JP2017009490A - Distortion detection device - Google Patents

Distortion detection device Download PDF

Info

Publication number
JP2017009490A
JP2017009490A JP2015126642A JP2015126642A JP2017009490A JP 2017009490 A JP2017009490 A JP 2017009490A JP 2015126642 A JP2015126642 A JP 2015126642A JP 2015126642 A JP2015126642 A JP 2015126642A JP 2017009490 A JP2017009490 A JP 2017009490A
Authority
JP
Japan
Prior art keywords
input
piezoresistor
strain
terminal
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015126642A
Other languages
Japanese (ja)
Inventor
加藤 学
Manabu Kato
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2015126642A priority Critical patent/JP2017009490A/en
Priority to PCT/JP2016/068231 priority patent/WO2016208531A1/en
Publication of JP2017009490A publication Critical patent/JP2017009490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors

Abstract

PROBLEM TO BE SOLVED: To provide a distortion detection device capable of performing output with high linearity.SOLUTION: A distortion detection device comprises: a deformable body distorted according to inputted loading; a piezoresistance 20 provided on the deformable body and changing a resistance value according to the distortion; an input resistance 30 having a predetermined resistance value; and a computing amplifier 40 including a non-inverting input terminal 41 to which a first electric potential composed of a predetermined constant potential is connected, an inverting input terminal 42 to which a second electric potential composed of a predetermined constant potential different from the first electric potential is connected via the input resistance 30 one terminal of which is connected with one terminal of the piezoresistance 20, and an output terminal 43 to which the other terminal of the piezoresistance 20 is connected.SELECTED DRAWING: Figure 3

Description

本発明は、変形体に生じる歪を検知する歪検知装置に関する。   The present invention relates to a strain detection device that detects strain generated in a deformable body.

従来、利用されてきた歪を検知する技術として例えば特許文献1に記載のものがある。   Conventionally, for example, a technique described in Patent Document 1 is a technique for detecting distortion that has been used.

特許文献1に記載の直線検出ブリッジ回路は、3つの固定抵抗と1つの可変抵抗とでホイートストンブリッジを構成し、当該ホイートストンブリッジに定電流回路と差動増幅器と電流制御回路とが接続される。定電流回路がホイートストンブリッジに定電流を供給し、荷重の入力により可変抵抗の抵抗値が変化してホイートストンブリッジに出力電圧が発生すると、差動増幅器の差動入力電圧が変化し、前記定電流を制御する。このようにホイートストンブリッジに供給する電流を制御することにより、可変抵抗の変化幅が大きくなった場合でもホイートストンブリッジの出力の直線性を維持している。   The linear detection bridge circuit described in Patent Document 1 forms a Wheatstone bridge with three fixed resistors and one variable resistor, and a constant current circuit, a differential amplifier, and a current control circuit are connected to the Wheatstone bridge. When the constant current circuit supplies a constant current to the Wheatstone bridge, and the resistance value of the variable resistor changes due to the input of the load and the output voltage is generated in the Wheatstone bridge, the differential input voltage of the differential amplifier changes, and the constant current To control. By controlling the current supplied to the Wheatstone bridge in this way, the linearity of the output of the Wheatstone bridge is maintained even when the variable resistor has a large change width.

特開昭53−45275号公報JP-A-53-45275

特許文献1に記載の技術では、ホイートストンブリッジの出力電圧の一方に比例した電流を駆動電流として帰還している。しかしながら、出力電圧と帰還電流との間の比例定数によって直線性の補正のされ方が変わるため、ホイートストンブリッジの出力電圧の直線性を維持するためには固定抵抗や可変抵抗の値によって比例定数を個別調整する必要がある。   In the technique described in Patent Document 1, a current proportional to one of the output voltages of the Wheatstone bridge is fed back as a drive current. However, since the linearity correction method varies depending on the proportionality constant between the output voltage and the feedback current, the proportionality constant is set depending on the value of the fixed resistance or variable resistance in order to maintain the linearity of the output voltage of the Wheatstone bridge. Individual adjustments are required.

そこで、比例定数の調整をすることなく、直線性の高い出力を行うことが可能な歪検知装置が求められる。   Therefore, there is a demand for a strain detection device that can perform output with high linearity without adjusting the proportionality constant.

本発明に係る歪検知装置の特徴構成は、入力される荷重に応じて歪む変形体と、前記変形体上に設けられ、歪に応じて抵抗値を変化させるピエゾ抵抗と、所定の抵抗値を有する入力抵抗と、所定の定電位からなる第1電位が接続される非反転入力端子と、前記ピエゾ抵抗の一方の端子と前記入力抵抗の一方の端子とが接続されて前記入力抵抗を介して前記第1電位とは異なる所定の定電位からなる第2電位が接続される反転入力端子と、前記ピエゾ抵抗の他方の端子が接続される出力端子とを有する演算増幅器と、を備えている点にある。   A characteristic configuration of the strain detection device according to the present invention includes a deformable body that is distorted according to an input load, a piezoresistor that is provided on the deformable body and changes a resistance value according to the strain, and a predetermined resistance value. A non-inverting input terminal to which a first potential having a predetermined constant potential is connected, and one terminal of the piezoresistor and one terminal of the input resistor are connected via the input resistor. And an operational amplifier having an inverting input terminal to which a second potential having a predetermined constant potential different from the first potential is connected, and an output terminal to which the other terminal of the piezoresistor is connected. It is in.

