JPS61246619A - Resistance-type conversion device - Google Patents

Resistance-type conversion device

Info

Publication number
JPS61246619A
JPS61246619A JP8833185A JP8833185A JPS61246619A JP S61246619 A JPS61246619 A JP S61246619A JP 8833185 A JP8833185 A JP 8833185A JP 8833185 A JP8833185 A JP 8833185A JP S61246619 A JPS61246619 A JP S61246619A
Authority
JP
Japan
Prior art keywords
output
resistance value
circuit
gauge
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8833185A
Other languages
Japanese (ja)
Inventor
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8833185A priority Critical patent/JPS61246619A/en
Publication of JPS61246619A publication Critical patent/JPS61246619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the highly accurate detection of a physical quantity to be measured, by providing a pair of gage resistances whose resistance values change differentially according to the physical quantity to be measured, a gage resistance whose resistance value does not change differentially, and a compensation signal generating means. CONSTITUTION:Resistance value detecting circuits 22 and 23 detect resistance values of paired gage resistances 15 and 16 and deliver outputs Ea and Eb respectively. A difference detecting circuit 24 receiving said outputs Ea and Eb operates a difference voltage Ec of the outputs Ea and Eb and delivers same. Meanwhile, a compensation signal generating circuit 25, receiving an output of an output circuit 26, forms and delivers a compensation signal Ed based on a current flowing through a gage resistance 17. Then, the output signal 26 adds up the compensation signal Ed and the output Ec of the difference detecting circuit and delivers the sum. An effect produced by fluctuations of ambient temperature is thereby compensated effectively, and thus a physical quantity to be measured can be detected with high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、圧力、差圧等の被測定物理mに応じて抵抗値
が変化するゲージ抵抗を用いた抵抗式変換装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a resistance converter using a gauge resistor whose resistance value changes depending on a physical object to be measured such as pressure or differential pressure.

〈従来の技術〉 一般に抵抗式変換装置においては、シリコン等の単結晶
半導体からなる受圧ダイヤフラム上に、高濃度の不純物
(ボロン)を拡散してゲージ抵抗を形成し、受圧ダイア
フラムの両面にかかる圧力差に基づく応力をゲージ抵抗
に作用させ、ピエゾ抵抗効果によるゲージ抵抗の抵抗値
変化を圧力差すなわち被測定物理量に対応させている。
<Conventional technology> Generally, in a resistance type converter, a high concentration impurity (boron) is diffused onto a pressure receiving diaphragm made of a single crystal semiconductor such as silicon to form a gauge resistance, and the pressure applied to both sides of the pressure receiving diaphragm is reduced. A stress based on the difference is applied to the gauge resistor, and the change in the resistance value of the gauge resistor due to the piezoresistance effect is made to correspond to the pressure difference, that is, the physical quantity to be measured.

そして、受圧ダイヤフラム上に2個もしくは4個のゲー
ジ抵抗を設け、ハーフブリッジあるいはフルブリッジを
構成し、被測定物理量を表わす信号を得ている。
Then, two or four gauge resistors are provided on the pressure-receiving diaphragm to form a half bridge or full bridge, and a signal representing the physical quantity to be measured is obtained.

〈発明が解決しようとする問題点〉 ところで、この種の抵抗式変換装置においては、ゲージ
抵抗の温度依存性が大きいため、周囲温度の変化による
影響を受け、出力が変動する欠点がある。
<Problems to be Solved by the Invention> By the way, in this type of resistance converter, the gauge resistance has a large temperature dependence, so there is a drawback that the output fluctuates due to the influence of changes in ambient temperature.

よって、一般には、サーミスタ、ポジスタ、トランジス
タ等の感温素子を用い、濃度変化に応じてブリッジの電
源電圧を制御して、出力変動の補償を行っている。この
方法で精度よく補償を行うには、ゲージ抵抗のS*特性
と補償用感温素子の温度特性とを一致させる必要がある
が、しかしながらこれらを一致させることは容易ではな
く、高精度な補償は困難であった。
Therefore, in general, a temperature sensing element such as a thermistor, a posistor, or a transistor is used to control the power supply voltage of the bridge according to the concentration change to compensate for the output fluctuation. In order to perform accurate compensation using this method, it is necessary to match the S* characteristics of the gauge resistance and the temperature characteristics of the compensation temperature sensing element. However, it is not easy to match these, and highly accurate compensation is required. was difficult.

本発明は、周囲温度の変化による影響を有効に補償し、
高精度に被測定物理量を検出できる抵抗式変換装置を実
現するにある。
The present invention effectively compensates for the effects of changes in ambient temperature,
The object of the present invention is to realize a resistive conversion device that can detect physical quantities to be measured with high precision.

