放電用コンデンサ園から出力された放′亀電流の第2
半波に直流電源21からの大電流が重畳される。
When the switching element 18 is turned on as shown in the waveform (C) of FIG. 6, the discharge capacitor I is charged from the DC type @17 through the resistor 19. When the discharge starts, a discharge current flows from the discharge capacitor into the machining gap Q, which is detected by the current detector path and output to the Noculus control circuit n. Then, the pulse control circuit outputs a signal to turn off the switching element 18, and the time from the start of discharge until the switching element U is turned on becomes t'3, as shown in waveform (d) in FIG. like,
The pulse control circuit 27 outputs a timing signal to the switching element U via the switching element control circuit O. The discharge current at that time has a waveform as shown in Figure 6 (b), which is the second waveform of the discharge current output from the discharge capacitor.
A large current from the DC power supply 21 is superimposed on the half wave.

なお、時間t′3は時間t4>t’3としても良い◎た
だし、その場合時間t′3は第4図の時間t3のように
放電開始からスイッチング素子が動作する1での信号伝
達時間より大きくしなければならない。
In addition, time t'3 may be set to time t4>t'3. In that case, time t'3 is longer than the signal transmission time at 1 when the switching element operates from the start of discharge, as shown in time t3 in Fig. 4. It has to be bigger.

以上本発明の2つの実施例の説明においては、放電開始
の検出に電流検出器を用いたが、加工間隙の電圧を測定
し、絶縁破壊時の電圧降下を検出しても同様の効果が得
られる。
In the above description of the two embodiments of the present invention, a current detector was used to detect the start of discharge, but the same effect can be obtained by measuring the voltage in the machining gap and detecting the voltage drop at the time of dielectric breakdown. It will be done.

゛また、上述の実施例は、ワイヤ状の電極を用いたワイ
ヤ放電加工装置で説明したが、加工液に水系のものを使
用する場合の形彫り放岨加工装置においても同様の効果
が得ちれることはいうまでもない。
゛Although the above embodiment was explained using a wire electrical discharge machining device using a wire-shaped electrode, the same effect can be obtained in a die-sinking dielectric machining device when a water-based machining fluid is used. Needless to say, it can be done.

〔発明の効果〕〔Effect of the invention〕

上述の実施例からも明らかなように本発明によれば、放
電力ロエ速度を低下させることなく′電解反応により生
ずる工作物加工表面の悪化を防上できるという利点並び
に効果がある。
As is clear from the above embodiments, the present invention has the advantage and effect of preventing deterioration of the machined surface of the workpiece caused by the electrolytic reaction without reducing the discharge force Roe speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術による放゛亀加工装置の全体的構成図
、第2図(a) 、 (b)第1図における電圧、電流
波形図、第3図は本発明の一実施例を示す放電加工装置
の電源回路図、第4図は第3図の動作説明をするパルス
波形図、第5図は本発明の他の実施例を示す放電加工装
置の亀の回路図、第6図は第5図の動作説明をするパル
ス波形図である。 1・・・加工用電極、4・・・工作物、17・・・絶縁
破壊用パルス回路の直流電蝕、18.22・・・スイッ
チング素子、20・・・絶縁破壊用パルス回路のスイッ
チング素子側副回路、21・・・主成′a沖]路の1亘
流電諒、乙・・・主放電回路のスイッチング素子制惧引
回路、5・・・主放電回路の剛直流電源、27・・・パ
ルス制rI回路、あ・・・電流検出器、30・・・放電
用コンデンサ。 代理人 弁理士 秋 本 正 実 第t FBI 第 21・」 (。) (b) 第 3目 第4図 第5図 第6t4
Fig. 1 is an overall configuration diagram of a conventional radiator machining device, Fig. 2 (a) and (b) voltage and current waveform diagrams in Fig. 1, and Fig. 3 shows an embodiment of the present invention. FIG. 4 is a pulse waveform diagram explaining the operation of FIG. 3, FIG. 5 is a turtle circuit diagram of the electrical discharge machining device showing another embodiment of the present invention, and FIG. 6 is a power supply circuit diagram of the electrical discharge machining device. 6 is a pulse waveform diagram illustrating the operation of FIG. 5. FIG. DESCRIPTION OF SYMBOLS 1... Electrode for processing, 4... Workpiece, 17... DC electrolytic erosion of the pulse circuit for dielectric breakdown, 18.22... Switching element, 20... Switching element side of the pulse circuit for dielectric breakdown Sub-circuit, 21... 1st current current of the main discharge circuit, B... switching element restraint circuit of the main discharge circuit, 5... rigid DC power supply of the main discharge circuit, 27. ...Pulse control rI circuit, ah...current detector, 30...discharging capacitor. Agent Patent Attorney Tadashi Akimoto No. t FBI No. 21.” (.) (b) Item 3 Figure 4 Figure 5 Figure 6 t4

Claims (1)

