JPS61246618A - Resistance-type conversion device - Google Patents

Resistance-type conversion device

Info

Publication number
JPS61246618A
JPS61246618A JP8833085A JP8833085A JPS61246618A JP S61246618 A JPS61246618 A JP S61246618A JP 8833085 A JP8833085 A JP 8833085A JP 8833085 A JP8833085 A JP 8833085A JP S61246618 A JPS61246618 A JP S61246618A
Authority
JP
Japan
Prior art keywords
circuit
output
resistance value
pair
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8833085A
Other languages
Japanese (ja)
Inventor
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8833085A priority Critical patent/JPS61246618A/en
Publication of JPS61246618A publication Critical patent/JPS61246618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enable the highly accurate detection of a physical quantity to be measured, by providing a pair of gage resistances whose resistance values change differentially according to the physical quantity to be measured and a compensation signal generating means. CONSTITUTION:Resistance value detecting circuits 21 and 22 detect resistance values of paired gage resistances 15 and 16 and deliver outputs Ea and Eb respectively. A difference detecting circuit 27 receiving said outputs Ea and Eb operates a difference voltage Ef (Ea-Eb) and delivers same. Meanwhile, a compensation signal generating circuit 23 forms and delivers a compensation signal Ec based on an output Ed of an error amplifier 24. An output circuit 28 delivers a signal based on a difference between the output of the difference detecting circuit 27 delivered when the compensation signal Ec is ON, and the output of the circuit 27 delivered when the signal Ec is OFF. An effect produced by fluctuations of ambient temperature is thereby compensated effectively, and thus a physical quantity to be measured can be detected with high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、圧力、差圧等の被測定物理量に応じて抵抗値
が変化するゲージ抵抗を用いた抵抗式変換装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a resistance conversion device using a gauge resistor whose resistance value changes depending on a physical quantity to be measured such as pressure or differential pressure.

〈従来の技術〉 一般に抵抗式変換装置においては、シリコン等の単結晶
半導体からなる受圧ダイヤフラム上に、高濃度の不純物
(ポロン)を拡散してゲージ抵抗を形成し、受圧ダイア
フラムの両面にかかる圧力差に基づく応力をゲージ抵抗
に作用させ、ピエゾ抵抗効果によるゲージ抵抗の抵抗値
変化を圧力差すなわち被測定物理量に対応させている。
<Conventional technology> Generally, in a resistive converter, a high concentration impurity (poron) is diffused onto a pressure receiving diaphragm made of a single crystal semiconductor such as silicon to form a gauge resistance, and the pressure applied to both sides of the pressure receiving diaphragm is reduced. A stress based on the difference is applied to the gauge resistor, and the change in the resistance value of the gauge resistor due to the piezoresistance effect is made to correspond to the pressure difference, that is, the physical quantity to be measured.

そして、受圧ダイヤフラム上に2個もしくは4個のゲー
ジ抵抗を設け、ハーフブリッジあるいはフルブリッジを
構成し、被測定物理量を表わす信号を得ている。
Then, two or four gauge resistors are provided on the pressure-receiving diaphragm to form a half bridge or full bridge, and a signal representing the physical quantity to be measured is obtained.

〈発明が解決しようとする問題点〉 ところで、この種の抵抗式変換装置においては、ゲージ
抵抗の温度依存性が大きいため、周囲温度の変化による
影響を受け、出力が変動する欠点がある。
<Problems to be Solved by the Invention> By the way, in this type of resistance converter, the gauge resistance has a large temperature dependence, so there is a drawback that the output fluctuates due to the influence of changes in ambient temperature.

よって、一般には、サーミスタ、ポジスタ、トランジス
タ等の感温素子を用い、濃度変化に応じてブリッジの電
源電圧を制御して、出力変動の補償を行っている。この
方法で精度よく補償を行うには、ゲージ抵抗の温度特性
と補償用感温素子の温度特性とを一致させる必要がある
が、しかしながらこれらを一致させることは容易ではな
く、高精度な補償は困難であった。
Therefore, in general, a temperature sensing element such as a thermistor, a posistor, or a transistor is used to control the power supply voltage of the bridge according to the concentration change to compensate for the output fluctuation. In order to perform accurate compensation using this method, it is necessary to match the temperature characteristics of the gauge resistance and the temperature characteristics of the compensation temperature sensing element. However, it is not easy to match these, and highly accurate compensation is not possible. It was difficult.