く問題点を解決するための手段〉 本発明は、半導体単結晶基板に形成され被測定物理量に
応じて少くともいずれか一方の抵抗値が変化する第1.
第2のゲージ抵抗と、前記単結晶基板に形成され抵抗値
が前記被測定物理量には無関係な第3のゲージ抵抗と、
前記第1.第2のゲージ抵抗に電流を供給する回路と、
これら第1゜第2のゲージ抵抗の抵抗値の差に基ずく差
信号に補償信号を加算して出力信号を得る出力回路と、
この出力信号に1131する電流を第3のゲージ抵抗に
供給して前記補償信号を得る補償信号発生回路とを設け
たことを特徴とするものである。
Means for Solving the Problems> The present invention provides a first semiconductor device formed on a semiconductor single crystal substrate and having a resistance value of at least one of which changes depending on a physical quantity to be measured.
a second gauge resistor; a third gauge resistor formed on the single crystal substrate and whose resistance value is unrelated to the physical quantity to be measured;
Said 1st. a circuit that supplies current to a second gauge resistor;
an output circuit that obtains an output signal by adding a compensation signal to a difference signal based on the difference in resistance value of these first and second gauge resistors;
The present invention is characterized in that a compensation signal generating circuit is provided for supplying a current of 1131 to this output signal to a third gauge resistor to obtain the compensation signal.

く作用〉 本発明は、出力信号に関連したm流を第3のゲージ抵抗
に供給して補償信号を得、この補償信号を第1.第2の
ゲージ抵抗の抵抗値の差に基ずく差信号に加算して出力
信号を得ることにより、補償信号の値を選択するだけで
、周囲I!度の影響を有効に除去できるようにしたもの
である。
Effect> The present invention provides a compensating signal by supplying m currents related to the output signal to the third gauge resistor, and transmits this compensating signal to the first gage resistor. By simply selecting the value of the compensation signal, the ambient I! This makes it possible to effectively eliminate the effects of

〈実施例〉 第1図は、本発明の一実施例を示す接続図、第2図は本
発明装置に用いる検出器の一例を示す構成説明図で、(
イ)は断面図、(ロ)は斜視図である。両図において、
10は検出器、20は信号処理回路である。
<Example> FIG. 1 is a connection diagram showing an example of the present invention, and FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the device of the present invention.
A) is a cross-sectional view, and (b) is a perspective view. In both figures,
10 is a detector, and 20 is a signal processing circuit.

検出器10において、シリコン等の単結晶半導体基板1
1には、その中央部にエツチングで基準圧Po (例え
ば大気圧)と被測定圧PMとの差に感応する受圧ダイヤ
フラム12が形成されている。
In the detector 10, a single crystal semiconductor substrate 1 such as silicon
A pressure receiving diaphragm 12 is formed in the center of the pressure receiving diaphragm 1 by etching, which is sensitive to the difference between a reference pressure Po (for example, atmospheric pressure) and a measured pressure PM.

基板11はその周辺の固定部13が基台14に接合され
ている。拡散技術やイオン注入等により受圧ダイヤフラ
ム12には第1.第2のゲージ抵抗15.16が設けら
れ、固定部13には第3のゲージ抵抗17が設けられて
いる。第1.第2のゲージ抵抗15.16には被測定圧
PMに応じた応力σ璽、σ2が作用し、ゲージ抵抗15
の抵抗値RMIとゲージ抵抗16の抵抗値RM2はそれ
ぞれ次式で与えられる。
A fixed portion 13 around the substrate 11 is joined to a base 14 . Through diffusion technology, ion implantation, etc., the pressure receiving diaphragm 12 has a first. A second gauge resistor 15 , 16 is provided, and a third gauge resistor 17 is provided on the fixed part 13 . 1st. Stresses σ and σ2 according to the pressure to be measured PM act on the second gauge resistor 15 and 16, and the gauge resistor 15.
The resistance value RMI of the gauge resistor 16 and the resistance value RM2 of the gauge resistor 16 are respectively given by the following equations.

RMI−Rot(1+α+1) × (1+π1 σI  (1+β 箇 1>)・・・
 (1) RM2 −RO2(1+αzi) X(1+π2 σ2 (1+β2 t) )・・・ (
2) ただし、 Ro I、 Ro 2 : l!q!温度1oにおける
抵抗値 α1.α2 :抵抗値Ro+*Roa の温度係数 π1.π2 :M準温度toにおける ピエゾ抵抗係数 β7.β2 :ピエゾ抵抗係数π1゜ π2の温度係数 t    :Jl準温度toからの濃 度変化 また第3のゲージ抵抗17には被測定圧PMによる応力
は作用せず、その抵抗値RM3は次式で与えられる。
RMI-Rot(1+α+1) × (1+π1 σI (1+β item 1>)...
(1) RM2 −RO2(1+αzi) X(1+π2 σ2 (1+β2 t) )... (
2) However, Ro I, Ro 2: l! q! Resistance value α1 at temperature 1o. α2: Temperature coefficient π1 of resistance value Ro+*Roa. π2: Piezoresistance coefficient β7 at M quasi-temperature to. β2: Temperature coefficient of piezoresistance coefficient π1゜π2 t: Concentration change from Jl quasi-temperature to Also, stress due to the measured pressure PM does not act on the third gauge resistor 17, and its resistance value RM3 is given by the following formula. It will be done.

