JPS61247910A - Distance measuring method - Google Patents

Distance measuring method

Info

Publication number
JPS61247910A
JPS61247910A JP9012885A JP9012885A JPS61247910A JP S61247910 A JPS61247910 A JP S61247910A JP 9012885 A JP9012885 A JP 9012885A JP 9012885 A JP9012885 A JP 9012885A JP S61247910 A JPS61247910 A JP S61247910A
Authority
JP
Japan
Prior art keywords
measured
focusing
output
signal
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9012885A
Other languages
Japanese (ja)
Other versions
JPH0458884B2 (en
Inventor
Akio Atsuta
暁生 熱田
Yoshibumi Nishimoto
義文 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9012885A priority Critical patent/JPS61247910A/en
Priority to FR8515821A priority patent/FR2572515B1/en
Priority to DE3538062A priority patent/DE3538062C2/en
Priority to GB08526374A priority patent/GB2167262B/en
Publication of JPS61247910A publication Critical patent/JPS61247910A/en
Priority to US07/218,447 priority patent/US4830498A/en
Publication of JPH0458884B2 publication Critical patent/JPH0458884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To automate and speed up measurement by measuring the distance to the face to be measured from a focusing signal obtained at the condensing position. CONSTITUTION:The position and the focusing signal are in the good linear relation corresponding to the prescribed condensing position of a ring beam 14. Consequently, a condensing position ring beam 14 having a measuring range which enables to detect the position of an object 9 to be measured can be condensed by changing the condensing position to P1, P2, P3... and shifting the measuring range to A1, A2, A3... by using a focusing distance variable lens or the like. In other words, when the condensing position of the ring beam 14 is changed in order and the polarity of the focusing signal F is identified, since the polarity is changed between two condensing positions where the condensing lens 8 side and its opposite side approach the object 9 to be measured most via the object 9 to be measured, one side at least of two condensing positions makes the optimum condensing position at the measurement.

Description

【発明の詳細な説明】 (り技術分野 本発明は1円譲状光束を用いた距離測定装置に於る測定
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a measuring method in a distance measuring device using a 1-yen convergent light beam.

(2)従来技術 従来、光学的距離測定装置として本件出願人よる特願昭
59−242490が有る。ここで提案されている距離
測定装置t−第1図に示す。図中、1はレーザ光源、2
はコリメータレンズ、3は第1の円錐形ミラー、4は第
2の円錐形ミラー、5は焦点距離可変レンズ。
(2) Prior Art Conventionally, there is a Japanese Patent Application No. 59-242490 filed by the applicant of the present invention regarding an optical distance measuring device. The distance measuring device proposed here is shown in FIG. In the figure, 1 is a laser light source, 2
is a collimator lens, 3 is a first conical mirror, 4 is a second conical mirror, and 5 is a variable focal length lens.

6は偏光ビームスプリッタ−17はに波長板。6 is a polarizing beam splitter, and 17 is a wavelength plate.

8は集光レンズ、9は被測定物、10は合焦検知手段、
11は処理装置である。
8 is a condensing lens, 9 is an object to be measured, 10 is a focus detection means,
11 is a processing device.

レーザ光源1から出射したレーザ光は、コリメータレン
ズ2により平光光束となって第1の円錐形ミラー3.第
2の円錐形ミラー4を介して中心部分が暗い円環状光束
(以下。
The laser light emitted from the laser light source 1 is turned into a flat beam by the collimator lens 2 and then passes through the first conical mirror 3. An annular light beam (hereinafter referred to as "light beam") whose center part is dark passes through the second conical mirror 4.

リングビームと記す)となる。このリングビームは焦点
距離可変レンズ5.偏光ビームスプリッタ−6を通り、
直線偏光を円偏光に変換された後集光レンズ8を介して
被測定物9上に投射される。被測定物9の上面で反射さ
れ−hvングビームは、集光レンズ8t−通シに波長板
7により円偏向を入射時と直交する直i1偏光にに僕さ
れ、偏光ビームスプリッタ6で反射して偏向され合焦検
知手段10に投射さnる。
(referred to as a ring beam). This ring beam is formed by a variable focal length lens 5. Passes through polarizing beam splitter 6,
After the linearly polarized light is converted into circularly polarized light, it is projected onto an object to be measured 9 via a condenser lens 8 . The beam reflected by the upper surface of the object to be measured 9 is circularly polarized by the wavelength plate 7 through the condensing lens 8t, and then is reflected by the polarizing beam splitter 6. It is deflected and projected onto the focus detection means 10.