本発明は、周囲温度の変化による影響を有効に補償、し
、高精度に被測定物理量を検出できる抵抗式変換装置を
実現するにある。
The present invention aims to realize a resistive converter that can effectively compensate for the effects of changes in ambient temperature and can detect physical quantities to be measured with high accuracy.

く問題点を解決するための手段〉 本発明は、電圧供給回路の出力電圧が共通に加えられ、
被測定物理量に応じて抵抗値が差動的に変化する一対の
ゲージ抵抗の抵抗値をそれぞれ検出する一対の抵抗値検
出回路と、これら一対の抵抗値検出回路の出力の差すな
わち一対のゲージ抵抗の抵抗値の差に基ずく差信号を得
る差検出回路と、前記電圧供給回路の出力電圧に比例し
た電圧をオンオフして補償信号を発生する補償信号発生
回路と、一対の抵抗値検出回路の出力の和すなわち一対
のゲージ抵抗の抵抗値の和に基ずく信号から前記補償信
号を減算した値が一定になるように前記電圧供給回路を
制御する手段と、前記補償信号がオンのときの前記差検
出回路の出力と補償信号がオフのときの前記差検出回路
の出力との差に基づく出力信号を得る出力回路とを設け
たことを特徴とするものである。
Means for Solving Problems〉 The present invention provides a system in which the output voltages of the voltage supply circuits are commonly applied,
A pair of resistance value detection circuits that detect the resistance values of a pair of gauge resistors whose resistance values differentially change depending on the physical quantity to be measured, and a difference between the outputs of these pair of resistance value detection circuits, that is, a pair of gauge resistors. a difference detection circuit that obtains a difference signal based on the difference in resistance value of the voltage supply circuit; a compensation signal generation circuit that generates a compensation signal by turning on and off a voltage proportional to the output voltage of the voltage supply circuit; and a pair of resistance value detection circuits. means for controlling the voltage supply circuit so that a value obtained by subtracting the compensation signal from the sum of the outputs, that is, the sum of the resistance values of a pair of gauge resistors becomes constant; The present invention is characterized in that it includes an output circuit that obtains an output signal based on the difference between the output of the difference detection circuit and the output of the difference detection circuit when the compensation signal is off.

く作用〉 本発明は、一対の抵抗値検出回路の出力の和すなわち一
対のゲージ抵抗の抵抗値の和に基ずく信号と、電圧供給
回路の出力電圧に比例した電圧をオンオフした補償信号
との差が一定になるように前記電圧供給回路をill 
IIIし、前記補償信号がオンのときの前記差検出回路
の出力と補償信号がオフのときの前記差検出回路の出力
との差に基づく出力信号を得ることにより、補償信号が
オンのときの値を選択することによって、ゲージ抵抗の
温度係数の項を有効に除去したものである。
Function> The present invention combines a signal based on the sum of the outputs of a pair of resistance value detection circuits, that is, the sum of the resistance values of a pair of gauge resistors, and a compensation signal that turns on and off a voltage proportional to the output voltage of a voltage supply circuit. Ill the voltage supply circuit so that the difference is constant.
III, and by obtaining an output signal based on the difference between the output of the difference detection circuit when the compensation signal is on and the output of the difference detection circuit when the compensation signal is off, By selecting the value, the temperature coefficient term of the gauge resistance is effectively removed.

〈実施例〉 第1図は、本発明の一実施例を示す接続図、第2図は本
発明装置に用いる検出器の一例を示す構成説明図で、(
イ)は断面図、(ロ)は斜視図である。両図において、
10は検出器、20は信号処理回路である。
<Example> FIG. 1 is a connection diagram showing an example of the present invention, and FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the device of the present invention.
A) is a cross-sectional view, and (b) is a perspective view. In both figures,
10 is a detector, and 20 is a signal processing circuit.

検出器10において、シリコン等の単結晶半導体基板1
1には、その中央部にエツチングで基準圧Po (例え
ば大気圧)と被測定圧PMとの差に感応する受圧ダイヤ
フラム12が形成されている。
In the detector 10, a single crystal semiconductor substrate 1 such as silicon
A pressure receiving diaphragm 12 is formed in the center of the pressure receiving diaphragm 1 by etching, which is sensitive to the difference between a reference pressure Po (for example, atmospheric pressure) and a measured pressure PM.