Rr+5−Ro*(1+α3 t  )   −自・・
(3)ただし、 RO3:基準温度1oにおける抵抗値 α3:抵抗値Ro3の温度係数 なお、ゲージ抵抗15.16.17は同じ基板11に形
成され、温度係数はそれぞれα1−α2−αコーα、β
1−R2−β とみなせる捏持性をそろえることができ
る。またπ1σ1.π2σコについては、例えばシリコ
ンの(100)面で[1101方向にそいゲージ抵抗1
5.16を互いに直角に配置すれば、π1σ1−一π2
σ2−πσ とすることができる。このようにすると、
ゲージ抵抗15,16は受圧ダイアフラムに作用する被
測定圧PMによって、一方の抵抗値が増加し、他方の抵
抗値が減少する。
Rr+5-Ro*(1+α3t)-self...
(3) However, RO3: Resistance value at reference temperature 1o α3: Temperature coefficient of resistance value Ro3 Note that the gauge resistors 15, 16, and 17 are formed on the same substrate 11, and the temperature coefficients are α1-α2-αcoα, respectively. β
The kneading properties that can be considered as 1-R2-β can be made uniform. Also π1σ1. Regarding π2σ, for example, on the (100) plane of silicon, if the gauge resistance is 1 in the [1101 direction]
If 5.16 are placed at right angles to each other, π1σ1−−π2
It can be set to σ2−πσ. In this way,
The resistance value of one of the gauge resistors 15 and 16 increases and the resistance value of the other decreases depending on the measured pressure PM acting on the pressure receiving diaphragm.

信号処理回路20において、21は基準電圧源、22.
23は各々抵抗値検出回路、24は差検出回路、25は
補償信号発生回路、26は出力回路である。1!抗値検
出回路22は演算増幅器OP tを有し、OPsの帰還
回路にはゲージ抵抗15が接続され、OP +の入力端
子(−)に抵抗R1を介して基準電圧源21からの一定
の電圧Erが加えられている。抵抗値検出回路23は演
算増幅器OPaを有し、OF2の帰還回路にはゲージ抵
抗16が接続され、OPxの入力端子(−)には抵抗R
2を介して基準電圧11i21からの一定電圧E「が加
えられている。よって、ゲージ抵抗15にはEr/R+
なる電流11が流れ、ゲージ16にはEr/R2なる電
流I2が流れる。差検出回路24は演算増幅器OP s
よりなり、OP 3の帰還回路に抵抗R4が接続され、
入力端子(−)には抵抗R3を介して抵抗値検出回N2
3の出力電圧Ebが加えられ、入力端子(+)には抵抗
値検出回路22の出力電圧Eaが抵抗Rs 、Reで分
圧されて加えられている。そして差検出回路24はR3
−R4−R5−R6とすると、抵抗値検出回路22.2
3の出力電圧Ea+E’bの差(Ea −Eb)を演算
して出力する。補償信号発生回路25は演算増幅器OP
 4を有し、その帰還回路にゲージ抵抗17が接続され
、入力端子(−)に抵抗R7を介して出力回路26の出
力電圧Eoが加えられている。出力回路26は演算増幅
10 P sよりなり、OP sの帰還回路に抵抗RI
Gが接続され、入力端子(−)には抵抗Rsを介して差
検出回路24の出力ECが加えられるとともに、抵抗R
eを介して補償信号発生回路25の出力電圧Edが加え
られている。そして出力回WI26は88m R、m 
R,。とすると(Ec +Ed)を演算して出力するも
のである。
In the signal processing circuit 20, 21 is a reference voltage source, 22.
23 is a resistance value detection circuit, 24 is a difference detection circuit, 25 is a compensation signal generation circuit, and 26 is an output circuit. 1! The resistance value detection circuit 22 has an operational amplifier OPt, a gauge resistor 15 is connected to the feedback circuit of OPs, and a constant voltage is supplied from the reference voltage source 21 to the input terminal (-) of OP+ via a resistor R1. Er is added. The resistance value detection circuit 23 has an operational amplifier OPa, a gauge resistor 16 is connected to the feedback circuit of OF2, and a resistor R is connected to the input terminal (-) of OPx.
A constant voltage E" from the reference voltage 11i21 is applied to the gauge resistor 15 through Er/R+
A current 11 flows through the gauge 16, and a current I2 flows through the gauge 16, which becomes Er/R2. The difference detection circuit 24 is an operational amplifier OPs
The resistor R4 is connected to the feedback circuit of OP3,
A resistance value detection circuit N2 is connected to the input terminal (-) via a resistor R3.
3, and the output voltage Ea of the resistance value detection circuit 22 is applied to the input terminal (+) after being divided by the resistors Rs and Re. And the difference detection circuit 24 is R3
-R4-R5-R6, resistance value detection circuit 22.2
The difference (Ea - Eb) between the output voltages Ea+E'b of No. 3 is calculated and output. The compensation signal generation circuit 25 is an operational amplifier OP.
4, a gauge resistor 17 is connected to the feedback circuit, and the output voltage Eo of the output circuit 26 is applied to the input terminal (-) via the resistor R7. The output circuit 26 consists of an operational amplifier of 10 Ps, and a resistor RI is connected to the feedback circuit of the OPs.
G is connected to the input terminal (-), and the output EC of the difference detection circuit 24 is applied to the input terminal (-) via the resistor Rs.
The output voltage Ed of the compensation signal generation circuit 25 is applied via e. And the output times WI26 is 88m R, m
R. Then, (Ec + Ed) is calculated and output.