【特許請求の範囲】 1、 加工用電極と工作物との間の加工間隙に間欠放電
を発生させて工作物の加工を行う放電加工方法において
、前記加工間隙が絶縁破壊した直後に、前記加工用″電
極と工作物との間に出力する電流の方向とは逆方向に加
工電流を重畳することを特徴とする放電加工方法。  2、 前記、加工間隙が絶縁破壊した直後に、前記加工
用電極と工作物との間に出力する電流の方向とは逆方向
に加工電流を重畳する動作は間欠・母ルス毎に行うこと
を特徴とする特許請求の範囲第1項に記載の放電加工装
置。 □ i、’nu工用電qtと工作物との間の加工間隙に間欠
放電を発生させて工作物の加工を行う放電加工装置であ
って、絶縁破壊用・ぐルス回路を構成する直流電源の陰
惨と、主放電回路を構成する直流電源の陽極を工作物に
接続すると共に、前記絶縁値、壊用パルス回路に挿入し
たスイッチング素子をオン制御する・ぐルス制御回路を
設けて成ることを特徴とする放電加工装置。
[Claims] 1. In an electric discharge machining method in which a workpiece is machined by generating intermittent discharge in a machining gap between a machining electrode and a workpiece, the machining process is performed immediately after dielectric breakdown occurs in the machining gap. An electric discharge machining method characterized in that a machining current is superimposed in the direction opposite to the direction of the current output between the machining electrode and the workpiece. The electric discharge machining apparatus according to claim 1, wherein the operation of superimposing the machining current in the direction opposite to the direction of the current output between the electrode and the workpiece is performed at every intermittent and master pass. □ i,'nu Electrical discharge machining equipment that processes a workpiece by generating intermittent discharge in the machining gap between the industrial electric qt and the workpiece. In addition to connecting the anode of the DC power source constituting the main discharge circuit to the workpiece, there is also a power supply control circuit that controls the insulation value and the switching element inserted in the destructive pulse circuit. Electrical discharge machining equipment featuring:
JP78584A 1984-01-09 1984-01-09 Method of electric discharge machining and device therefor Granted JPS60146624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP78584A JPS60146624A (en) 1984-01-09 1984-01-09 Method of electric discharge machining and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP78584A JPS60146624A (en) 1984-01-09 1984-01-09 Method of electric discharge machining and device therefor

Publications (2)

Publication Number Publication Date
JPS60146624A true JPS60146624A (en) 1985-08-02
JPH048165B2 JPH048165B2 (en) 1992-02-14

Family

ID=11483348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP78584A Granted JPS60146624A (en) 1984-01-09 1984-01-09 Method of electric discharge machining and device therefor

Country Status (1)

Country Link
JP (1) JPS60146624A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294116A (en) * 1990-04-10 1991-12-25 Makino Milling Mach Co Ltd Method and device for supplying pulse for electric discharge machining
EP0668119A2 (en) * 1991-12-02 1995-08-23 Mitsubishi Denki Kabushiki Kaisha Method of controlling the operation of an electrical discharge machine
EP0689893A1 (en) 1994-06-27 1996-01-03 Fanuc Ltd. Electric discharge working method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656341A (en) * 1979-10-05 1981-05-18 Fanuc Ltd Power source for wire cut electric discharge machining

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294116A (en) * 1990-04-10 1991-12-25 Makino Milling Mach Co Ltd Method and device for supplying pulse for electric discharge machining
EP0668119A2 (en) * 1991-12-02 1995-08-23 Mitsubishi Denki Kabushiki Kaisha Method of controlling the operation of an electrical discharge machine
EP0668119A3 (en) * 1991-12-02 1995-12-13 Mitsubishi Electric Corp Method of controlling the operation of an electrical discharge machine.
EP0689893A1 (en) 1994-06-27 1996-01-03 Fanuc Ltd. Electric discharge working method and apparatus

Also Published As

Publication number Publication date
JPH048165B2 (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US4347425A (en) Wire-cut, electric-discharge machining power source
WO2009096026A1 (en) Electric discharge device
CA2020816C (en) Power supply circuit for discharge machining
US4695696A (en) Electric discharge machine with control of the machining pulse's current value in accordance with the delay time
KR100496399B1 (en) Electric power unit for machining of wire electric discharge machine
WO1996019311A1 (en) Power supply system for electric discharge machine and electric discharge machining method
KR20180006989A (en) Wire electric discharge machine
JPS60146624A (en) Method of electric discharge machining and device therefor
EP0034477B1 (en) A power source circuit for an electric discharge machine
WO2002034444A1 (en) Power supply for wire electric discharge machining
JPH0564032B2 (en)
JP2006321007A (en) Power supply device for electrical discharge machine and wire electrical discharge machining device
JP4437612B2 (en) EDM machine
GB2081633A (en) Electrical discharge machining method and apparatus
EP0185101B1 (en) Power source for discharge machining
JPS61249213A (en) Electric power source apparatus for wire electric discharge machine
JP2967682B2 (en) Electric discharge machine
JP2696388B2 (en) Power supply unit for electric discharge machining
JPH059209B2 (en)
JPS61168423A (en) Power source device for wire electric discharge machine
JPS63154B2 (en)
JP2984664B2 (en) Electric discharge machine
JP2801280B2 (en) Wire cut EDM power supply
JP2002154015A (en) Contact detecting device for electric discharge machine
JPS5973226A (en) Machining power supply of electric discharge machining device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term