基板11はその周辺の固定部13が基台14に接合され
ている。受圧ダイヤフラム12には拡散技術によりゲー
ジ抵抗15.16が設けられている。
A fixed portion 13 around the substrate 11 is joined to a base 14 . The pressure-receiving diaphragm 12 is provided with gauge resistors 15, 16 using diffusion technology.

ゲージ抵抗15,16には被測定圧PMに応じた応力σ
1.σ2が作用し、ゲージ抵抗15の抵抗値RNIとゲ
ージ抵抗16の抵抗値RM2はそれぞれ次式で与えられ
る。
The gauge resistors 15 and 16 have a stress σ corresponding to the measured pressure PM.
1. σ2 acts, and the resistance value RNI of the gauge resistor 15 and the resistance value RM2 of the gauge resistor 16 are given by the following equations.

RMt=Rot(1+αti) ×(1+π1σ1 (1+β1t)) ・・・(1) RMz−Ro2 (1+α2j) ×(1+π2σ2 (1+β2t)) ・・・(2) ただし、 Ro+ 、RO2:I準温度toにおける抵抗値 α電、α2 :抵抗値ROl e RO2の温度係数 π1.π2二l!準温度toにおける ピエゾ抵抗係数 β1.β2 :ピエゾ抵抗係数π1゜ π2の温度係数 t    :m準温度1.からの濃 度変化 なお、ゲージ抵抗15.16は同じ基板11に形成され
、温度係数はそれぞれ α1−α2−α、β1−β2−
β とみなせる捏持性をそろえることができる。またπ
鵞σ1.π2σ2については、例えばシリコンの/(1
00)面で[1101方向にそいゲージ抵抗15.16
を互いに直角に配置すれば、π1σ+−I+−π2σ2
−πσ とすることができる。このようにするとゲージ
抵抗15゜16は、受圧ダイアフラムに作用する被測定
圧Piによって、一方の抵抗値が増加し、他方の抵抗値
が減少する。
RMt=Rot (1+αti) × (1+π1σ1 (1+β1t)) ... (1) RMz-Ro2 (1+α2j) × (1+π2σ2 (1+β2t)) ... (2) However, Ro+, RO2: Resistance at I quasi-temperature to Value α electric, α2: Temperature coefficient π1 of resistance value ROl e RO2. π22l! Piezoresistance coefficient β1 at quasi-temperature to. β2: Temperature coefficient of piezoresistance coefficient π1°π2 t: m quasi-temperature 1. Note that the gauge resistors 15 and 16 are formed on the same substrate 11, and their temperature coefficients are α1-α2-α and β1-β2-, respectively.
It is possible to match the kneading properties that can be considered as β. Also π
Goose σ1. For π2σ2, for example, /(1
00) plane in the [1101 direction] Gauge resistance 15.16
If they are placed at right angles to each other, π1σ+−I+−π2σ2
−πσ. In this way, the resistance value of one of the gauge resistors 15 and 16 increases and the resistance value of the other decreases depending on the measured pressure Pi acting on the pressure receiving diaphragm.