このように構成した本発明装置において、抵抗値検出回
路22.23の出力電圧Ea、Ebは、EO−−Er 
・RM+/R+   ・・・・・・(4)Eb−−Er
 ・RM2/R2・・・・・・(5)となり、差検出回
路24の出力電圧Ecは、R+−m R2とすると、次
式の如くなる。
In the device of the present invention configured in this manner, the output voltages Ea and Eb of the resistance value detection circuits 22.23 are EO−−Er.
・RM+/R+ ・・・・・・(4) Eb−−Er
-RM2/R2 (5), and the output voltage Ec of the difference detection circuit 24 is expressed as R+-mR2 as shown in the following equation.

Ec = (Ea−Eb ) =−Er  (RM l −RM 2 )/R+・・・
・・・(6) 一方ゲージ抵抗17には出力信号Eoに関連したE o
 / Ryなる電流I3が流れ、補償信号発生回路25
の出力電圧Edは次式で与えられる。
Ec = (Ea-Eb) =-Er (RMl-RM2)/R+...
...(6) On the other hand, the gauge resistor 17 has E o related to the output signal Eo.
/Ry current I3 flows, and the compensation signal generation circuit 25
The output voltage Ed is given by the following equation.

Ea −−RM 3  (EO/R? )  ”” (
7)したがって、出力回路26の出力電圧Eoは、EO
−(R?  (RMI  RM2)/R1(RM 3−
R? >)Er ・・・・・・(8) となる。この(8)式に(1)、(2)、(3)式を代
入し、Ro I−RO2−Ro s −Ro  とする
と、 Eo−2鵬πσR?(1+((Z+β)t)Er/R+
(1+纏αt) ・・・・・・(9)ただし、αβt2
(1 1=Ro   /Ro   −R? となるので、 α+β−−α           ・・・(1o)を
満足させると、出力電圧Eoは、 Eo−2にπσE r       ・・・(11)た
だし、k−IRy/R+ となり、温度係数のα、βの項を有効に除去でき、温度
変動による影響を受けることなく、高精度に被測定圧P
Mを表わす信号が得ることができる。
Ea --RM 3 (EO/R?) ”” (
7) Therefore, the output voltage Eo of the output circuit 26 is EO
-(R? (RMI RM2)/R1(RM 3-
R? >)Er...(8) Substituting equations (1), (2), and (3) into equation (8) to obtain Ro I-RO2-Ro s -Ro, Eo-2 Peng πσR? (1+((Z+β)t)Er/R+
(1+Mato αt) ・・・・・・(9) However, αβt2
(1 1=Ro /Ro -R? Therefore, if α+β--α ... (1o) is satisfied, the output voltage Eo becomes Eo-2 πσE r ... (11) However, k- IRy/R+, and the α and β terms of the temperature coefficient can be effectively removed, and the pressure to be measured P can be measured with high accuracy without being affected by temperature fluctuations.
A signal representing M can be obtained.

そして、ゲージ抵抗の不純物濃度と温度係数α。and the impurity concentration and temperature coefficient α of the gauge resistance.

βの関係は、不純物製置が1018〜1020の範囲で
は、α〉0 、β<Q  、α+βくOで、しかもα+
βは小さい値であるので、(10)式の関係は補償信号
発生回路25の抵抗R7の抵抗値を選ぶことにより満足
させることができる。
The relationship of β is that when the impurity concentration is in the range of 1018 to 1020, α>0, β<Q, α+β×O, and α+
Since β is a small value, the relationship in equation (10) can be satisfied by selecting the resistance value of the resistor R7 of the compensation signal generating circuit 25.

なお、ゲージ抵抗15.16の初期抵抗値R。Note that the initial resistance value R of the gauge resistance is 15.16.

11RO2が等しくない場合には、抵抗R1および抵抗
R2のいずれか一方の抵抗値を調整して、R+ Ro 
l −R2Ro 2 =O”” (12)を満足させれ
ばよい。すなわち、抵抗R+ 、R2によって零調整が
できる。
If 11RO2 are not equal, adjust the resistance value of either resistor R1 or resistor R2 to obtain R+Ro2.
l −R2Ro 2 =O”” (12) may be satisfied. In other words, zero adjustment can be performed using resistors R+ and R2.