第2図は合焦検知手段10の受光面を示しており1円環
状のリングセンサ12.15により同心円を形成してい
る。
FIG. 2 shows the light-receiving surface of the focus detecting means 10, in which one annular ring sensor 12, 15 forms concentric circles.

合焦検知手段10に投射されるリングビームは、リング
ビームの焦点位置と被測定物9との位置関係に応じてそ
のビーム径を変化させる為、リングビームの焦点位置が
被測定物9の上面と一致する時にリングセンサ12と1
5の各々から得られる出力が等しくなる様、ビーム径及
びリングセンサ12.13の径を設定しておけば、被測
定物9の位置に応じた合焦状態の変化をリングセンサ1
2.13の出力差によって検出する事が出来る。尚、第
3図に示す如く被測定物9の位置と合焦状Mを示す合焦
信号(通常リングセンサ12.13の出力差をその出力
和で規格化したもの)とは所定の測定範凹に於て良好な
線型関係を保っている。
The ring beam projected onto the focus detection means 10 changes its beam diameter according to the positional relationship between the focal position of the ring beam and the object to be measured 9, so that the focal position of the ring beam is on the upper surface of the object to be measured 9. When the ring sensors 12 and 1 match
By setting the beam diameter and the diameter of the ring sensors 12 and 13 so that the outputs obtained from each of the sensors 5 and 5 are equal, the change in the focusing state according to the position of the object to be measured 9 can be controlled by the ring sensor 1.
It can be detected by the output difference of 2.13. As shown in FIG. 3, the focus signal (usually the output difference of the ring sensors 12 and 13 normalized by the output sum) indicating the position of the object to be measured 9 and the focus state M is within a predetermined measurement range. A good linear relationship is maintained in the concavity.

従って、この様な装置を用いて測定全行なう場合、予め
被測定物の略々の位置を知っておくか、被測定物自体を
所定の測定範囲内に配置する必要が有り、測定時間を短
縮できず。
Therefore, when performing all measurements using such a device, it is necessary to know the approximate location of the object to be measured in advance, or to place the object itself within a predetermined measurement range, which reduces measurement time. I can't.

自動化も困難でめった。又、測定時に最も検出感度の良
いリングビームの焦点位置が解らない為、事実上、最良
の状態で測定できず。
Automation is also difficult and rare. Also, since the focal position of the ring beam with the best detection sensitivity is not known during measurement, it is virtually impossible to measure under the best conditions.

測定精度も十分に信頼できるものではなかった。The measurement accuracy was also not sufficiently reliable.

(3)発明の概要 本発明の目的は、上記従来の欠点に鑑み。(3) Summary of the invention The object of the present invention is to solve the above-mentioned drawbacks of the conventional art.

測定の自動化及び高速化を達成し得る距離測定方法を提
供する事にある。
The object of the present invention is to provide a distance measuring method that can automate and speed up measurement.

上記目的を達成する為に1本発明に係る距離測定方法は
、リングビームの集光位置を所定の間隔で順次変化させ
、被測定面で反射された前記リングビームを合焦#婁検
知手段で検知し、該合焦検知手段で得られる合焦信号の
極性が変化する前後の2つの集光位置から。
In order to achieve the above object, the distance measuring method according to the present invention sequentially changes the focusing position of the ring beam at predetermined intervals, and uses a focusing detection means to detect the ring beam reflected on the surface to be measured. from two light condensing positions before and after the polarity of the focus signal obtained by the focus detection means changes.

前記被測定面の位置と前記合焦信号とがほぼ線形な関係
を備えた測定範囲内に前記被測定面を有する集光位置を
判別し、該集光位置で得られる合焦信号から前記被測定
面までの距離を測定する事を特徴とする。
A light focusing position having the surface to be measured within a measurement range in which the position of the surface to be measured and the focusing signal have a substantially linear relationship is determined, and the focusing signal is determined based on the focusing signal obtained at the focusing position. It is characterized by measuring the distance to the measurement surface.

前記合焦検知手段は1通常内側と外側の2つに分割され
たリングセンサを有し、該リングセンサの外側と内側の
出力差、もしくは該出力差を前記りングセンサの外側と
内側の出力和で規格化した値を合焦信号として用いる。
The focus detection means usually has a ring sensor divided into two parts, an inner and an outer ring sensor, and calculates the output difference between the outer and inner parts of the ring sensor, or the output difference between the outer and inner parts of the ring sensor. The value normalized by is used as the focus signal.

前記リングビームの集光位置の変化に伴ない。With the change in the focusing position of the ring beam.