信号処理回路20において、21.22は各々抵抗値検
出回路、23は補償信号発生回路、24は誤差増幅器、
25は演算回路、26は基準電圧源、27は差検出回路
、28は出力回路、29は制御回路である。抵抗値検出
回路21は演算増幅1!21aを有し、21aの帰還回
路にゲージ抵抗15が、21aの入力回路に抵抗値がR
aの抵抗21bがそれぞれ接続されている。抵抗値検出
回路22は演Ijlll122aを有し、22aの帰還
口、路にゲージ抵抗16が、入力回路に抵抗値がRbの
抵抗22bがそれぞれ接続されている。そして抵抗値検
出回路21.22の入力には共通に誤差増幅器24の出
力Edが加えられている。よって、ゲージ抵抗15には
Ed/Raなる電流■1が、ゲージ抵抗16にはEd/
Rbなる電流I2が流れる。補償信号発生回路23は、
分圧抵抗器23aと、誤差増幅!24の出力Edを分圧
抵抗1123aで分圧して得た電圧をオンオフするスイ
ッチ23bと、バッフ?増幅器23cとからなりている
。スイッチ23bはliIJw回路29からの一定周期
のパルスP1で駆動される。演算回路25は、演算増幅
125aと抵抗値の等しい演算抵抗25b、25C,2
5d、25eからなり、抵抗値検出回路21.22の出
力Ea、l:bと補償信号発生回路23の出力ECとの
和を演算して、誤差増幅器24の入力端子(−)に加え
る。誤差増幅器24の入力端子(+)には基準電圧源2
6から一定電圧Erが与えられている。差検出回路27
は、演算増幅器27aと抵抗値の等しい演算抵抗27b
 、27c 、27d 、27eよりなり、抵抗値検出
回路21の出力Eaと抵抗値検出回路22の出力Ebの
差(Ea −Eb )を演算するものである。出力回路
28は、スイッチ28aとコンデンサ28bからなるサ
ンプルホールド回路28Cと、スイッチ28dとコンデ
ンサ28eとからなるサンプルホールド回路28fと、
サンプルホールド回路280.28fの出力の差を演算
する回路28gとよりなっている。サンプルホールド回
路28cはスイッチ28aが制御回路29からのサンプ
リングパルスP2により駆動され、補償電圧ECがオン
のときの差検出回路27の出力Ef、をホールドする。
In the signal processing circuit 20, 21 and 22 are resistance value detection circuits, 23 is a compensation signal generation circuit, 24 is an error amplifier,
25 is an arithmetic circuit, 26 is a reference voltage source, 27 is a difference detection circuit, 28 is an output circuit, and 29 is a control circuit. The resistance value detection circuit 21 has an operational amplifier 1!21a, a gauge resistor 15 is connected to the feedback circuit of 21a, and a resistance value R is connected to the input circuit of 21a.
The resistors 21b of a are connected to each other. The resistance value detection circuit 22 has a circuit 122a, a gauge resistor 16 is connected to the return port of 22a, and a resistor 22b having a resistance value Rb is connected to the input circuit. The output Ed of the error amplifier 24 is commonly applied to the inputs of the resistance value detection circuits 21 and 22. Therefore, the gauge resistor 15 receives a current of Ed/Ra, and the gauge resistor 16 receives a current of Ed/Ra.
A current I2 called Rb flows. The compensation signal generation circuit 23 is
Voltage dividing resistor 23a and error amplification! A switch 23b that turns on and off the voltage obtained by dividing the output Ed of 24 using a voltage dividing resistor 1123a, and a buffer ? It consists of an amplifier 23c. The switch 23b is driven by a constant cycle pulse P1 from the liIJw circuit 29. The arithmetic circuit 25 includes arithmetic resistors 25b, 25C, and 2 having the same resistance value as the operational amplifier 125a.
5d and 25e, the sum of the outputs Ea, l:b of the resistance value detection circuit 21.22 and the output EC of the compensation signal generation circuit 23 is calculated and added to the input terminal (-) of the error amplifier 24. The reference voltage source 2 is connected to the input terminal (+) of the error amplifier 24.
A constant voltage Er is applied from 6 to 6. Difference detection circuit 27
is an operational resistor 27b having the same resistance value as the operational amplifier 27a.
, 27c, 27d, and 27e, and calculates the difference (Ea - Eb) between the output Ea of the resistance value detection circuit 21 and the output Eb of the resistance value detection circuit 22. The output circuit 28 includes a sample hold circuit 28C made up of a switch 28a and a capacitor 28b, and a sample hold circuit 28f made up of a switch 28d and a capacitor 28e.
It consists of a circuit 28g that calculates the difference between the outputs of the sample and hold circuits 280 and 28f. The sample and hold circuit 28c holds the output Ef of the difference detection circuit 27 when the switch 28a is driven by the sampling pulse P2 from the control circuit 29 and the compensation voltage EC is on.

サンプルホールド回路28fはスイッチ28dが制御回
路29からのサンプリングパルスP3で駆動され、補償
電圧ECがオフのときの差検出回路27の出力Ef2を
ホールドする。
In the sample and hold circuit 28f, the switch 28d is driven by the sampling pulse P3 from the control circuit 29, and holds the output Ef2 of the difference detection circuit 27 when the compensation voltage EC is off.

このように構成した本発明装置において、抵抗値検出回
路21.22の出力Ea、Ebは、Ea =−Ed −
RM + /Ra   = (3)1:b −−Ed 
−RM2 /Rt)   ・・・(4)となり、演算回
路25の出力EOは、次式の如くなる。
In the device of the present invention configured in this way, the outputs Ea and Eb of the resistance value detection circuits 21 and 22 are as follows: Ea = -Ed -
RM + /Ra = (3) 1:b --Ed
-RM2/Rt) (4), and the output EO of the arithmetic circuit 25 is as shown in the following equation.