このような特徴構成とすれば、演算増幅器の出力として、入力抵抗に反比例し、ピエゾ抵抗に比例した電圧を得ることができるので、ピエゾ抵抗の抵抗値の変化に対して直線性の高い出力が得られる。したがって、直線性の個別調整することなく、ピエゾ抵抗の抵抗値変化に対して直線性の高い出力が得られる。よって、ピエゾ抵抗への印加歪に対するピエゾ抵抗の抵抗変化が直線の領域では精度良く歪の検知が可能となる。また、印加歪に対するピエゾ抵抗の抵抗変化の非直線性のバラツキを抑制することにより非直線性の補正関数が共通化でき、個別調整することなく、精度良く歪を検知することができる。   With such a characteristic configuration, a voltage that is inversely proportional to the input resistance and proportional to the piezoresistor can be obtained as the output of the operational amplifier. Therefore, an output having high linearity with respect to the change in the resistance value of the piezoresistor can be obtained. can get. Therefore, an output with high linearity can be obtained with respect to a change in the resistance value of the piezoresistor without individually adjusting the linearity. Therefore, it is possible to detect the strain with high accuracy in the region where the resistance change of the piezoresistor with respect to the applied strain to the piezoresistor is linear. Further, by suppressing the non-linear variation of the resistance change of the piezoresistor with respect to the applied strain, the non-linear correction function can be made common, and the strain can be detected with high accuracy without individual adjustment.

また、前記入力抵抗と前記ピエゾ抵抗とは、同じ材料よりなる半導体で同じ導電性であり、前記入力抵抗と前記ピエゾ抵抗とのキャリア濃度の比が0.5以上2.0以下であると好適である。   Preferably, the input resistance and the piezoresistor are semiconductors made of the same material and have the same conductivity, and the carrier concentration ratio between the input resistance and the piezoresistor is 0.5 or more and 2.0 or less. It is.

このような構成とすれば、入力抵抗とピエゾ抵抗との温度差が小さくなるように入力抵抗とピエゾ抵抗とを配置することにより、無歪時の温度変化による抵抗値の変化がキャンセルされ、温度特性の良い検出が可能となる。   With such a configuration, by arranging the input resistor and the piezoresistor so that the temperature difference between the input resistor and the piezoresistor becomes small, the change in the resistance value due to the temperature change at the time of no distortion is canceled, and the temperature Detection with good characteristics is possible.

また、前記変形体に所定の荷重が入力された時の前記入力抵抗における抵抗値の変化の割合は、前記変形体に前記所定の荷重が入力された時の前記ピエゾ抵抗における抵抗値の変化の割合よりも小さいと好適である。   Further, the rate of change in resistance value of the input resistance when a predetermined load is input to the deformable body is the ratio of change in resistance value of the piezoresistor when the predetermined load is input to the deformable body. It is preferable that the ratio is smaller than the ratio.

このような構成とすれば、前記演算増幅器の出力において、荷重が入力された際の入力抵抗の抵抗値の変化による非直線性を抑制することができる。入力抵抗の抵抗値の変化量が、ピエゾ抵抗の抵抗値の変化量に対して小さい程、ピエゾ抵抗の変化に対する直線性の高い出力が得られる。   With such a configuration, it is possible to suppress non-linearity due to a change in the resistance value of the input resistance when a load is input in the output of the operational amplifier. As the change amount of the resistance value of the input resistance is smaller than the change amount of the resistance value of the piezoresistor, an output with higher linearity with respect to the change of the piezoresistance can be obtained.

また、前記入力抵抗は、前記変形体に荷重が入力された時に生じる歪み量が、前記ピエゾ抵抗が設けられた部位に生じる歪み量よりも小さい部位に、前記ピエゾ抵抗と同一の接着構造で設けられると好適である。   In addition, the input resistance is provided in the same adhesive structure as the piezoresistor in a portion where the amount of strain generated when a load is input to the deformable body is smaller than the amount of strain generated in the portion where the piezoresistor is provided. Preferably.

このような構成とすれば、例えば、入力抵抗の歪み量を、ピエゾ抵抗の歪み量に比べて小さくすることができ、荷重の入力に対する入力抵抗の変化を抑制できる。また、接着構造が同じなので、接着時の接着剤の硬化時の収縮、接着剤及び変形体に対する熱膨張率差による歪み量を入力抵抗とピエゾ抵抗とで近づけることが可能となり、荷重印加が無い時の上記ピエゾ抵抗と上記入力抵抗の温度に対する抵抗値の比の変動が抑制される。このため、荷重印加が無い時のピエゾ抵抗と入力抵抗とを組み合わせた歪検出結果が温度によって変動することが有効に防止され、正確な歪検知が可能となる。   With such a configuration, for example, the distortion amount of the input resistance can be made smaller than the distortion amount of the piezoresistor, and the change in the input resistance with respect to the input of the load can be suppressed. In addition, since the adhesive structure is the same, it is possible to make the amount of distortion caused by the thermal expansion coefficient difference between the adhesive and the deformed body close to each other by the input resistance and the piezo resistance, and no load is applied. The fluctuation of the ratio of the resistance value to the temperature of the piezoresistance and the input resistance at the time is suppressed. For this reason, it is effectively prevented that the strain detection result obtained by combining the piezoresistor and the input resistance when no load is applied varies with temperature, and accurate strain detection is possible.

また、前記ピエゾ抵抗と前記入力抵抗とが、同じ工程で同時に製造され、単一の半導体チップとして形成されていると好適である。   In addition, it is preferable that the piezoresistor and the input resistor are simultaneously manufactured in the same process and formed as a single semiconductor chip.