前記合焦信号の極性が変化した時の前記リングセンサの
内側の出力と前記合焦信号の極性が変化する前の前記リ
ングセンサの外側の出力とを比較するか、もしくは、前
配合魚信号の極性が変化し九時の前記リングセンサの外
側の出力と前記合焦信号の極性が変化する前の前記リン
グセンサの内側の出力とを比較し。
Compare the inner output of the ring sensor when the polarity of the focusing signal changes with the outer output of the ring sensor before the polarity of the focusing signal changes, or compare the output of the outer ring sensor when the polarity of the focusing signal changes, or The output from the outside of the ring sensor at 9 o'clock when the polarity changes is compared with the output from the inside of the ring sensor before the polarity of the focusing signal changes.

該出力の大きい方の合焦信号により前記被測定面までの
距離を測定する事が出来る。
The distance to the surface to be measured can be measured using the focusing signal with the larger output.

え 上記方法に従い測定を行な粍ば、自動的に最適な集光位
置を検出し、蚊集光位置で被測定面までの距離を測定出
来る。
If the measurement is carried out according to the method described above, the optimum light focusing position can be automatically detected and the distance to the surface to be measured can be measured at the mosquito light focusing position.

以下1本発明に係る距離測定方法の基本原理t−説明す
る。
The basic principle of the distance measuring method according to the present invention will be explained below.

第4図は本発明の詳細な説明図で、第1図と同じ部材に
は同番号を符す。尚、14は集光レンズ8により集光さ
れたリングビームIi!、、P2.P、  は光学系の
焦点距離を変化させた時のリングビーム14の各集光位
置、ム1.ム2゜ム、は各集光位置P、 、P2.?、
に於る測定範囲を示す。
FIG. 4 is a detailed explanatory diagram of the present invention, in which the same members as in FIG. 1 are designated by the same numbers. In addition, 14 is a ring beam Ii! condensed by the condensing lens 8! ,,P2. P, are each condensing position of the ring beam 14 when changing the focal length of the optical system, M1. 2゜゜゜〜                        ,P2           ,P2   ? ,
The measurement range is shown below.

第1図に示す如き装置に於ては、前述の様にリングビー
ム14の所定の集光位置に対応して1位置と合焦信号が
良好な線型関係にある。従って、焦点距離可変レンズ等
を用い集光位置をP、 、P、 、P、・・・・と変化
させ、前記測定範囲をム1.ム3.ム、・・・・とシフ
トする事により、被測定物9の位置を検出し得る測定範
囲を有する集光位置へリングビーム14を集光させる事
が出来る。
In the apparatus shown in FIG. 1, as described above, there is a good linear relationship between a predetermined focusing position of the ring beam 14 and a focusing signal. Therefore, by using a variable focal length lens or the like, the focusing position is changed to P, , P, , P, . . . , and the measurement range is adjusted to 1. Mu3. By shifting the ring beam 14, the ring beam 14 can be focused on a focusing position having a measurement range in which the position of the object 9 to be measured can be detected.

例えは、第2図で示す如きリングセンサ12.13から
の出力を各々D、 、D、とすると。
For example, let the outputs from the ring sensors 12, 13 as shown in FIG. 2 be D, , D, respectively.

合焦信号は差信号D2−D、を強度信号り、 +D。The focus signal is the difference signal D2-D, and the intensity signal is +D.

で規格化した値?、即ち で表わす事が出来る。この時、第4図に示す様にリング
ビーム14の集光位置を集光レンズ8側から順次変化さ
せる場合、被測定物9で反射されたりングビーム14は
、集光位置がPIP2の如く集光レンズ8と被測定物9
の間にある時は、ビーム径が拡げられて集光レンズ8へ
入射し、集光レンズ8により収斂光となる為、リングセ
ンサ12,15へは合焦時より径が小さくなり投射され
る。従って、ンズ8とは逆側にある時は、ビーム径が小
さくなって集光レンズ8へ入射し、集光レンズ8により
発散光となる為、リングセンサ12゜15へは合焦時よ
り径が大きくなり投射される。従って1合焦信号1の値
は(1)式よ51〉0となる。即ち、リングビーム14
の集光位置を順次変化石せて合焦信号!の極性を判別し
ていけば、被測定物9を介して集光レンズ8側とその反
対側の最も被測定物9に近接した2つの集光位置の間で
極性が変化する為、該2つの集光位置の少なくとも一方
が測定に於る最適集光位置となる。
The value standardized by ? , that is, it can be expressed as. At this time, when the condensing position of the ring beam 14 is sequentially changed from the condensing lens 8 side as shown in FIG. Lens 8 and object to be measured 9
When the beam is between the two, the beam diameter is expanded and enters the condenser lens 8, and the condensing lens 8 converges the beam, so the beam is projected onto the ring sensors 12 and 15 with a smaller diameter than when focused. . Therefore, when the beam is on the opposite side from the lens 8, the beam diameter becomes smaller and enters the condensing lens 8, and becomes a diverging light by the condensing lens 8, so the beam diameter is smaller than when focused. becomes larger and is projected. Therefore, the value of 1 in-focus signal 1 is 51>0 according to equation (1). That is, the ring beam 14
Sequentially change the focus position and send the focus signal! If we determine the polarity of At least one of the two light focusing positions becomes the optimum light focusing position for measurement.

