JPS61246617A - Resistance-type conversion device - Google Patents

Resistance-type conversion device

Info

Publication number
JPS61246617A
JPS61246617A JP8832985A JP8832985A JPS61246617A JP S61246617 A JPS61246617 A JP S61246617A JP 8832985 A JP8832985 A JP 8832985A JP 8832985 A JP8832985 A JP 8832985A JP S61246617 A JPS61246617 A JP S61246617A
Authority
JP
Japan
Prior art keywords
measured
voltage
resistance
physical quantity
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8832985A
Other languages
Japanese (ja)
Inventor
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8832985A priority Critical patent/JPS61246617A/en
Publication of JPS61246617A publication Critical patent/JPS61246617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the highly accurate detection of a physical quantity to be measured, by providing a pair of gage resistances whose resistance values change differentially according to the physical quantity to be measured and a compensation voltage generating means so as to compensate an effect produced by fluctuations of ambient temperature. CONSTITUTION:A current IS is supplied from a current source 21 to a series circuit of paired gage resistances 15 and 16 through the intermediary of a current detecting resistance 22. Subsequently, the opposite-end voltages Ea and Eb of the gage resistances 15 and 16 and the opposite-end voltage Ec of a current detection resistance 22 are supplied to detection amplifiers 23a, 23b and 23c respectively. An arithmetic circuit 24 conducts the operation of the formula by using voltages E1 and E2 outputted from the amplifiers 23a and 23b and a compensation voltage E3 outputted from the amplifier 23c. An effect produced by fluctuations of ambient temperature is compensated effectively thereby, and thus a physical quantity to be measured can be detected with high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、圧力、差圧等の被測定物理量に応じて抵抗値
が変化するゲージ抵抗を用いた抵抗式変換装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a resistance conversion device using a gauge resistor whose resistance value changes depending on a physical quantity to be measured such as pressure or differential pressure.

〈従来の技術〉 一般に抵抗式変換装置においては、シリコン等の単結晶
半導体からなる受圧ダイヤフラム上に、高濃度の不純物
(ボロン)を拡散してゲージ抵抗を形成し、受圧ダイア
フラムの両面にかかる圧力差に基づく応力をゲージ抵抗
に作用させ、ピエゾ抵抗効果によるゲージ抵抗の抵抗値
変化を圧力差すなわち被測定物理量に対応させている。
<Conventional technology> Generally, in a resistance type converter, a high concentration impurity (boron) is diffused onto a pressure receiving diaphragm made of a single crystal semiconductor such as silicon to form a gauge resistance, and the pressure applied to both sides of the pressure receiving diaphragm is reduced. A stress based on the difference is applied to the gauge resistor, and the change in the resistance value of the gauge resistor due to the piezoresistance effect is made to correspond to the pressure difference, that is, the physical quantity to be measured.

そして、受圧ダイヤフラム上に2個もしくは4個のゲー
ジ抵抗を設け、ハーフブリッジあるいはフルブリッジを
構成し、被測定物理量を表わす信号を得ている。
Then, two or four gauge resistors are provided on the pressure-receiving diaphragm to form a half bridge or full bridge, and a signal representing the physical quantity to be measured is obtained.

〈発明が解決しようとする問題点〉 ところで、この種の抵抗式変換装置においては、ゲージ
抵抗の温度依存性が大きいため、周囲温度の変化による
影響を受け、出力が変動する欠点がある。
<Problems to be Solved by the Invention> By the way, in this type of resistance converter, the gauge resistance has a large temperature dependence, so there is a drawback that the output fluctuates due to the influence of changes in ambient temperature.

よって、一般には、サーミスタ、ポジスタ、トランジス
タ等の感温素子を用い、温度変化に応じてブリッジの電
源電圧をIIJi[lLで、出力変動の補償を行ってい
る。この方法で精度よく補償を行うには、ゲージ抵抗の
温度特性と補償用感温素子の温度特性とを一致させる必
要があるが、しかしながらこれらを一致させることは容
易ではなく、高精度な補償は困難であった。
Therefore, in general, a temperature sensing element such as a thermistor, a posistor, or a transistor is used to compensate for output fluctuations by adjusting the bridge power supply voltage IIJi[IL in response to temperature changes. In order to perform accurate compensation using this method, it is necessary to match the temperature characteristics of the gauge resistance and the temperature characteristics of the compensation temperature sensing element. However, it is not easy to match these, and highly accurate compensation is not possible. It was difficult.