このような構成とすれば、ピエゾ抵抗と入力抵抗との抵抗値及びピエゾ抵抗係数の温度特性をより近づけることが可能となり、荷重印加が無い時のピエゾ抵抗と入力抵抗の抵抗値の比の温度による変動を低減でき、又、接着時の接着剤の硬化時の収縮、接着剤及び変形体に対する熱膨張率差による歪み量を入力抵抗とピエゾ抵抗とで近づけることができ、印加荷重が無い時の上記ピエゾ抵抗及び上記入力抵抗に印加される歪み量の温度による変動が等価とでき、上記両抵抗の抵抗値及びピエゾ抵抗効果による抵抗変動の割合を近いものとできる。無荷重時の上記両抵抗の抵抗値の比の温度による変動は抑制され出力の温度による変動が抑制される。   With such a configuration, it becomes possible to make the temperature characteristics of the resistance value and the piezoresistance coefficient between the piezoresistor and the input resistor closer, and the temperature of the ratio between the piezoresistor and the resistance value of the input resistor when no load is applied. When there is no applied load, the input resistance and the piezo resistance can bring the amount of distortion due to the shrinkage of the adhesive during curing and the difference in thermal expansion coefficient between the adhesive and the deformed body close to each other. The variation of the strain amount applied to the piezoresistor and the input resistor due to temperature can be equivalent, and the resistance value of both resistors and the ratio of the resistance variation due to the piezoresistive effect can be made close. Variations in the ratio of the resistance values of the two resistors when no load is applied due to temperature are suppressed, and variations due to output temperature are suppressed.

また、前記ピエゾ抵抗と前記入力抵抗と前記演算増幅器とが複数備えられ、前記ピエゾ抵抗は前記変形体の歪み量が異なる位置に複数備えられ、前記複数の演算増幅器の出力の差分に基づいて前記入力される荷重を演算すると好適である。なお、上記変形体の歪に伴う上記複数の入力抵抗の歪み量は、上記ピエゾ抵抗のうち最も歪むピエゾ抵抗の歪み量よりも小さいと好適である。   Further, a plurality of the piezoresistors, the input resistors, and the operational amplifiers are provided, and the piezoresistors are provided at a plurality of positions where the deformation amount of the deformable body is different, and based on the difference between the outputs of the plurality of operational amplifiers. It is preferable to calculate the input load. It is preferable that the distortion amount of the plurality of input resistors accompanying the deformation of the deformable body is smaller than the distortion amount of the most distorted piezoresistor among the piezoresistors.

このように、ピエゾ抵抗と入力抵抗と演算増幅器とによる歪検出回路を複数設け、複数の演算増幅器の出力の差分を検出信号とすることで、複数の演算増幅器の出力に同等に印加されるノイズをキャンセルでき、より精度の高い検出が可能となる。   In this way, noise is applied equally to the outputs of multiple operational amplifiers by providing multiple distortion detection circuits with piezoresistors, input resistors, and operational amplifiers, and using the difference between the outputs of multiple operational amplifiers as detection signals. Can be canceled and detection with higher accuracy becomes possible.

歪検知装置が備える変形体の一例を示した図である。It is the figure which showed an example of the deformation body with which a distortion | strain detector is provided. 撓んでいる変形体の状態を示した図である。It is the figure which showed the state of the deformation body which has bent. 歪検知回路の回路図である。It is a circuit diagram of a distortion detection circuit. 歪検知回路が構成される半導体チップの厚さと歪の関係を示した図である。It is the figure which showed the relationship between the thickness of the semiconductor chip with which a distortion detection circuit is comprised, and distortion. その他の実施形態に係る歪検知回路の回路図である。It is a circuit diagram of a distortion detection circuit according to another embodiment.

本発明に係る歪検知装置は、変形体に入力される荷重を検出する。以下、本実施形態の歪検知装置1について説明する。   The strain detection apparatus according to the present invention detects a load input to the deformable body. Hereinafter, the strain detection apparatus 1 of the present embodiment will be described.

歪検知装置1は、入力される荷重に応じて歪む変形体10、及び歪検知回路50を備えて構成される。変形体10の斜視図が図1に示される。変形体10は、入力された荷重に応じて歪む材料を用いて例えば長方形の板状に構成される。変形体10は所定の位置に設定された荷重入力部12に荷重が入力された際に、図2に示されるように変形体10が歪むことができる位置で支持される。   The strain detection apparatus 1 includes a deformable body 10 that is distorted according to an input load, and a strain detection circuit 50. A perspective view of the deformable body 10 is shown in FIG. The deformable body 10 is configured in, for example, a rectangular plate shape using a material that is distorted according to an input load. When a load is input to the load input unit 12 set at a predetermined position, the deformable body 10 is supported at a position where the deformable body 10 can be distorted as shown in FIG.

図3には、歪検知回路50の回路図が示される。歪検知回路50は、ピエゾ抵抗20、入力抵抗30、及び演算増幅器40を備えて構成される。本実施形態では、公知の半導体製造プロセスを用いて、ピエゾ抵抗20、入力抵抗30、及び演算増幅器40が製造される。   FIG. 3 shows a circuit diagram of the distortion detection circuit 50. The strain detection circuit 50 includes a piezoresistor 20, an input resistor 30, and an operational amplifier 40. In the present embodiment, the piezoresistor 20, the input resistor 30, and the operational amplifier 40 are manufactured using a known semiconductor manufacturing process.

ピエゾ抵抗20は、荷重が入力された際に、変形体10のうち歪が生じる部位に設けられ、変形体10の歪み量に応じて上記ピエゾ抵抗20は歪む。ピエゾ抵抗20は、単結晶半導体からなり、その歪に応じて抵抗値を変化させる。変形体10が、仮に両端が回動しない状態に固定されている場合、図2に示されるように、変形体10における荷重が入力される面13(荷重入力部12が設定された面)に着目すると、一対の引張部位Aと、一対の圧縮部位Bとが現れる。引張部位Aと圧縮部位Bとの間の部位Cでは、殆ど歪は生じない。本実施形態では、ピエゾ抵抗20は、一対の引張部位Aの夫々と一対の圧縮部位Bの夫々とのうち、少なくとも一箇所に設けられる。これにより、変形体10に生じた歪を抵抗値の変化で検知することが可能となる。   The piezoresistor 20 is provided in a portion of the deformable body 10 where distortion occurs when a load is input, and the piezoresistor 20 is distorted according to the amount of strain of the deformable body 10. The piezoresistor 20 is made of a single crystal semiconductor and changes its resistance value according to the strain. If the deformable body 10 is fixed in a state in which both ends do not rotate, as shown in FIG. 2, a surface 13 on which the load in the deformable body 10 is input (the surface on which the load input portion 12 is set) is provided. When attention is paid, a pair of tensile parts A and a pair of compression parts B appear. In the part C between the tension part A and the compression part B, almost no distortion occurs. In the present embodiment, the piezoresistor 20 is provided in at least one of each of the pair of tension parts A and each of the pair of compression parts B. Thereby, it is possible to detect the strain generated in the deformable body 10 by the change in the resistance value.