Ee −−(Ea +l:b +EC)・・・(5) また補償信号発生回路23の出力ECは、分圧抵抗器2
3bの分圧比を−とすると、スイッチ23bがオンのと
きはsEdとなり、オフのときは零となる。そして誤差
増幅器24は、演算回路25の出力Eeが基準電圧Er
と等しくなるように、抵抗値検出回路21.22に供給
する電圧Edすなわちゲージ抵抗15.16を流れる電
流1++T2を制御するので、スイッチ23bがオンの
ときの誤差増幅器24の出力Ed+およびスイッチ23
bがオフのときの誤差増幅器24の出力Ed2は、Ra
−Rbとするとそれぞれ次式で与えられる。
Ee −−(Ea +l:b +EC) (5) Moreover, the output EC of the compensation signal generation circuit 23 is connected to the voltage dividing resistor 2
If the voltage division ratio of 3b is -, it becomes sEd when the switch 23b is on, and zero when it is off. Then, the error amplifier 24 determines that the output Ee of the arithmetic circuit 25 is the reference voltage Er.
Since the voltage Ed supplied to the resistance value detection circuit 21.22, that is, the current 1++T2 flowing through the gauge resistor 15.16, is controlled so that the output Ed+ of the error amplifier 24 and the switch 23 when the switch 23b is on is equal to
The output Ed2 of the error amplifier 24 when b is off is Ra
-Rb, each is given by the following formula.

Ed  +  −Ra  Er/ (RM l  +R
M2 −I  Ra  )・・・(6) Ed 2−Ra l:r / (RM +  +RM 
2)・・・(ア) よって、スイッチ23bがオンのときに差検出回路27
の出力端に得られる電圧Ef+およびスイッチ23bが
オフのときに差検出回路27の出力端に得られる電圧E
faは、夫々次式のようになる。
Ed + -Ra Er/ (RM l +R
M2-IRa)...(6) Ed2-Ra l:r/(RM++RM
2)...(A) Therefore, when the switch 23b is on, the difference detection circuit 27
The voltage Ef+ obtained at the output terminal of , and the voltage E obtained at the output terminal of the difference detection circuit 27 when the switch 23b is off.
fa is as shown in the following equations.

Ef  +  −(RM  l  −RM2  )  
Ed  +  /Ra−Er  (RM I  −RM
 2  )/ (RM I+RM 2 −rs  Ra
  )・・・(8) Efz=(RM +−RMz)Ed 2/Ra=Er 
 (RM  +   RM2  )/ (RM  + 
 +RM 2  )・・・ (9) これらEf+とEfzは出力回路28に加えられ、夫々
サンプルホールド回路28c 、28fにホールドされ
る。出力口W128はサンプルホールド回路28c 、
28fにホールドされた電圧の差を演算して、次式に示
す出力電圧EOを出力する。
Ef + −(RM l −RM2 )
Ed + /Ra-Er (RM I-RM
2 )/(RM I+RM 2 -rs Ra
)...(8) Efz=(RM+-RMz)Ed2/Ra=Er
(RM + RM2) / (RM +
+RM 2 )... (9) These Ef+ and Efz are applied to the output circuit 28 and held in sample and hold circuits 28c and 28f, respectively. The output port W128 is a sample hold circuit 28c,
The difference between the voltages held at 28f is calculated and an output voltage EO expressed by the following equation is output.

1:o −Er l −Ef 2 =−I Ra  (RM l −RM 2 ) Er/
 (RM + +RM 2 )(RM嘗+RH2−s 
 Ra  >・・・(10)(10)式に(1)、(2
)式を代入し、Ro+=Ro2−Ro  とすると、 EO−ytats Ra  (1+βt)Er/k +
  (1+2Ro at /k t )・・・(11) ただし、k I=2R□ −ta Raとなるので、 β−α・2RO/に*      ・・・(12)を満
足するように、分圧抵抗1123cの分圧比−をamす
ると、出力電圧Eoは、 Eo −k πcyEr        ・ (13)
ただし、k −I Ra /k 1 となり、温度係数のα、βの項を有効に除去でき、温度
変動による影響を受番ブることなく、高精度に被測定圧
PMを表わす信号が得られる。
1: o −Er l −Ef 2 = −I Ra (RM l −RM 2 ) Er/
(RM + +RM2) (RM嘗+RH2-s
Ra >... (10) (10) formula (1), (2
) formula and set Ro+=Ro2-Ro, EO-ytats Ra (1+βt)Er/k +
(1+2Ro at /k t )...(11) However, since k I = 2R□ -ta Ra, the voltage dividing resistor is set so that β-α・2RO/ satisfies *...(12) When the voltage division ratio - of 1123c is am, the output voltage Eo is Eo -k πcyEr ・ (13)
However, k - I Ra /k 1 is obtained, and the α and β terms of the temperature coefficient can be effectively removed, and a signal representing the measured pressure PM can be obtained with high accuracy without being influenced by temperature fluctuations. .