また上述では、抵抗値検出回路22.23の出力電圧E
a、Ebの差を差検出回路24で演算する場合を例示し
たが、第3図に示すように抵抗値検出回路23の出力電
圧Ebを抵抗R11とR12で分圧して演算増幅器OP
 sの非反転入力端子(+)に加え、抵抗値検出回路2
2の出力電圧Eaを抵抗R8を介して演算増幅器OP 
aの反転入力端子(−)に加えて、出力回路26で演算
するようにしてもよい。この場合Re =R* =R+
 。
Furthermore, in the above description, the output voltage E of the resistance value detection circuit 22.23 is
Although the case where the difference between a and Eb is calculated by the difference detection circuit 24 has been illustrated, as shown in FIG.
In addition to the non-inverting input terminal (+) of s, the resistance value detection circuit 2
The output voltage Ea of 2 is connected to the operational amplifier OP via the resistor R8.
In addition to the inverting input terminal (-) of a, the output circuit 26 may be used for calculation. In this case Re =R* =R+
.

−R+ + −2R12とすれば(8)式の関係を得る
ことができる。
By setting -R+ + -2R12, the relationship of equation (8) can be obtained.

さらに上述では、ゲージ抵抗15.16が受圧ダイアフ
ラム12に形成され共に被測定圧PMに応じて抵抗値が
変化する場合を例示したが、いずれか一方(例えばゲー
ジ抵抗16)を固定部13に設けて、他方(例えばゲー
ジ抵抗15)の抵抗値のみが被測定圧P−に応じて変化
するようにしてもよい。この場合出力信号電圧EoはE
C−k yrσE r       −・・−・(13
)となる。
Furthermore, in the above description, the case where the gauge resistors 15 and 16 are formed on the pressure receiving diaphragm 12 and both have their resistance values changed according to the measured pressure PM has been illustrated, but one of the gauge resistors 15 and 16 (for example, the gauge resistor 16) is provided on the fixed part 13. Therefore, only the resistance value of the other one (for example, the gauge resistor 15) may be changed in accordance with the measured pressure P-. In this case, the output signal voltage Eo is E
C−k yrσE r −・・・−・(13
).

また上述では補償信号電圧Edを抵抗R7の抵抗線で調
整する場合を例示したが、出力信号電圧Eoを分圧抵抗
器で分圧した後、抵抗R7を介して演算増幅@ OP 
4の入力端子(−)に加えるようして、分圧抵抗器の分
圧比でEcseil整するようにしていもよい。
Furthermore, in the above example, the compensation signal voltage Ed is adjusted by the resistance wire of the resistor R7, but after dividing the output signal voltage Eo by the voltage dividing resistor, the operational amplification @OP is performed via the resistor R7.
It may be applied to the input terminal (-) of No. 4 to adjust the Ecseil voltage using the voltage dividing ratio of the voltage dividing resistor.

第4図は本発明@置の他の実施例を示す接続図である。FIG. 4 is a connection diagram showing another embodiment of the present invention.

第4図の実施例において、第1図の実施例と興なるとこ
ろは、演算増幅IQ P gと演算抵抗R+3.R+4
.R+sからなる加算回路27と、誤差増幅器28とを
設け、抵抗値検出回路22.23の出力Ea、Ebを加
算回路27で加算して誤差増幅器28の一方の入力端(
−)に加え、誤差増幅器28で(Ea +Eb )が他
方の入力端(+)に加えられている基準電圧源21から
の一定電圧Erと等しくなるように抵抗値検出回路22
.23の入力電圧Eeすなわちゲージ抵抗15゜16を
流れる電流I+、I2を制御する。その結果r+、Iz
は、R1−R2とすると、I+ −12−t=r/(R
M t +RM、2 )・・・・・・(14) となり、ゲージ抵抗15.16の抵抗値の和に関連して
変化するようになる。したがって、差検出回路24の出
力電圧Ecは、 Ec =−Er  (RM I −RM 2 >/ (
RM + +RM 2 )  ・・・・・・(15)と
なり、出力回路26の出力電圧Eoが、Eo−21πσ
R7Er x(1+βt)/<1 +謬 αt )・・・・・・ 
(16) ただし、 論  −Ro/Ro−Ry となるので、β−−α を満足するように、補償信号発
生回路25の抵抗R7の抵抗値を調整すれば、温度係数
α、βの影響を有効に除去できる。
The embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 1 in that an operational amplifier IQ P g and an operational resistor R+3. R+4
.. An adder circuit 27 consisting of R+s and an error amplifier 28 are provided, and the outputs Ea and Eb of the resistance value detection circuits 22 and 23 are added together in the adder circuit 27, and one input terminal of the error amplifier 28 (
-), the resistance value detection circuit 22 is set so that (Ea +Eb) is equal to the constant voltage Er from the reference voltage source 21 applied to the other input terminal (+) in the error amplifier 28.
.. It controls the input voltage Ee of 23, that is, the currents I+ and I2 flowing through the gauge resistor 15°16. As a result, r+, Iz
is R1-R2, then I+ -12-t=r/(R
M t +RM, 2 ) (14), which changes in relation to the sum of the resistance values of the gauge resistors 15.16. Therefore, the output voltage Ec of the difference detection circuit 24 is Ec = -Er (RM I - RM 2 >/ (
RM + +RM 2 ) (15), and the output voltage Eo of the output circuit 26 is Eo-21πσ
R7Er x (1+βt)/<1 + error αt)・・・・・・
(16) However, since the theory becomes -Ro/Ro-Ry, if the resistance value of the resistor R7 of the compensation signal generation circuit 25 is adjusted so as to satisfy β--α, the influence of the temperature coefficients α and β can be suppressed. Can be effectively removed.