尚、上述の説明では、集光レンズ8側から集光位置を順
次変化させているが、被測定物9t−介して集光レンズ
8とは反対側から順次変化させても良い。又、集光位置
の変化量は各集光位置を中心にして定まる測定範囲が連
続しているのか好ましく、轟然隣接する測定範囲の一部
が重複しても構わない。更に、上述の説明では合焦イキ
号として規格化した値を使用しているが、単に差信号D
2− D、を合焦信号として用いても良く、差信号とし
てり、−D2の値を用いても当然構わない。但し差信号
としてり、−D2の値を用いる場合、被測定物と合焦信
号との1%[関係は、第5図に示すものとは逆に左上が
りの直線となシ、又被測定物の前後に於る合焦信号の変
化の仕方も逆になる。
In the above description, the condensing position is sequentially changed from the condenser lens 8 side, but it may be sequentially changed from the side opposite to the condenser lens 8 via the object to be measured 9t. Further, it is preferable that the measurement ranges determined with each light collection position as the center are continuous, and it is acceptable for adjacent measurement ranges to partially overlap. Furthermore, in the above explanation, a standardized value is used as the focus point, but simply the difference signal D
2-D may be used as a focusing signal, or a difference signal may be used, and the value of -D2 may of course be used. However, when using the value of -D2 as a difference signal, the relationship between the object to be measured and the in-focus signal is 1% [contrary to that shown in Fig. 5, the relationship is a straight line sloping upward to the left; The way the focus signal changes in front and behind the object is also reversed.

以下、実施例により本発明を詳述する。Hereinafter, the present invention will be explained in detail with reference to Examples.

(4)実り例 第5図は本発明に係る距離測定方法のフローチャート図
を示す。
(4) Fruitful Example FIG. 5 shows a flowchart of the distance measuring method according to the present invention.

本実施例に示す距離測定方法を適用し、被測定面までの
距離を測定する装置として第1図、第2図に示した装置
を考える。ここで。
The apparatus shown in FIGS. 1 and 2 will be considered as an apparatus for measuring the distance to a surface to be measured by applying the distance measuring method shown in this embodiment. here.

焦点距離可変レンズ5によp距離NOステップで集光位
置を変化させる事が出来るものとし、被測定面に最も近
接した2つの集光位置の円、集光レンズB側の集光位置
に於るリング状センサの内111112.外41111
3の出力を各々ff、 、D’2.又、集光レンズ8と
は反対側の焦点位置に於るリングセンサの内側12.外
側15の出力を各々D1 #”2とする。更に合焦信と
する。
It is assumed that the focal length variable lens 5 can change the focusing position in p distance NO steps, and the two focusing positions closest to the surface to be measured, and the focusing position on the side of the focusing lens B are set. Among the ring-shaped sensors, 111112. Outside 41111
The outputs of 3 are respectively ff, , D'2. Also, the inner side 12 of the ring sensor at the focal position opposite to the condenser lens 8. The outputs of the outer side 15 are each D1 #"2. Furthermore, it is assumed that the outputs are in focus.

まず、最も集光レンズ8に近い焦点距離にリングビーム
を集光させて合焦信号1の検出を開始する。?〉O1即
ちリングビームの集光位置が被測定面の集光レンズ8と
は逆側になるまで、焦点距離可変レンズ5により、焦点
距離を+Nづつ増加していき、その都度合焦信号rの極
性を判別し、IP〉0になった時の集光位置に於るリン
グセンサ12の出力信号り、を記憶する。
First, the ring beam is focused at the focal length closest to the condenser lens 8, and detection of the focus signal 1 is started. ? >O1, that is, the focal length is increased by +N by the variable focal length lens 5 until the convergence position of the ring beam is on the opposite side of the surface to be measured from the condenser lens 8, and each time the focus signal r is The polarity is determined and the output signal of the ring sensor 12 at the condensing position when IP>0 is stored.