そして、ゲージ抵抗の不純物濃度と温度係数α。and the impurity concentration and temperature coefficient α of the gauge resistance.

βとの関係は、不純物濃度が101−〜1020の範囲
では、α〉0 、βくOであるので、分圧抵抗器23の
分圧比nを選ぶことによって(12)式の関係を容易に
満足させることができる。
In the impurity concentration range of 101 to 1020, the relationship with β is α>0, β×O, so by selecting the dividing voltage ratio n of the voltage dividing resistor 23, the relationship in equation (12) can be easily established. can be satisfied.

なお、ゲージ抵抗15の初期抵抗値Rotとゲージ抵抗
16の初期抵抗WiRO2が等しくない場合には、抵抗
21bおよび抵抗22bのいずれか一方の抵抗値Ra、
Rbを調整して、 RaRo+−RbRoz−0”(14)を満足させれば
よい。
Note that if the initial resistance value Rot of the gauge resistor 15 and the initial resistance WiRO2 of the gauge resistor 16 are not equal, the resistance value Ra of either the resistor 21b or the resistor 22b,
Rb may be adjusted to satisfy RaRo+-RbRoz-0'' (14).

第3図は本発明装置の他の実施例を示す接続図である。FIG. 3 is a connection diagram showing another embodiment of the device of the present invention.

第3因の実施例において、第1図の実施例と異るところ
は、出力電圧EOを分圧抵抗器28nで分圧した後演痺
抵抗25「を介して演算増幅器25aの入力端子(−)
に加えるようにした点である。この場合分圧抵抗器28
nの分圧比をnとすると、誤差増幅器24の出力Ed 
+ 、 Ed2は次式で与えられる。
In the embodiment of the third factor, the difference from the embodiment of FIG. )
This is the point that I added to this. In this case the voltage dividing resistor 28
When the division ratio of n is n, the output Ed of the error amplifier 24 is
+ and Ed2 are given by the following equation.

Ed + = (Er−nEo )Ra/ (RM  
+  +RM2  1  Ra  )・・−(15) Ed 2− (Er −n EO) / (RM + +RM 2 ) ・・・(16) よって、出力電圧EOは、 EO−k π(7E r/ (l +nkπcy)・・
・(17) となり、応力σが大きくなる程出力電圧EOの増加率が
上がり、入出力関係を非直線にできる。−方被測定圧力
PMと応力σとの間の非直線性はPHが太き(なるとσ
の増加率が下る傾向にあるので、分圧抵抗28nの分圧
比nを調整することによって、被測定圧力PMと応力σ
との非直線性の影響を補償できる。この1mは、 PH
2−(PMl+PM3)/2なる関係にある被測定圧力
Pn1mPM2*PMzにそれぞれ対応した出力電圧E
O+ * EO21EO3が EO2−(Eo 1+E
Oコ)/2となるように分圧抵抗28nの分圧比nを決
定することによって容易に行なうことができる。
Ed + = (Er-nEo)Ra/ (RM
+ +RM2 1 Ra ) ... - (15) Ed 2- (Er -n EO) / (RM + +RM 2 ) ... (16) Therefore, the output voltage EO is EO-k π (7E r/ (l +nkπcy)・・
・(17) The larger the stress σ, the higher the rate of increase in the output voltage EO, making the input-output relationship non-linear. - The nonlinearity between the measured pressure PM PM and the stress σ is caused by the thicker PH (if σ
Since the increase rate of σ tends to decrease, by adjusting the partial pressure ratio n of the partial pressure resistor 28n, the measured pressure PM
The effects of nonlinearity can be compensated for. This 1m is PH
Output voltage E corresponding to the measured pressure Pn1mPM2*PMz, which has a relationship of 2-(PMl+PM3)/2
O+ * EO21EO3 becomes EO2-(Eo 1+E
This can be easily done by determining the voltage dividing ratio n of the voltage dividing resistor 28n so that it becomes 0/2.