なお上述では、抵抗値検出回路22.23の出力電圧E
a、Ebの和が基準電圧E「と等しくなるように、抵抗
値検出回路22.23の入力電圧をl1tillL、、
て、ゲージ抵抗15.16に流れる電流Iz、I2をR
M+*Rr+2の和に関連させる場合を例示したが、第
5図に示すように、ゲージ抵抗15.16の直列回路に
基準電圧11121からの基準電圧E「を印加するよう
にして、ゲージ抵抗15.16に流れる電流をEr /
 (RM 1+R52)となるようにしてもよい。第5
図においては、差検出回路24として演算増幅器OPs
と抵抗Rコ+R4からなるものが示されており、OF2
の反転入力端子(−)にゲージ抵抗15.16の直列回
路の両端電圧(Ea +Eb )が加えられ、OF2の
非反転入力端子<+)にゲージ抵抗16の両端電圧Eb
が加えられている。よって差検出回路24はR3−Rn
とすると、(Eb  Ea)を演算して出力する。なお
差検出回路24として第1図に示す回路を用いる場合に
は、第6図に示すようにゲージ抵抗15.16の直列回
路と並列に抵抗RIIIIRI7の直列回路を接続し、
その中点の電圧Er(−Er/2>を抵抗Rs 、Re
で分圧してOF2の非反転入力端子(+)に加え、ゲー
ジ抵抗15の両端電圧Eaを抵抗R3を介してOP 3
の反転入力端子(−)に加えるようにすればよい。この
場合抵抗RIIIIRI?としてゲージ抵抗を用いても
よい。
In the above description, the output voltage E of the resistance value detection circuit 22.23
The input voltage of the resistance value detection circuit 22.23 is set as l1tillL, , so that the sum of a and Eb becomes equal to the reference voltage E
Then, the current Iz, I2 flowing through the gauge resistor 15.16 is R.
Although we have illustrated the case where the relationship is related to the sum of M++*Rr+2, as shown in FIG. The current flowing through .16 is Er /
(RM 1+R52) may be used. Fifth
In the figure, an operational amplifier OPs is used as the difference detection circuit 24.
and a resistor Rco+R4 are shown, and OF2
The voltage across the series circuit of gauge resistor 15.16 (Ea + Eb) is applied to the inverting input terminal (-) of OF2, and the voltage across the gauge resistor 16 Eb is applied to the non-inverting input terminal of OF2 (<+).
has been added. Therefore, the difference detection circuit 24 has R3-Rn
Then, (Eb Ea) is calculated and output. Note that when using the circuit shown in FIG. 1 as the difference detection circuit 24, a series circuit of resistors RIIIRI7 is connected in parallel with a series circuit of gauge resistors 15 and 16, as shown in FIG.
The voltage Er(-Er/2>) at the midpoint is the resistance Rs, Re
In addition, the voltage Ea across the gauge resistor 15 is applied to the non-inverting input terminal (+) of OF2 through the resistor R3 to OP3.
It should be added to the inverting input terminal (-) of the . In this case, the resistance RIIIRI? A gauge resistance may be used as the

さらに第5図では基準電圧源21の出力をゲージ抵抗1
5.16の直列回路に直接印加しているが、第7図に示
すように基準電圧1121の出力Erを演算増幅器OP
?の非反転入力端子(+)に加え、ゲージ抵抗15.1
6の直列回路の両端電圧(Ea +Eb )をOP 7
の反転入力端子(−)に加えて、OF2の出力でトラン
ジスタQを駆動し、(Ea +Eb )−Erとなるよ
うにゲージ抵抗15.16の直列回路を流れる電流を制
御するようにしてもよい。
Furthermore, in FIG. 5, the output of the reference voltage source 21 is
5.16, but as shown in Figure 7, the output Er of the reference voltage 1121 is applied to the operational amplifier OP.
? In addition to the non-inverting input terminal (+) of the gauge resistor 15.1
The voltage across the series circuit of 6 (Ea + Eb) is OP 7
In addition to the inverting input terminal (−) of .

第8図は本発明装置の他の実施例を示す接続図である。FIG. 8 is a connection diagram showing another embodiment of the device of the present invention.