次に、F>OKなった時の集光位置から−N離れた(I
ffけ集光レンズに近い)位置。
Next, move -N away from the focal point when F>OK (I
position (close to the condenser lens).

この時のリングセンサ13の出力信号D′2を記憶する
The output signal D'2 of the ring sensor 13 at this time is stored.

ここで、記憶された出力信号り、とD−の大小比112
t−行ない、D1≦が2であれば現在の1く0である集
光位置に於る合焦信号1と焦点距離から得られる被測定
面までの距離を測定値とする。又D1〉Dl2であれば
再び現在の?〈0である集光位置よ5−1−Nだけ陥れ
た位置へリングビームを集光させ、この集光位置に於る
合焦信号yと焦点距離から得られる被測定面までの距l
@Iを測定値とする。尚、この様1k D11!: D
’2との比較は、被測定面を介した2つの集光位置の内
、更に被測定面に近接しており且つ該集光位置を中心と
する測定範囲(第3図参照)に被測定面を含んでいる最
適集光位&i−検知する為に行なう。
Here, the magnitude ratio of the stored output signal RI and D- is 112
If D1≦2, the distance to the surface to be measured obtained from the focus signal 1 and the focal length at the current 1×0 condensing position is taken as the measured value. If D1>Dl2, then the current state again? The ring beam is focused at a position 5-1-N below the focusing position, which is <0, and the distance l to the surface to be measured obtained from the focusing signal y and focal length at this focusing position is
Let @I be the measured value. In addition, like this 1k D11! :D
The comparison with '2 is based on the measurement target that is closer to the surface to be measured out of the two light focusing positions via the surface to be measured and within the measurement range centered on the light focusing position (see Figure 3). This is done in order to detect the optimum light convergence position that includes the surface.

第6図は本発明に係る距離測定方法の別の70−チャー
ト図を示す。本方法を適用する装置としては前記実施例
同様第1図、第2図に示した装置を考え、集光位置変化
量N、リングセンサ12,13の出力信号り、 、D2
.D’、 。
FIG. 6 shows another 70-chart diagram of the distance measuring method according to the invention. As the apparatus to which this method is applied, the apparatus shown in FIGS. 1 and 2 is considered as in the previous embodiment, and the amount of change in the focusing position N, the output signals of the ring sensors 12 and 13, , D2
.. D', .

Dl2.及び合焦信号1等全て前記実施例同様として取
り扱う。
Dl2. , focus signal 1, etc. are all treated as the same as in the previous embodiment.

最初に装置を始動させ、任意の集光位置に於るリングセ
ンサ12,13での合焦信号!を検出する。ここで、P
の極性を検出し現在のリングビームの集光位置が、被測
定面から見て集光レンズ8側にあるのか、又は反対側に
あるのかを判別する。
First, start the device and receive a focusing signal from the ring sensors 12 and 13 at any light focusing position! Detect. Here, P
It is determined whether the current condensing position of the ring beam is on the condensing lens 8 side or on the opposite side when viewed from the surface to be measured.

合焦信号F ) Oの時は、リングビームの集光位置が
被測定面から見て集光レンズ8と反対側にある為、現在
位置から−Nづつ集光位置を変化させ、徐々に集光レン
ズ8に近づける。この時各集光位置毎に合焦信号Fの極
性を判別する。F)Oであればこの判別を繰り返し、P
(Oになつ九時の集光位置に於るリングセンサ13の出
力信号D′2t−記憶する。
When the focus signal F) is O, the focusing position of the ring beam is on the opposite side of the focusing lens 8 when viewed from the surface to be measured, so the focusing position is changed by -N from the current position to gradually focus. Bring it closer to the optical lens 8. At this time, the polarity of the focusing signal F is determined for each focusing position. F) If O, repeat this determination and P
(The output signal D'2t of the ring sensor 13 at the 9 o'clock condensing position when the temperature becomes O is stored.

次に、Fく0である現在位置から再度十N離れた集光位
置へリングビームを集光させ、この集光位置に於るリン
グセンサ1−2の出方信号D1を記憶する。記憶された
出力信号D′2.D。
Next, the ring beam is again focused at a focusing position 10N away from the current position F0, and the output signal D1 of the ring sensor 1-2 at this focusing position is stored. Stored output signal D'2. D.