入力抵抗30は、所定の抵抗値を有する。入力抵抗Rは、半導体を用いて形成されていても良い。   The input resistor 30 has a predetermined resistance value. The input resistor R may be formed using a semiconductor.

演算増幅器40は、非反転入力端子41と、反転入力端子42と、出力端子43とを有する。非反転入力端子41には、所定の定電位からなる第1電位が接続される。所定の定電位とは、基準となる電位(接地電位)との電位差が一定である電位をいう。図3の例では、非反転入力端子41には、第1電位を出力する定電圧源61が接続される。   The operational amplifier 40 has a non-inverting input terminal 41, an inverting input terminal 42, and an output terminal 43. The non-inverting input terminal 41 is connected with a first potential having a predetermined constant potential. The predetermined constant potential refers to a potential having a constant potential difference from a reference potential (ground potential). In the example of FIG. 3, a non-inverting input terminal 41 is connected to a constant voltage source 61 that outputs a first potential.

ここで、ピエゾ抵抗20及び入力抵抗30は、夫々一対の端子を備えて構成される。反転入力端子42には、これらのピエゾ抵抗20の一対の端子のうちの一方の端子と、入力抵抗30の一対の端子のうちの一方の端子とが接続される。また、反転入力端子42には、入力抵抗30を介して第1電位とは異なる所定の定電位からなる第2電位が接続される。すなわち、入力抵抗30は、一対の端子のうちの他方の端子に第1電位とは異なる直流の第2電位が接続され、一対の端子のうちの一方の端子に反転入力端子42に接続される。図3の例では、入力抵抗30の他方の端子には、第2電位を出力する定電圧源62が接続される。   Here, the piezoresistor 20 and the input resistor 30 are each provided with a pair of terminals. One terminal of the pair of piezoresistors 20 and one terminal of the pair of input resistors 30 are connected to the inverting input terminal 42. The inverting input terminal 42 is connected to a second potential having a predetermined constant potential different from the first potential via the input resistor 30. That is, the input resistor 30 has a second DC potential different from the first potential connected to the other terminal of the pair of terminals, and is connected to the inverting input terminal 42 to one terminal of the pair of terminals. . In the example of FIG. 3, a constant voltage source 62 that outputs the second potential is connected to the other terminal of the input resistor 30.

出力端子43には、ピエゾ抵抗20の一対の端子のうち、他方の端子が接続される。上述したように、ピエゾ抵抗20の一方の端子は、反転入力端子42に接続される。したがって、ピエゾ抵抗20は、演算増幅器40の出力端子43と反転入力端子42とに亘って設けられた帰還抵抗として用いられる。   The output terminal 43 is connected to the other of the pair of terminals of the piezoresistor 20. As described above, one terminal of the piezoresistor 20 is connected to the inverting input terminal 42. Therefore, the piezoresistor 20 is used as a feedback resistor provided across the output terminal 43 and the inverting input terminal 42 of the operational amplifier 40.

このように歪検知回路50を構成することで、歪検知回路50は、第1電位と第2電位との間の電位差とピエゾ抵抗20の抵抗値に比例し、入力抵抗30の抵抗値と反比例する電圧を出力する。変形体10に入力された荷重によりピエゾ抵抗20の抵抗値が変化し、その結果、歪検知回路50の出力電圧が変わる。この時、演算増幅器40の非反転入力端子41に接続される第1電位、及び演算増幅器40の反転入力端子42に接続される第2電位は変化しないので、ピエゾ抵抗20の抵抗値に応じて演算増幅器40の出力端子43から出力される電圧が変化する。このように歪検知回路50は、歪に応じた抵抗値の変化を電圧値の変化として取り出すことができることから、抵抗-電圧変換回路として機能し、出力端子43から出力される電圧に基づき、歪を検知することが可能となる。   By configuring the strain detection circuit 50 in this way, the strain detection circuit 50 is proportional to the potential difference between the first potential and the second potential and the resistance value of the piezoresistor 20, and inversely proportional to the resistance value of the input resistor 30. Output voltage. The resistance value of the piezoresistor 20 changes due to the load input to the deformable body 10, and as a result, the output voltage of the strain detection circuit 50 changes. At this time, the first potential connected to the non-inverting input terminal 41 of the operational amplifier 40 and the second potential connected to the inverting input terminal 42 of the operational amplifier 40 do not change, and therefore, according to the resistance value of the piezoresistor 20. The voltage output from the output terminal 43 of the operational amplifier 40 changes. As described above, the strain detection circuit 50 can extract a change in the resistance value according to the strain as a change in the voltage value. Therefore, the strain detection circuit 50 functions as a resistance-voltage conversion circuit, and based on the voltage output from the output terminal 43, Can be detected.