なお、抵抗値検出回路21.22に供給する電圧Edを
制御する手段として誤差増幅824を用いる場合を例示
したが、第4図のように11分回路30を用いてもよい
。第4図において、積分回路30は演算増幅130aと
その帰還回路に接続されたコンデンサ30bおよび抵抗
値の等しい2箇の抵抗30c 、30dからなりている
。演算増幅器30aの入力端子(−)には、演算回路2
5の出力Eeが抵抗30dを介して加えられ、負の基準
電圧Erが抵抗30cを介して加えられている。
Although the error amplification 824 is used as a means for controlling the voltage Ed supplied to the resistance value detection circuits 21 and 22, the 11-minute circuit 30 may be used as shown in FIG. In FIG. 4, the integrating circuit 30 consists of an operational amplifier 130a, a capacitor 30b connected to its feedback circuit, and two resistors 30c and 30d of equal resistance. The input terminal (-) of the operational amplifier 30a is connected to the operational circuit 2.
5 is applied via a resistor 30d, and a negative reference voltage Er is applied via a resistor 30c.

この場合は、 Ea +Eb +n Eo −Ec −Er −0・・
・(18) になるようにEdが制御される。なを抵抗25dおよび
抵抗25fを可変抵抗とすれば、分圧抵抗器23a 、
28nを省略することもできる。
In this case, Ea +Eb +n Eo -Ec -Er -0...
- Ed is controlled so that (18). If the resistor 25d and the resistor 25f are variable resistors, the voltage dividing resistor 23a,
28n can also be omitted.

〈発明の効果〉 以上説明したように本発明においては、温度係数の項を
有効に除去できるので、温度変動による影響を受けるこ
となく、高精度に被測定物理量を測定できる抵抗式変換
装置が轡られる。
<Effects of the Invention> As explained above, in the present invention, the term of the temperature coefficient can be effectively removed, so that a resistive conversion device that can measure the physical quantity to be measured with high accuracy without being affected by temperature fluctuations can be used. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電気的接続図、第2図
は本発明に用いる検出器の一例を示す構成説明図、第3
図および第4図は本発明の他の実施例を示す電気的接続
図である。 10・・・・・・検出器 11・・・・・・単結晶半導体基板 12・・・・・・受圧ダイヤフラム部 15.16・・・・・・ゲージ抵抗 20・・・・・・信号処理回路 21.22・・・・・・抵抗値検出回路23・・・・・
・補償信号発生回路 24・・・・・・誤差増幅器 25・・・・・・演算回路 26・・・・・・基準電圧源 27・・・・・・差検出回路 28・・・・・・出力回路 29・・・・・・制御回路 30・・・・・・積分回路 yP、2図 (イ) (ロ)
FIG. 1 is an electrical connection diagram showing one embodiment of the present invention, FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the present invention, and FIG.
4 and 4 are electrical connection diagrams showing other embodiments of the present invention. 10...Detector 11...Single crystal semiconductor substrate 12...Pressure diaphragm section 15.16...Gauge resistor 20...Signal processing Circuit 21.22...Resistance value detection circuit 23...
-Compensation signal generation circuit 24...Error amplifier 25...Arithmetic circuit 26...Reference voltage source 27...Difference detection circuit 28... Output circuit 29...Control circuit 30...Integrator circuit yP, Figure 2 (A) (B)

Claims (2)