第8図の実施例において、第1図の実施例と異るところ
は、出力電圧EOを分圧抵抗器29で分圧した後演痺抵
抗R+s(RIs)を介して演算増幅器0PI(OF2
)の入力端子(−)に加えるようにした点である。この
場合分圧抵抗器29の分圧比をnとし、かつ R1−R
2−818”RI Iとすると、差検出回路24の出力
ECは次式で与えられる。
In the embodiment shown in FIG. 8, the difference from the embodiment shown in FIG.
) is added to the input terminal (-) of the input terminal (-). In this case, the voltage dividing ratio of the voltage dividing resistor 29 is n, and R1-R
2-818''RI I, the output EC of the difference detection circuit 24 is given by the following equation.

Ec =−(Er+nEo ) X  (RM  +   RM 2  )/R冒・・・
(17) よって、出力電圧EOは、 Eo−2k ytaE r/ (1+2nkπσ)・・
・(18) となり、kが負であるので応力σが大きくなる程出力電
圧Eoの増加率が上がり、入出力関係を非直線にできる
。一方被測定圧力PMと応力σとの間の非直線性はPM
が大きくなるとσの増加率が下る傾向にあるため、分圧
抵抗器29の分圧比nを調整することによって、被測定
圧力PMと応力σとの非直線性の影響を補償できる。こ
の調整は、PH2−(PH+ +Pr+z >/2なる
関係にある被測定圧力PM1.PM21PM3にそれぞ
れ対応した出力電圧Eo + e Eo 2 e Eo
 3が E02− (Eo + +Eo3)/2となる
ように分圧抵抗29の分圧比nを決定することによって
容易に行なうことができる。なお第4図のように抵抗値
検出回路22.23の出力Ea、Ebを加算回路27で
加算して誤差増幅器28に加えてゲージ抵抗15.16
を流れる電流を制御する場合には、第9図に示すように
出力電圧Eoを分圧抵抗器29で分圧した後抵抗Rzo
を介してOP eの反転入力端子(−)に加えればよい
Ec =-(Er+nEo) X (RM + RM2)/R...
(17) Therefore, the output voltage EO is Eo-2k ytaE r/ (1+2nkπσ)...
(18) Since k is negative, the larger the stress σ, the higher the rate of increase in the output voltage Eo, making the input-output relationship non-linear. On the other hand, the nonlinearity between the measured pressure PM and stress σ is PM
As σ increases, the rate of increase in σ tends to decrease. Therefore, by adjusting the voltage division ratio n of the voltage division resistor 29, it is possible to compensate for the influence of nonlinearity between the measured pressure PM and the stress σ. This adjustment is performed by adjusting the output voltages Eo + e Eo 2 e Eo corresponding to the measured pressures PM1, PM21, and PM3, which have a relationship of PH2-(PH+ +Pr+z >/2).
This can be easily done by determining the voltage dividing ratio n of the voltage dividing resistor 29 so that E02- (Eo + +Eo3)/2. Note that as shown in FIG. 4, the outputs Ea and Eb of the resistance value detection circuits 22.23 are added by the adder circuit 27 and added to the error amplifier 28, and the outputs Ea and Eb of the resistance value detection circuits 22.23 are added to the gauge resistance 15.16.
When controlling the current flowing through the resistor Rzo, after dividing the output voltage Eo by a voltage dividing resistor 29 as shown in FIG.
It may be applied to the inverting input terminal (-) of OP e via the OP e.