上記構成の歪検知装置1によれば、演算増幅器40の出力として、入力抵抗30に反比例し、ピエゾ抵抗20に比例した電圧を得ることができるので、ピエゾ抵抗20の抵抗値の変化に対して直線性の高い出力が得られる。したがって、直線性を個別調整することなく、ピエゾ抵抗20の抵抗値変化に対して直線性の高い出力が得られる。よって、ピエゾ抵抗20への印加歪に対するピエゾ抵抗20の抵抗変化が直線の領域では精度良く歪の検知が可能となる。また、印加歪に対するピエゾ抵抗20の非直線性のバラツキを抑制することにより非直線性の補正関数が共通化でき、個別調整することなく、精度良く歪を検知することができる。   According to the strain sensing device 1 having the above configuration, a voltage proportional to the piezoresistor 20 can be obtained as an output of the operational amplifier 40 in inverse proportion to the input resistor 30, so that a change in the resistance value of the piezoresistor 20 can be obtained. Output with high linearity can be obtained. Therefore, an output with high linearity can be obtained with respect to a change in resistance value of the piezoresistor 20 without individually adjusting the linearity. Therefore, the strain can be accurately detected in a region where the resistance change of the piezoresistor 20 with respect to the applied strain to the piezoresistor 20 is linear. Further, by suppressing the non-linear variation of the piezoresistor 20 with respect to the applied strain, the non-linear correction function can be made common, and the strain can be detected with high accuracy without individual adjustment.

また、歪検知装置1は、変形体10に所定の荷重が入力された時の入力抵抗30における抵抗値の変化の割合が、変形体10に所定の荷重が入力された時のピエゾ抵抗20における抵抗値の変化の割合よりも小さいものを用いると良い。例えば、所定の荷重が入力された時の入力抵抗30の抵抗値の変化の割合がピエゾ抵抗20の抵抗値の変化の割合よりも十分に小さく、好ましくは入力抵抗30の抵抗値の変化の割合が、ピエゾ抵抗20の抵抗値の変化の割合の1/100以下であると良い。こうすることで、荷重の入力に対して、入力抵抗30の変化の割合はピエゾ抵抗20の変化の割合に対して小さくでき、かつ、入力抵抗30に対しても変化の割合を小さくできる。   Further, in the strain detection device 1, the rate of change in the resistance value of the input resistor 30 when a predetermined load is input to the deformable body 10 is the same as that of the piezoresistor 20 when the predetermined load is input to the deformable body 10. What is smaller than the rate of change of the resistance value may be used. For example, the rate of change in the resistance value of the input resistor 30 when a predetermined load is input is sufficiently smaller than the rate of change in the resistance value of the piezoresistor 20, and preferably the rate of change in the resistance value of the input resistor 30. However, it is good that it is 1/100 or less of the rate of change of the resistance value of the piezoresistor 20. By doing so, the rate of change of the input resistance 30 with respect to the input of the load can be reduced relative to the rate of change of the piezoresistor 20, and the rate of change with respect to the input resistor 30 can also be reduced.

上記構成の歪検知装置1によれば、演算増幅器40の出力において、荷重が入力された際の入力抵抗30の抵抗値の変化による非直線性を抑制することができる。入力抵抗30の抵抗値の変化量が、入力抵抗30の抵抗値に対して小さい程、ピエゾ抵抗20の変化に対する直線性の高い出力が得られる。   According to the strain detection apparatus 1 having the above configuration, non-linearity due to a change in the resistance value of the input resistor 30 when a load is input can be suppressed in the output of the operational amplifier 40. As the change amount of the resistance value of the input resistor 30 is smaller than the resistance value of the input resistor 30, an output with higher linearity with respect to the change of the piezoresistor 20 is obtained.

また、歪検知装置1は、入力抵抗30は、変形体10に荷重が入力された時に生じる歪み量が、ピエゾ抵抗20が設けられた部位に生じる歪み量よりも小さい部位に、ピエゾ抵抗20と同一の接着構造で設けられると良い。望ましくは、入力抵抗30は、上記ピエゾ抵抗20が接着される部位の歪み量に対して1/100以下の歪み量である部位に、ピエゾ抵抗20と同一の接着構造で設けられると好適である。具体的には、入力抵抗30は、ピエゾ抵抗20が設けられる図2の引張部位Aや圧縮部位Bよりも、生じる歪み量が小さい部位、例えば部位Cに設けられる。「同一の接着構造」とは、ピエゾ抵抗20と入力抵抗30とが異なるチップで構成される場合には、ピエゾ抵抗20を変形体10に接着する時と、入力抵抗30を変形体10に接着する時とで、同じ接着剤、同じ単位面積当たりの使用量、同じ作業環境で接着することをいう。   Further, in the strain detection device 1, the input resistor 30 is connected to the piezoresistor 20 at a portion where the amount of strain generated when a load is input to the deformable body 10 is smaller than the amount of strain generated at the portion where the piezoresistor 20 is provided. It is good to provide with the same adhesion structure. Desirably, the input resistor 30 is preferably provided in a portion having a distortion amount of 1/100 or less with respect to the distortion amount of the portion to which the piezoresistor 20 is bonded, with the same adhesive structure as the piezoresistor 20. . Specifically, the input resistor 30 is provided at a portion where the amount of strain generated is smaller than the tensile portion A or the compressed portion B of FIG. “Same bonding structure” means that when the piezoresistor 20 and the input resistor 30 are formed of different chips, the piezoresistor 20 is bonded to the deformable body 10 and the input resistor 30 is bonded to the deformable body 10. It means that the same adhesive, the same amount of use per unit area, and the same work environment are used.