を大小比較し、D1≧D′2であればこの集光位置に於
る合焦信号Fと焦点距離から得られる測定値を被測定面
までの距離とする。又。
are compared in size, and if D1≧D'2, the measured value obtained from the focus signal F at this condensing position and the focal length is taken as the distance to the surface to be measured. or.

T’s > DlであれはF(Oである現在位置から−
N離れた位置へリングビームを集光させ。
If T's > Dl then F(O from the current position -
Focus the ring beam to a position N away.

この集光位置に於る合焦信号Fと焦点距離から得られる
測定値を被測定向までの距離とする。
The measured value obtained from the focus signal F and the focal length at this condensing position is defined as the distance to the direction to be measured.

次に、装置作動直後の合焦信号1の極性がy<oの場合
、リングビームの集光位置は被測定向から見て集光レン
ズ8側にある為、現在位置から+Nづつ集光位置を変化
させ、徐日 々に集光レンへψ1ら遠ざける。この時各集光位置毎に
合焦信号1の極性を判別する。
Next, if the polarity of the focusing signal 1 immediately after the device is activated is y<o, the focusing position of the ring beam is on the focusing lens 8 side when viewed from the direction to be measured, so the focusing position is increased by +N from the current position. , and gradually move it away from ψ1 to the condensing lens. At this time, the polarity of the focus signal 1 is determined for each focus position.

y<oであればこの判別を操り返し、 y>。If y<o, manipulate this determination and return y>.

になうた時の集光位置に於るリングセンサ12の出力信
号D1を記憶する。続いて、F〉0である現在位置から
再[−N離れた集光位置へリングビームを集光させ、こ
の集光位置に於るリングセンサー5の出力信号D′2 
 を記憶する。記憶された出力信号D+ t”2t−大
小比較し−。
The output signal D1 of the ring sensor 12 at the condensing position when singing is stored. Subsequently, the ring beam is focused again to a focusing position separated by [-N from the current position where F>0, and the output signal D'2 of the ring sensor 5 at this focusing position is
remember. Stored output signal D+ t''2t - magnitude comparison.

D′2≧D、であればこの集光位置に於る合焦信号?と
焦点距離から得られる測定値を被測定面までの距離とす
る。又、D、)D’2であれば現在位置から十N離れた
位置へリングビームを集光させ、この集光位置に於る合
焦信号1と焦点距離から得られる測定値を被測定面まで
の距離とする。
If D'2≧D, is the focus signal at this focal position? Let the measured value obtained from the focal length and focal length be the distance to the surface to be measured. Also, if D, )D'2, the ring beam is focused at a position 10N away from the current position, and the measured value obtained from the focus signal 1 and focal length at this focused position is used as the measurement value on the surface to be measured. The distance to

尚、測定中1合焦信号rが?=0となった場合は、リン
グビームの集光位置に被測定面が存在している為、即、
被測定面位置が検出され九事になる。
Also, during the measurement, is the 1st focus signal r? If = 0, the surface to be measured exists at the convergence position of the ring beam, so immediately,
The position of the surface to be measured is detected and the ninth thing happens.

又、丸1@N毎の来光位置変化に従い連続しL′− て得られる各測定範囲は重複部分がろシ、その重複部分
に被測定面が存在する場合、各々の測定範囲を有する集
光位置のどちらに於る合焦信号Fを用いて被測定面まで
の距離を検出しても構わない。
In addition, each measurement range obtained by successively L′- according to the change in the light arrival position for each circle 1@N has an overlapped area as a filter, and if a surface to be measured exists in the overlapped area, it is an aggregate with each measurement range. The distance to the surface to be measured may be detected using the focusing signal F at either of the optical positions.

以上の如き方法を用いた測定は、例えば第1図に示され
る装置に於る処理装置11等に組み込まれたマイコンに
より自動的に制御される為、A速処理が可能で測定結果
はすぐに得る事が出来る。
Measurement using the method described above is automatically controlled by a microcomputer built into the processing device 11 in the apparatus shown in FIG. You can get it.

上記2つの実施例では、被測定面に最も近接した2つの
果光位titt検出し、リングセンサの出力D1とD′
2t−比較する事によp最適集光位置を検出した後1合
焦信号Fから被測定面までの距離を測定しているか、各
集光位置に於る合焦信号1もしくは測定値を記憶してお
き、最適集光位置検出後、その位置に対応する記憶して
いた合焦信号?もしくは測定値を呼び出す方法もある。
In the above two embodiments, the two optical positions closest to the surface to be measured are detected, and the outputs D1 and D' of the ring sensor are detected.
2t - After detecting the optimal focusing position by comparing p, measure the distance from 1 focusing signal F to the surface to be measured, or memorize the focusing signal 1 or the measured value at each focusing position. Then, after detecting the optimal focus position, select the memorized focus signal corresponding to that position. Alternatively, there is also a method of calling the measured value.