本発明は、周囲濃度の変化による影響を有効に補償し、
高精度に被測定物理量を検出できる抵抗式変換装置を実
現するにある。
The present invention effectively compensates for the effects of changes in ambient concentration,
The object of the present invention is to realize a resistive conversion device that can detect physical quantities to be measured with high precision.

く問題点を解決するための手段〉 本発明は、被測定物理量に応じて抵抗値が差動的に変化
する一対のゲージ抵抗と、これら一対のゲージ抵抗の一
方の抵抗値に比例した測定電圧E1と他方の抵抗値に比
例した測定電圧E2を得る回路と、前記被測定物理量に
は無関係な補償電圧を得る回路と、前記測定電圧E+ 
、E2および補償電圧E3とにより、実質的に (EI  E2 (El  +E2  )(El  +E2 −Eコ )
なる演算を行ない、被測定物理量に応じた信号を得るこ
とを特徴としたものである。
Means for Solving the Problems> The present invention provides a pair of gauge resistors whose resistance value differentially changes depending on the physical quantity to be measured, and a measuring voltage proportional to the resistance value of one of the pair of gauge resistors. a circuit for obtaining a measurement voltage E2 proportional to E1 and the resistance value of the other; a circuit for obtaining a compensation voltage unrelated to the physical quantity to be measured; and a circuit for obtaining the measurement voltage E+
, E2 and the compensation voltage E3, substantially (EI E2 (El + E2 ) (El + E2 - E co )
This method is characterized by performing calculations to obtain a signal corresponding to the physical quantity to be measured.

く作用〉 本発明は、上記の演算を行なうことにより、補償電圧の
値を選択するだけで、周囲温度の影響を有効に除去でき
るようにしたものである。
Effects> The present invention makes it possible to effectively eliminate the influence of ambient temperature by simply selecting the value of the compensation voltage by performing the above calculation.

〈実施例〉 第1図は、本発明の一実施例を示す接続図、第2図は本
発明MINに用いる検出器の一例を示す構成説明図で、
(イ)はlFi面図、(ロ)は斜視図である。両図にお
いて、10は検出器、20は信号処理回路である。
<Example> FIG. 1 is a connection diagram showing an example of the present invention, and FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the MIN of the present invention.
(A) is an IFi plane view, and (B) is a perspective view. In both figures, 10 is a detector and 20 is a signal processing circuit.

検出110において、シリコン等の単結晶半導体基板1
1には、その中央部にエツチングで基準圧Po (例え
ば大気圧)と被測定圧PMとの差に感応する受圧ダイヤ
フラム12が形成されている。
In the detection 110, a single crystal semiconductor substrate 1 such as silicon
A pressure receiving diaphragm 12 is formed in the center of the pressure receiving diaphragm 1 by etching, which is sensitive to the difference between a reference pressure Po (for example, atmospheric pressure) and a measured pressure PM.

基板11はその周辺の固定部13が基台14に接合され
ている。受圧ダイヤフラム12には拡散技術やイオン注
入等によりゲージ抵抗15.16が設けられている。ゲ
ージ抵抗15.16には被測定圧PMに応じた応力σ1
.σ2が作用し、ゲージ抵抗15の抵抗値RMIとゲー
ジ抵抗16の抵抗値RM2はそれぞれ次式で与えられる
A fixed portion 13 around the substrate 11 is joined to a base 14 . Gauge resistors 15 and 16 are provided on the pressure receiving diaphragm 12 by diffusion technology, ion implantation, or the like. The gauge resistance 15.16 has a stress σ1 corresponding to the measured pressure PM.
.. σ2 acts, and the resistance value RMI of the gauge resistor 15 and the resistance value RM2 of the gauge resistor 16 are given by the following equations.