上記構成の歪検知装置1によれば、例えば、入力抵抗30の歪み量を、ピエゾ抵抗20の歪み量に比べて小さくすることができ、荷重の入力に対する入力抵抗30の変化を抑制できる。また、接着構造が同じなので、接着時の接着剤の硬化時の収縮、接着剤及び変形体10に対する熱膨張率差による歪み量を入力抵抗30とピエゾ抵抗20とで近づけることが可能となり、荷重印加が無い時の上記ピエゾ抵抗20と上記入力抵抗30の温度に対する抵抗値の比の変動が抑制される。このため、荷重印加が無い時のピエゾ抵抗20と入力抵抗30とを組み合わせた歪検出結果が温度によって変動することが有効に防止され、正確な歪検知が可能となる。   According to the strain detection device 1 having the above configuration, for example, the strain amount of the input resistor 30 can be made smaller than the strain amount of the piezoresistor 20, and the change of the input resistor 30 with respect to the input of the load can be suppressed. Further, since the adhesive structure is the same, it is possible to make the input resistor 30 and the piezoresistor 20 approach the amount of distortion caused by the shrinkage of the adhesive during curing and the difference in thermal expansion coefficient with respect to the adhesive and the deformable body 10 between the input resistor 30 and the piezoresistor 20. Variation in the ratio of the resistance value to the temperature of the piezoresistor 20 and the input resistor 30 when no voltage is applied is suppressed. For this reason, it is effectively prevented that the strain detection result obtained by combining the piezoresistor 20 and the input resistor 30 when no load is applied varies depending on the temperature, and accurate strain detection is possible.

また、歪検知装置1は、入力抵抗30とピエゾ抵抗20とは、同じ材料よりなる半導体で同一導電性であり、入力抵抗30とピエゾ抵抗20とのキャリア濃度の比が0.5以上2.0以下であると良い。   In the strain sensing device 1, the input resistor 30 and the piezoresistor 20 are semiconductors made of the same material and have the same conductivity, and the carrier concentration ratio between the input resistor 30 and the piezoresistor 20 is 0.5 or more. It is good if it is 0 or less.

上記構成の歪検知装置1によれば、入力抵抗30とピエゾ抵抗20との温度差が小さくなるように入力抵抗30とピエゾ抵抗20とを配置することにより、歪検知回路50において無歪時の温度変化による抵抗値の変化がキャンセルされ、温度特性の良い検出が可能となる。   According to the strain detection device 1 having the above-described configuration, the strain detection circuit 50 is configured so as to have no strain by disposing the input resistance 30 and the piezoresistor 20 so that the temperature difference between the input resistance 30 and the piezoresistor 20 is reduced. The change in resistance value due to the temperature change is canceled, and detection with good temperature characteristics becomes possible.

また、歪検知装置1は、ピエゾ抵抗20と入力抵抗30とが、同じ工程で同時に製造され、単一の半導体チップとして形成されていると良い。   Further, in the strain sensing device 1, the piezoresistor 20 and the input resistor 30 are preferably manufactured simultaneously in the same process and formed as a single semiconductor chip.

上記構成の歪検知装置1によれば、ピエゾ抵抗20と入力抵抗30との抵抗値及びピエゾ抵抗係数の温度特性をより近づけることが可能となり、荷重印加が無い時のピエゾ抵抗20と入力抵抗30の抵抗値の比のばらつき及び温度による変動を低減できる。又、接着時の接着剤の硬化時の収縮、接着剤及び変形体10に対する熱膨張率差による歪み量を入力抵抗30とピエゾ抵抗20とで近づけることができ、印加荷重が無い時の上記ピエゾ抵抗20及び上記入力抵抗30に印加される歪み量の温度による変動が等価とでき、上記両抵抗の抵抗値及びピエゾ抵抗効果による抵抗変動の割合を近いものにできる。無荷重時の上記両抵抗の抵抗値の比の温度による変動は抑制され出力の温度による変動が抑制される。   According to the strain detection device 1 having the above-described configuration, it is possible to make the resistance value of the piezoresistor 20 and the input resistor 30 and the temperature characteristics of the piezoresistive coefficient closer, and the piezoresistor 20 and the input resistor 30 when no load is applied. Variations in the resistance value ratio and fluctuations due to temperature can be reduced. Further, the shrinkage at the time of curing of the adhesive at the time of bonding, and the strain amount due to the difference in thermal expansion coefficient with respect to the adhesive and the deformable body 10 can be made closer to the input resistor 30 and the piezoresistor 20, and the piezo when there is no applied load. Variations in temperature of the strain applied to the resistor 20 and the input resistor 30 can be equivalent, and the resistance values of both resistors and the ratio of resistance variation due to the piezoresistance effect can be made close. Variations in the ratio of the resistance values of the two resistors when no load is applied due to temperature are suppressed, and variations due to output temperature are suppressed.

ここで、特開2006−266683号公報には、チップの厚さをパラメータとした、チップ表面の位置とチップ表面の歪との関係が開示されている。この関係が図4に示され、チップの端部には歪が伝達し難いことがわかる。このことから、チップの端部に入力抵抗30を配置し、チップの端部から離れた位置にピエゾ抵抗20を配置することにより、ピエゾ抵抗20の抵抗値の変化量に対して入力抵抗30の抵抗値の変化量を十分小さくすることができる。また、入力抵抗30を回路基板上に配置し、基板が変形しないように保持することにより、入力抵抗30の抵抗値の影響を抑制できる。更には、低ヤング率(望ましくは、1GPa以下)で厚い接着層を介して変形体10に設けることにより、入力抵抗30への伝達を抑制できる。   Here, Japanese Patent Application Laid-Open No. 2006-266683 discloses a relationship between a chip surface position and a chip surface strain using a chip thickness as a parameter. This relationship is shown in FIG. 4 and it can be seen that strain is hardly transmitted to the end of the chip. From this, the input resistor 30 is arranged at the end of the chip, and the piezoresistor 20 is arranged at a position away from the end of the chip, so that the input resistance 30 is changed with respect to the change amount of the resistance value of the piezoresistor 20. The amount of change in resistance value can be made sufficiently small. Moreover, the influence of the resistance value of the input resistance 30 can be suppressed by arranging the input resistance 30 on the circuit board and holding the board so that the board is not deformed. Furthermore, by providing the deformable body 10 with a low Young's modulus (preferably 1 GPa or less) through a thick adhesive layer, transmission to the input resistor 30 can be suppressed.