〈発明の効果〉 以上説明したように本発明においては、温度係数の項を
有効に除去できるので、温度変動による影響を受けるこ
となく、高精度に被測定物理量を測定できる抵抗式変換
装置が得られる。
<Effects of the Invention> As explained above, in the present invention, since the temperature coefficient term can be effectively removed, a resistive converter can be obtained that can measure the physical quantity to be measured with high precision without being affected by temperature fluctuations. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電気的接続図、第2図
は本発明に用いる検出器の一例を示す構成説明図、第、
3図〜第9図は本発明の他の実施例を示す電気的接続図
である。 10・・・・・・検出器 11・・・・・・単結晶半導体基板 12・・・・・・受圧ダイヤフラム部 13・・・・・・固定部 15.16.17・・・・・・ゲージ抵抗20・・・・
・・信号処理回路 21・・・・・・基準電圧源 22.23・・・・・・抵抗値検出回路24・・・・・
・差検出回路 25・・・・・・補償信号発生回路 26・・・・・・出力回路 27・・・・・・加算回路 28・・・・・・誤差増幅器 29・・・・・・分圧抵抗器 第3図 (ロ) 第4!!1 第5図 第6図 第7図
FIG. 1 is an electrical connection diagram showing one embodiment of the present invention, FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the present invention,
3 to 9 are electrical connection diagrams showing other embodiments of the present invention. 10...Detector 11...Single crystal semiconductor substrate 12...Pressure diaphragm section 13...Fixing section 15.16.17... Gauge resistance 20...
...Signal processing circuit 21...Reference voltage source 22.23...Resistance value detection circuit 24...
- Difference detection circuit 25... Compensation signal generation circuit 26... Output circuit 27... Addition circuit 28... Error amplifier 29... Piezoresistor Figure 3 (b) 4th! ! 1 Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)半導体単結晶基板に形成され被測定物理量に応じ
て少くともいずれか一方の抵抗値が変化する第1、第2
のゲージ抵抗と、前記半導体基板に形成され抵抗値が前
記被測定物理量には無関係な第3のゲージ抵抗と、前記
第1、第2のゲージ抵抗に電流を供給する回路と、前記
第1、第2のゲージ抵抗の抵抗値の差に基ずく差信号に
補償信号を加算して出力信号を得る出力回路と、この出
力回路の出力信号に関連した電流を前記第3のゲージ抵
抗に供給して前記補償信号を得る補償信号発生回路とを
備えた抵抗式変換装置。
(1) The first and second resistors are formed on a semiconductor single crystal substrate and the resistance value of at least one of them changes depending on the physical quantity to be measured.
a third gauge resistor formed on the semiconductor substrate and whose resistance value is unrelated to the physical quantity to be measured; a circuit for supplying current to the first and second gauge resistors; an output circuit that obtains an output signal by adding a compensation signal to a difference signal based on a difference in resistance value of the second gauge resistor; and supplying a current related to the output signal of the output circuit to the third gauge resistor. and a compensation signal generation circuit for obtaining the compensation signal.
(2)半導体単結晶基板に形成され被測定物理量に応じ
て少くともいずれか一方の抵抗値が変化する第1、第2
のゲージ抵抗と、前記半導体基板に形成され抵抗値が前
記被測定物理量には無関係な第3のゲージ抵抗と、前記
第1、第2のゲージ抵抗に電流を供給する回路と、前記
第1、第2のゲージ抵抗の抵抗値の差に基ずく差信号に
補償信号を加算して出力信号を得る出力回路と、この出
力回路の出力信号に関連した電流を前記第3のゲージ抵
抗に供給して前記補償信号を得る補償信号発生回路と、
前記出力信号に応じて前記第1、第2のゲージ抵抗を流
れる電流を制御する手段とを備えた抵抗式変換装置。
(2) The first and second electrodes are formed on a semiconductor single crystal substrate and the resistance value of at least one of them changes depending on the physical quantity to be measured.
a third gauge resistor formed on the semiconductor substrate and whose resistance value is unrelated to the physical quantity to be measured; a circuit for supplying current to the first and second gauge resistors; an output circuit that obtains an output signal by adding a compensation signal to a difference signal based on a difference in resistance value of the second gauge resistor; and supplying a current related to the output signal of the output circuit to the third gauge resistor. a compensation signal generation circuit that obtains the compensation signal by
and means for controlling currents flowing through the first and second gauge resistors according to the output signal.
JP8833185A 1985-04-24 1985-04-24 Resistance-type conversion device Pending JPS61246619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833185A JPS61246619A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833185A JPS61246619A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Publications (1)

Publication Number Publication Date
JPS61246619A true JPS61246619A (en) 1986-11-01

Family

ID=13939891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833185A Pending JPS61246619A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Country Status (1)

Country Link
JP (1) JPS61246619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208531A1 (en) * 2015-06-24 2016-12-29 アイシン精機株式会社 Distortion sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208531A1 (en) * 2015-06-24 2016-12-29 アイシン精機株式会社 Distortion sensing device
JP2017009490A (en) * 2015-06-24 2017-01-12 アイシン精機株式会社 Distortion detection device

Similar Documents

Publication Publication Date Title
US4414853A (en) Pressure transmitter employing non-linear temperature compensation
JPH0777266B2 (en) Semiconductor strain detector
JPS6144242B2 (en)
WO2003029759A1 (en) Flow rate measuring instrument
EP0456811B1 (en) Multi-variable sensor calibration
US4196382A (en) Physical quantities electric transducers temperature compensation circuit
JPH10281897A (en) Semiconductor pressure detector
JPS61246619A (en) Resistance-type conversion device
RU2036445C1 (en) Pressure converter
JPS6255629B2 (en)
RU2082129C1 (en) Converter of pressure to electric signal
JPS6343697B2 (en)
JPS61264212A (en) Resistance type transducer
JPS60171416A (en) Resistance type converter
JPS61246618A (en) Resistance-type conversion device
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JPS61246617A (en) Resistance-type conversion device
JPH0542610B2 (en)
JPH042170A (en) Temperature compensation method for span voltage of semiconductor diffused resistor type of pressure sensor
JPS62182670A (en) Flow velocity measuring instrument
KR19980084452A (en) Temperature compensation circuit of pressure sensor
JP2639101B2 (en) Pressure detector
JPH0476047B2 (en)
KR830001352B1 (en) Semiconductor pressure detector with zero temperature compensation
JPH03220402A (en) Detecting circuit of strain of semiconductor