従って、上記実施例以外にも本発明の思想を逸脱しない
限り各種応用が可能である。
Therefore, various applications other than the above-mentioned embodiments are possible without departing from the spirit of the present invention.

又1本実施例では被測定向までの距離を測定する方法に
関して述べ九が1例えば半導体装置に於るマスクとウェ
ハーの間隔を測定するギャップ測定装置等に応用可能で
、この場合、マスク及びウェハー各々の距離を測定しそ
の差を取る◆で両省の間隔を測定出来る。
In addition, this embodiment describes a method for measuring the distance to the direction to be measured, and can be applied to, for example, a gap measuring device that measures the distance between a mask and a wafer in a semiconductor device. You can measure the distance between the two provinces by measuring each distance and taking the difference.

(5)発明の詳細 な説明し友様に1本発明に係る距離測定方法は自動的に
測定時の最適集光位置を検出する事がり能で、且つ高速
に最適集光位置を検出し被測定面までの距離を測定し得
る測定方法である。
(5) Detailed explanation of the invention and to our friends: The distance measuring method according to the present invention is capable of automatically detecting the optimum light focusing position during measurement, and is capable of detecting the optimum light focusing position at high speed. This is a measurement method that can measure the distance to the measurement surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は元字的距離濁定装置の一例を示す図。 第2図はリング状センサを示す図。第3図は合焦信号と
被測定面位置との関係を示す図。第4図は本発明に係る
距離測定方法の基本原理説明図。第5図、第6図は本発
明に係る距離測定方法の一例を示すフローチャート図。 1・・・レーザ光源 2・・・コリメータレンズ 3・・・第1の円錐形ミラー 4・・・第2の円錐形ミラー 5・・・焦点距離可変レンズ 6・・・偏光ビームスプリッタ− 7・・・K波長板 8・・・集光レンズ 9・・・被測定物 10・・・合焦検知手段 11・・・処理製置 12.13・・・リング状センサ ム1.ム2.ム3・・・測定範囲 1’FP  ・・・集光位置 tt  zt  s
FIG. 1 is a diagram showing an example of an original distance turbidimetric device. FIG. 2 is a diagram showing a ring-shaped sensor. FIG. 3 is a diagram showing the relationship between the focus signal and the position of the surface to be measured. FIG. 4 is a diagram explaining the basic principle of the distance measuring method according to the present invention. FIGS. 5 and 6 are flowcharts showing an example of the distance measuring method according to the present invention. 1... Laser light source 2... Collimator lens 3... First conical mirror 4... Second conical mirror 5... Variable focal length lens 6... Polarizing beam splitter 7. . . . K wavelength plate 8 . . . Condensing lens 9 . . . Measured object 10 . . . Focus detection means 11 . . . Processing equipment 12.13 . . . Ring-shaped sensor 1. Mu2. M3...Measurement range 1'FP...Focusing position tt zt s

Claims (3)