Rr++=Ro+(1+α+i) ×(1+π1σ1 (1+β1t)) ・・・(1) Rr+2=Ro2 (1+αai) ×(1+π2σ2 (1+β2t)) ・・・(2) ただし、 Ro I+ Ro 2 ”基準温度toEt3ける抵抗
値 α盲、α2 二抵抗11Ro1、Ro2の温度係数 π「、π2:基準温度tol、:おけるピエゾ抵抗係数 β寥、β2:ビエゾ抵抗係数π首。
Rr++=Ro+(1+α+i) × (1+π1σ1 (1+β1t)) ・・・(1) Rr+2=Ro2 (1+αai) ×(1+π2σ2 (1+β2t)) ・・・(2) However, Ro I+ Ro 2 ”Resistance at reference temperature to Et3 Value α blind, α2 Temperature coefficient π of two resistors 11 Ro1, Ro2, π2: Piezoresistance coefficient β at reference temperature tol, β2: Piezoresistance coefficient π.

π2の温度係数 t   : 基Ql’aW1 i oからの湿度変化 なお、ゲージ抵抗15.16は同じ基板11に形成され
、温度係数はそれぞれ α1−α2−α、β1−β2−
β とみなせる捏持性をそろえることができる@またπ
1σ1.π2σ2については、例えばシリコンの(10
0)面で[1101方向にそいゲージ抵抗 15.16
を互いに直角に配置すれば、π1σ嘗−−π2σ2−π
σとすることができる。このようにするとゲージ抵抗1
5゜16は受圧ダイアフラムに作用する被測定圧PMに
よって、一方の抵抗値が増加し、他方の抵抗値が減少す
る。
Temperature coefficient t of π2: Humidity change from group Ql'aW1 io Note that the gauge resistors 15 and 16 are formed on the same substrate 11, and the temperature coefficients are α1-α2-α and β1-β2-, respectively.
It is possible to align the retention properties that can be regarded as β @also π
1σ1. Regarding π2σ2, for example, silicon (10
0) in the [1101 direction] Gauge resistance 15.16
are placed at right angles to each other, then π1σ嘗−−π2σ2−π
It can be σ. In this way, gauge resistance 1
5°16, one resistance value increases and the other resistance value decreases due to the measured pressure PM acting on the pressure receiving diaphragm.

信号処理回路20において、21は電流源、22は抵抗
値がRCの電流検出用の抵抗、23a。
In the signal processing circuit 20, 21 is a current source, 22 is a current detection resistor with a resistance value of RC, and 23a.

23b 、23cは各々検出増幅器、24は演算回路、
25は基準電圧源である。ゲージ抵抗15゜16の直列
回路には2m検出用抵抗22を介して電流源21からの
電流isが供給されている。そしてゲージ抵抗15.1
6の両端電圧Ea、Ebおよび電流検出抵抗22の両端
電圧ECはそれぞれ検出増幅器23a 、23b 、2
3cを介して演算回路24の入力端に加えられている。
23b and 23c are each a detection amplifier, 24 is an arithmetic circuit,
25 is a reference voltage source. A current is from a current source 21 is supplied to a series circuit of gauge resistors 15° and 16 through a 2m detection resistor 22. and gauge resistance 15.1
6 and the voltage EC across the current detection resistor 22 are detected by the detection amplifiers 23a, 23b, 2, respectively.
3c to the input terminal of the arithmetic circuit 24.

また演算回路24の入力端には基準電圧源25がらの基
準電圧E「が加えられている。
Further, a reference voltage E' from a reference voltage source 25 is applied to the input terminal of the arithmetic circuit 24.

このように構成した本発明装置においては、電流源21
の出力電流をIS1S1検出器23a。
In the device of the present invention configured in this way, the current source 21
The output current of the IS1S1 detector 23a.

23b 、23cのゲインをそれぞれAI、A2゜A3
とすると、検出増幅123a 、23bの出力端に得ら
れる測定電圧E+ 、Eaおよび検出増幅21230の
出力端に得られる補償電圧E3は、それぞれ次式で与え
られる。
The gains of 23b and 23c are AI, A2゜A3, respectively.
Then, the measurement voltages E+ and Ea obtained at the output terminals of the detection amplifiers 123a and 23b and the compensation voltage E3 obtained at the output terminal of the detection amplifier 21230 are given by the following equations, respectively.

EI −At  Ea            ・・・
(3)Ea −A2 Eb          ・・・
(4)E3−As Ec            = 
(5)演算回路24は、測定電圧E+ 、Eaと補償電
圧E3および基準電圧lN23からの基準電圧Erとに
より、次式の演算を行ない出力電圧EOを出力する。
EI-At Ea...
(3) Ea -A2 Eb...
(4) E3-As Ec =
(5) The arithmetic circuit 24 performs the following calculation using the measured voltages E+, Ea, the compensation voltage E3, and the reference voltage Er from the reference voltage IN23, and outputs the output voltage EO.