なお、入力抵抗30は、ピエゾ抵抗20が形成された半導体チップ上で引張/圧縮歪が印加される方向に沿ったチップの端部に配置しても良く、あるいは、回路基板上に配置しても良い。更には、低ヤング率で厚い接着層を介して変形体10に接着しても良い。   The input resistor 30 may be disposed at the end of the chip along the direction in which the tensile / compressive strain is applied on the semiconductor chip on which the piezoresistor 20 is formed, or may be disposed on the circuit board. Also good. Furthermore, you may adhere | attach on the deformation | transformation body 10 through a thick adhesive layer with a low Young's modulus.

〔その他の実施形態〕
上記実施形態では、歪検知装置1が歪検知回路50を1つ備えた例を挙げて説明したが歪検知装置1が、ピエゾ抵抗20と入力抵抗30と演算増幅器40とを変形体10の歪み量が異なる位置に複数備え、複数の演算増幅器40の出力の差分に基づいて入力される荷重を演算する構成とすることも可能である。
[Other Embodiments]
In the above embodiment, the example in which the strain detection device 1 includes one strain detection circuit 50 has been described. However, the strain detection device 1 includes the piezoresistor 20, the input resistor 30, and the operational amplifier 40. It is also possible to have a configuration in which a plurality of positions are provided at different positions and the input load is calculated based on the difference between the outputs of the plurality of operational amplifiers 40.

図5には、ピエゾ抵抗20と入力抵抗30と演算増幅器40とからなる歪検知回路50が2つ設けられている例が示される。一方の演算増幅器40には、入力抵抗30として入力抵抗31が設けられ、帰還抵抗としてピエゾ抵抗21が設けられる。他方の演算増幅器40には、入力抵抗30として入力抵抗32が設けられ、帰還抵抗としてピエゾ抵抗22が設けられる。双方の演算増幅器40の非反転入力端子41には定電圧源61が接続され、双方の演算増幅器40の反転入力端子42には、夫々入力抵抗31及び入力抵抗32を介して定電圧源62が接続される。このように接続された双方の演算増幅器40の出力を差動増幅器70に入力し、その差分を検出信号とすることが可能である。このように、2つの演算増幅器40の出力の差分を検出信号とすることで、2つの演算増幅器40の出力に同等に印加されるノイズをキャンセルすることができ、より精度の高い検出が可能となる。   FIG. 5 shows an example in which two strain detection circuits 50 each including a piezoresistor 20, an input resistor 30, and an operational amplifier 40 are provided. One operational amplifier 40 is provided with an input resistor 31 as an input resistor 30 and a piezoresistor 21 as a feedback resistor. The other operational amplifier 40 is provided with an input resistor 32 as an input resistor 30 and a piezoresistor 22 as a feedback resistor. A constant voltage source 61 is connected to the non-inverting input terminal 41 of both operational amplifiers 40, and a constant voltage source 62 is connected to the inverting input terminal 42 of both operational amplifiers 40 via an input resistor 31 and an input resistor 32, respectively. Connected. It is possible to input the outputs of both operational amplifiers 40 connected in this way to the differential amplifier 70 and use the difference as a detection signal. In this way, by using the difference between the outputs of the two operational amplifiers 40 as a detection signal, it is possible to cancel the noise equally applied to the outputs of the two operational amplifiers 40 and to detect with higher accuracy. Become.

なお、差動増幅器70は一例であり、当該差動増幅器70に代えて、2つの演算増幅器40の出力の差分を演算するデバイスにとすることが可能である。
なお、この場合、入力抵抗31及び入力抵抗32を図2における部位Cに設け、ピエゾ抵抗21及びピエゾ抵抗22を、夫々図2における引張部位A及び圧縮部位Bに設けると良い。この場合にも、入力抵抗31、入力抵抗32、ピエゾ抵抗21、及びピエゾ抵抗22を同一の接着構造で変形体10に設けると良い。
Note that the differential amplifier 70 is an example, and instead of the differential amplifier 70, a device that calculates the difference between the outputs of the two operational amplifiers 40 can be used.
In this case, the input resistor 31 and the input resistor 32 are preferably provided in the portion C in FIG. 2, and the piezoresistor 21 and the piezoresistor 22 are preferably provided in the tension portion A and the compression portion B in FIG. Also in this case, the input resistor 31, the input resistor 32, the piezoresistor 21, and the piezoresistor 22 are preferably provided on the deformable body 10 with the same adhesive structure.

本発明は、変形体に生じる歪を検知する歪検知装置に用いることが可能である。   The present invention can be used in a strain detection device that detects strain generated in a deformable body.

1:歪検知装置
10:変形体
20:ピエゾ抵抗
30:入力抵抗
40:増幅器
41:非反転入力端子
42:反転入力端子
43:出力端子
1: Strain detector 10: Deformation body 20: Piezoresistor 30: Input resistance 40: Amplifier 41: Non-inverting input terminal 42: Inverting input terminal 43: Output terminal

Claims (6)