【特許請求の範囲】[Claims] (1)円環状光束の集光位置を所定の間隔で順次変化さ
せ、被測定面で反射された前記円環状光束を合焦検知手
段で検知し、該合焦検知手段で得られる合焦信号の極性
が変化する前後の2つの集光位置から、前記被測定面の
位置と前記合焦信号とがほぼ線形な関係を備えた測定範
囲内に前記被測定面を有する集光位置を判別し、該集光
位置で得られる合焦信号から前記被測定面までの距離を
測定する事を特徴とする距離測定方法。
(1) The focusing position of the annular light beam is sequentially changed at predetermined intervals, the annular light beam reflected on the surface to be measured is detected by a focus detection means, and a focus signal obtained by the focus detection means is obtained. From two light focusing positions before and after the polarity changes, a light focusing position is determined that has the surface to be measured within a measurement range in which the position of the surface to be measured and the focusing signal have a substantially linear relationship. , a distance measuring method characterized by measuring a distance from a focusing signal obtained at the light condensing position to the surface to be measured.
(2)前記合焦検知手段が内側と外側の2つに分割され
た円環状センサを有し、該円環状センサの外側と内側の
出力差、もしくは該出力差を前記円環状センサの外側と
内側の出力和で規格化した値を前記合焦信号とし、該合
焦信号の極性が変化した時の前記円環状センサの内側の
出力と、該合焦信号の極性が変化する前の前記円環状セ
ンサの外側の出力とを比較し、該出力が大きい方の合焦
信号から前記被測定面までの距離を測定する事を特徴と
する特許請求の範囲第(1)項記載の距離測定方法。
(2) The focus detection means has an annular sensor divided into two parts, an inner and an outer part, and the difference in output between the outside and the inside of the annular sensor, or the output difference between the outside and the outside of the annular sensor. The value normalized by the sum of the inner outputs is defined as the focusing signal, and the inner output of the annular sensor when the polarity of the focusing signal changes and the circle before the polarity of the focusing signal changes. The distance measuring method according to claim (1), characterized in that the distance from the in-focus signal with the larger output to the surface to be measured is measured by comparing the output with the outer output of the annular sensor. .
(3)前記合焦検知手段が、内側と外側の2つに分割さ
れた円環状センサを有し、該円環状センサの外側と内側
の出力差、もしくは該出力差を前記円環状センサの外側
と内側の出力和で規格化した値を前記合焦信号とし、該
合焦信号の極性が変化した時の前記円環状センサの外側
の出力と、該合焦信号の極性が変化する前の前記円環状
センサの内側の出力とを比較し、該出力が大きい方の合
焦信号から前記被測定面までの距離を測定する事を特徴
とする特許請求の範囲第(1)項記載の距離測定方法。
(3) The focus detection means has an annular sensor divided into two parts, an inner and an outer part, and the output difference between the outside and the inner part of the annular sensor is detected, or the output difference is transferred to the outside of the annular sensor. and the value normalized by the sum of the inner outputs is defined as the focus signal, and the output of the outer side of the annular sensor when the polarity of the focus signal changes and the value before the polarity of the focus signal changes. Distance measurement according to claim (1), characterized in that the distance from the focused signal having the larger output to the surface to be measured is measured by comparing the output from the inner side of the annular sensor. Method.
JP9012885A 1984-10-25 1985-04-26 Distance measuring method Granted JPS61247910A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9012885A JPS61247910A (en) 1985-04-26 1985-04-26 Distance measuring method
FR8515821A FR2572515B1 (en) 1984-10-25 1985-10-24 POSITION DETECTION DEVICE
DE3538062A DE3538062C2 (en) 1984-10-25 1985-10-25 Position detection device
GB08526374A GB2167262B (en) 1984-10-25 1985-10-25 A position detecting device
US07/218,447 US4830498A (en) 1984-10-25 1988-07-12 Position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9012885A JPS61247910A (en) 1985-04-26 1985-04-26 Distance measuring method

Publications (2)

Publication Number Publication Date
JPS61247910A true JPS61247910A (en) 1986-11-05
JPH0458884B2 JPH0458884B2 (en) 1992-09-18

Family

ID=13989867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9012885A Granted JPS61247910A (en) 1984-10-25 1985-04-26 Distance measuring method

Country Status (1)

Country Link
JP (1) JPS61247910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153419A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Non-contact displacement gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153419A (en) * 1986-12-18 1988-06-25 Mitsutoyo Corp Non-contact displacement gauge

Also Published As

Publication number Publication date
JPH0458884B2 (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US4778271A (en) Photoeletric type measuring method and device
US6522394B2 (en) Rangefinder device and camera
JPS61247910A (en) Distance measuring method
JPH01158376A (en) Optical distance measuring apparatus
JPS6298212A (en) Position detecting method
JPH0479522B2 (en)
JPS61223604A (en) Gap measuring instrument
JPH0342611A (en) Automatic focusing device for vertical illumination type microscope
JPS6370110A (en) Distance measuring apparatus
JPS6141902A (en) Detecting device for position
JPH10103915A (en) Apparatus for detecting position of face
JPS6345504A (en) Range finder
JPH09170983A (en) Sensor apparatus for judging gloss
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
SU1007512A1 (en) Photoelectric device for monitoring object motion
JPH0342531A (en) Infrared measuring instrument
JPH03261808A (en) Minute shape measuring apparatus
JPS6283612A (en) Displacement transducer
JPS62269007A (en) Optical displacement measuring apparatus
JPS5859410A (en) Focus detecting device
JPS6095306A (en) Position measuring device
JPH1194519A (en) Method and device for focusing
JPH0227607B2 (en) ICHISOKUTEISOCHI
JPS56125605A (en) Method and apparatus for detection of shape of striplike body
JPH0835908A (en) Apparatus and method for measuring eccentricity of lens