【特許請求の範囲】[Claims] (1)被測定物理量に応じて抵抗値が差動的に変化する
一対のゲージ抵抗と、これら一対のゲージ抵抗の抵抗値
をそれぞれ検出する一対の抵抗値検出回路と、前記一対
の抵抗値検出回路に出力電圧を加える電圧供給回路と、
この電圧供給回路の出力電圧に比例した電圧をオンオフ
して補償信号を発生する補償信号発生回路と、前記一対
の抵抗値検出回路の出力の差に基ずく信号を得る差検出
回路と、前記一対の抵抗値検出回路の出力の和に基ずく
信号から前記補償信号を減算した値が一定になるように
前記電圧供給回路を制御する手段と、前記補償信号がオ
ンのときの前記差検出回路の出力と前記補償信号がオフ
のときの前記差検出回路の出力との差に基ずく出力信号
を得る出力回路とを備えた抵抗式変換装置。
(1) A pair of gauge resistors whose resistance value differentially changes according to the physical quantity to be measured, a pair of resistance value detection circuits that respectively detect the resistance values of the pair of gauge resistors, and a pair of resistance value detection circuits that respectively detect the resistance values of the pair of gauge resistors. a voltage supply circuit that applies an output voltage to the circuit;
a compensation signal generation circuit that generates a compensation signal by turning on and off a voltage proportional to the output voltage of the voltage supply circuit; a difference detection circuit that obtains a signal based on the difference between the outputs of the pair of resistance value detection circuits; means for controlling the voltage supply circuit so that a value obtained by subtracting the compensation signal from a signal based on the sum of the outputs of the resistance value detection circuit of the circuit is constant; and means for controlling the difference detection circuit when the compensation signal is on. A resistive conversion device comprising: an output circuit that obtains an output signal based on a difference between the output and the output of the difference detection circuit when the compensation signal is off.
(2)被測定物理量に応じて抵抗値が差動的に変化する
一対のゲージ抵抗と、これら一対のゲージ抵抗の抵抗値
をそれぞれ検出する一対の抵抗値検出回路と、前記一対
の抵抗値検出回路に出力電圧を加える電圧供給回路と、
この電圧供給回路の出力電圧に比例した電圧をオンオフ
して補償信号を発生する補償信号発生回路と、前記一対
の抵抗値検出回路の出力の差に基ずく信号を得る差検出
回路と、前記補償信号がオンのときの前記差検出回路の
出力と前記補償信号がオフのときの前記差検出回路の出
力との差に基ずく出力信号を得る出力回路と、前記一対
の抵抗値検出回路の出力の和に基ずく信号と前記出力信
号に比例した信号および前記補償信号を加減算した値が
一定になるように前記電圧供給回路を制御する手段とを
備えた抵抗式変換装置。
(2) A pair of gauge resistors whose resistance value differentially changes according to the physical quantity to be measured, a pair of resistance value detection circuits that respectively detect the resistance values of the pair of gauge resistors, and a pair of resistance value detection circuits that respectively detect the resistance values of the pair of gauge resistors. a voltage supply circuit that applies an output voltage to the circuit;
a compensation signal generation circuit that generates a compensation signal by turning on and off a voltage proportional to the output voltage of the voltage supply circuit; a difference detection circuit that obtains a signal based on the difference between the outputs of the pair of resistance value detection circuits; an output circuit that obtains an output signal based on the difference between the output of the difference detection circuit when the signal is on and the output of the difference detection circuit when the compensation signal is off; and the output of the pair of resistance value detection circuits. and means for controlling the voltage supply circuit so that a value obtained by adding and subtracting a signal based on the sum of , a signal proportional to the output signal, and the compensation signal is constant.
JP8833085A 1985-04-24 1985-04-24 Resistance-type conversion device Pending JPS61246618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833085A JPS61246618A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833085A JPS61246618A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Publications (1)

Publication Number Publication Date
JPS61246618A true JPS61246618A (en) 1986-11-01

Family

ID=13939865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833085A Pending JPS61246618A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Country Status (1)

Country Link
JP (1) JPS61246618A (en)

Similar Documents

Publication Publication Date Title
JPH0210269A (en) Current measuring circuit
JPS645360B2 (en)
WO2003029759A1 (en) Flow rate measuring instrument
JPH0972805A (en) Semiconductor sensor
JPH0625684B2 (en) Fluid flow rate detection sensor
JPS61246618A (en) Resistance-type conversion device
JPS6336447B2 (en)
JPS6255629B2 (en)
JPS61246619A (en) Resistance-type conversion device
JPS61246617A (en) Resistance-type conversion device
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JPS62237321A (en) Thermal type flowmeter
JPS6228627A (en) Temperature compensating circuit for three-wire resistance type temperature sensor
JPS61264212A (en) Resistance type transducer
JPH042170A (en) Temperature compensation method for span voltage of semiconductor diffused resistor type of pressure sensor
JPS60171416A (en) Resistance type converter
JPS5937711Y2 (en) temperature measurement circuit
JPH0542610B2 (en)
JPH09178687A (en) Gas detection apparatus
RU2024831C1 (en) Device for measuring pressure
JPH044980Y2 (en)
JPH01184456A (en) Air to fuel ratio detecting device
JPH03279866A (en) Wind speed sensor
JPS60216213A (en) Measuring device using resistance bridge
JP2001165738A (en) Quick response massflow meter electric circuit