入力される荷重に応じて歪む変形体と、
前記変形体上に設けられ、歪に応じて抵抗値を変化させるピエゾ抵抗と、
所定の抵抗値を有する入力抵抗と、
所定の定電位からなる第1電位が接続される非反転入力端子と、前記ピエゾ抵抗の一方の端子と前記入力抵抗の一方の端子とが接続されて前記入力抵抗を介して前記第1電位とは異なる所定の定電位からなる第2電位が接続される反転入力端子と、前記ピエゾ抵抗の他方の端子が接続される出力端子とを有する演算増幅器と、
を備えた歪検知装置。
A deformable body that distorts according to the input load;
Piezoresistors that are provided on the deformable body and change a resistance value according to strain;
An input resistance having a predetermined resistance value;
A non-inverting input terminal to which a first potential consisting of a predetermined constant potential is connected, one terminal of the piezoresistor and one terminal of the input resistor are connected to the first potential via the input resistor. An operational amplifier having an inverting input terminal to which a second potential consisting of different predetermined constant potentials is connected, and an output terminal to which the other terminal of the piezoresistor is connected;
A strain detection device comprising:
前記入力抵抗と前記ピエゾ抵抗とは、同じ材料よりなる半導体で同じ導電性であり、前記入力抵抗と前記ピエゾ抵抗とのキャリア濃度の比が0.5以上2.0以下である請求項1に記載の歪検知装置。   The input resistance and the piezoresistor are semiconductors made of the same material and have the same conductivity, and a ratio of carrier concentration between the input resistance and the piezoresistor is 0.5 or more and 2.0 or less. The strain detection apparatus described. 前記変形体に所定の荷重が入力された時の前記入力抵抗における抵抗値の変化の割合は、前記変形体に前記所定の荷重が入力された時の前記ピエゾ抵抗における抵抗値の変化の割合よりも小さい請求項1又は2に記載の歪検知装置。   The rate of change in resistance value of the input resistance when a predetermined load is input to the deformable body is greater than the rate of change of resistance value in the piezoresistor when the predetermined load is input to the deformable body. The strain detection device according to claim 1, wherein the strain detection device is smaller. 前記入力抵抗は、前記変形体に荷重が入力された時に生じる歪み量が、前記ピエゾ抵抗が設けられた部位に生じる歪み量よりも小さい部位に、前記ピエゾ抵抗と同一の接着構造で設けられる請求項1から3のいずれか一項に記載の歪検知装置。   The input resistance is provided at a site where an amount of strain generated when a load is input to the deformable body is smaller than an amount of strain generated at a site where the piezoresistor is provided with the same adhesive structure as the piezoresistor. Item 4. The strain detection device according to any one of Items 1 to 3. 前記ピエゾ抵抗と前記入力抵抗とが、同じ工程で同時に製造され、単一の半導体チップとして形成されている請求項1から4のいずれか一項に記載の歪検知装置。   The strain detection apparatus according to any one of claims 1 to 4, wherein the piezoresistor and the input resistor are manufactured simultaneously in the same process and formed as a single semiconductor chip. 前記ピエゾ抵抗と前記入力抵抗と前記演算増幅器とが複数備えられ、前記ピエゾ抵抗は前記変形体の歪み量が異なる位置に複数備えられ、前記複数の演算増幅器の出力の差分に基づいて前記入力される荷重を演算する請求項1から5のいずれか一項に記載の歪検知装置。   A plurality of the piezoresistors, the input resistors, and the operational amplifiers are provided, and a plurality of the piezoresistors are provided at positions where the distortion amount of the deformable body is different, and the input is performed based on a difference between outputs of the plurality of operational amplifiers. The strain detection apparatus according to any one of claims 1 to 5, wherein a load is calculated.
JP2015126642A 2015-06-24 2015-06-24 Distortion detection device Pending JP2017009490A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015126642A JP2017009490A (en) 2015-06-24 2015-06-24 Distortion detection device
PCT/JP2016/068231 WO2016208531A1 (en) 2015-06-24 2016-06-20 Distortion sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015126642A JP2017009490A (en) 2015-06-24 2015-06-24 Distortion detection device

Publications (1)

Publication Number Publication Date
JP2017009490A true JP2017009490A (en) 2017-01-12

Family

ID=57585005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015126642A Pending JP2017009490A (en) 2015-06-24 2015-06-24 Distortion detection device

Country Status (2)

Country Link
JP (1) JP2017009490A (en)
WO (1) WO2016208531A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246619A (en) * 1985-04-24 1986-11-01 Yokogawa Electric Corp Resistance-type conversion device
JPH0972805A (en) * 1995-09-06 1997-03-18 Hitachi Ltd Semiconductor sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246619A (en) * 1985-04-24 1986-11-01 Yokogawa Electric Corp Resistance-type conversion device
JPH0972805A (en) * 1995-09-06 1997-03-18 Hitachi Ltd Semiconductor sensor

Also Published As

Publication number Publication date
WO2016208531A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
JPH0351733A (en) Amplifying and compensating circuit for semiconductor pressure sensor
EP2871488A1 (en) Hall electromotive force correction device and hall electromotive force correction method
CN110932690B (en) Amplifier with common mode detection
JPH08510549A (en) Strain gauge sensor with integrated temperature signal output
CN106441695B (en) Semiconductor physical quantity sensor device
JPWO2014203525A1 (en) Amplifier circuit and amplifier circuit IC chip
JP2002116105A (en) Physical quantity detecting device
US10001424B2 (en) Physical quantity detector
US7714591B2 (en) Apparatus and methods for linearizing piezoresistive wheatstone bridges
JPH07294283A (en) Method and apparatus for compensation of fluctuation due to temperature in input signal to gain circuit
JP4320992B2 (en) Sensor circuit
WO2016208531A1 (en) Distortion sensing device
US8893554B2 (en) System and method for passively compensating pressure sensors
JP6706990B2 (en) apparatus
US10718795B2 (en) Detecting device
US6750665B2 (en) Semiconductor pressure detecting device
JPS6255629B2 (en)
JP2001165797A (en) Semiconductor pressure sensor device
JPH0368830A (en) Temperature compensation circuit of semiconductor pressure sensor
RU2165602C2 (en) Semiconductor pressure transducer
JP2934538B2 (en) Transducer circuit and manufacturing method thereof
JP2001255215A (en) Method for compensating nonlinearity of wheatstone bridge
JPH0419494B2 (en)
JPH0851328A (en) Small signal amplifier circuit
JPS6057016B2 (en) Pressure/differential pressure transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210