Eo −Er  E3  (EI   Ea  )/ 
((El+E2  )  (El  +E2   E3
  ) )・・・(6) よって(6)式に(3)、(4)、(5)を代入し、A
I−A2とすると、Eoは、 Eo −Er A3  RC(RM  I  −RM 
2  )/ ((RM  +  +RM 2  )  
(AI  RM  目+A2  RM 2 −A3 R
C)  )・・・ (7) となる。(7)式に(1)、(2)式を代入し、ROt
 =RO2−ROとすると、 Eo−πσErAsRc(1+βt) /l+(1+αt2Δ+Ro/l+) ・・・(8) ただし、@I+−(2A+ ROA3RC)となるので
、 β−α2A+Ro/l+      ・・・(9)を満
足するように、−1の値すなわち電流検出用の抵抗22
の抵抗(lIRcまたは検出増幅器23CのゲインA3
を調整すると、出力電圧EOは、Eo =lπσE r
        ・< 10 )ただし、膳−A3RC
/II となり、温度係数のα、βの項を有効に除去でき、温度
変動による影響を受けることなく、高精度に被測定圧P
Mを表わす信号が得られる。
Eo −Er E3 (EI Ea )/
((El+E2) (El+E2 E3
) )...(6) Therefore, by substituting (3), (4), and (5) into equation (6), A
If I-A2, Eo is Eo -Er A3 RC(RM I -RM
2 )/((RM + +RM 2 )
(AI RM eyes + A2 RM 2 -A3 R
C) )... (7) becomes. Substituting equations (1) and (2) into equation (7), ROt
=RO2-RO, then Eo-πσErAsRc(1+βt)/l+(1+αt2Δ+Ro/l+)...(8) However, since @I+-(2A+ROA3RC), β-α2A+Ro/l+...(9) -1 value, that is, the current detection resistor 22 so as to satisfy
resistance (lIRc or the gain A3 of the sense amplifier 23C)
, the output voltage EO is Eo = lπσE r
・<10) However, Zen-A3RC
/II, the α and β terms of the temperature coefficient can be effectively removed, and the measured pressure P can be measured with high accuracy without being affected by temperature fluctuations.
A signal representing M is obtained.

そして、ゲージ抵抗の不純物濃度と温度係数α。and the impurity concentration and temperature coefficient α of the gauge resistance.

βの関係は、不純物濃度が101m〜10’°の範囲で
は、α>O、βく0であるので、(9)式の関係は電流
検出用の抵抗22の抵抗1m Rcまたは検出増幅!2
3 cのゲインA3を選ぶことによって満足させること
ができる。
The relationship of β is that in the range of impurity concentration from 101 m to 10'°, α>O and β 0, so the relationship of equation (9) is as follows: resistance 1 m of the current detection resistor 22 Rc or detection amplification! 2
It can be satisfied by choosing a gain A3 of 3c.

なお、ゲージ抵抗15の初期抵抗値Ro+とゲージ抵抗
16の初期抵抗値RO2が等しくない場合には、増幅1
W23a 、24bのいずれか一方のゲインAI、A2
をambで、 AI Ro I −A2 RO2=O”<11>を満足
させればよい。また、電流検出用の抵抗22の両端電圧
Ecは一定であるので、基準電圧E「を分圧した電圧を
補償用電圧E3として用いることができ、電流検出用の
抵抗22を省略することもできる。ただし、電流検出用
の抵抗22を用いる場合にはゲージ抵抗15.16を流
れる電流lsの変動の影響を受ない利点があり、電流I
!21の構成が簡単になるとともに、電流源の代りに、
電圧源を用いることもできる。
Note that if the initial resistance value Ro+ of the gauge resistor 15 and the initial resistance value RO2 of the gauge resistor 16 are not equal, the amplification 1
Gain AI of either W23a or 24b, A2
It is sufficient to satisfy AI Ro I - A2 RO2=O"<11> using amb. Also, since the voltage Ec across the current detection resistor 22 is constant, the voltage obtained by dividing the reference voltage E" can be used as the compensation voltage E3, and the current detection resistor 22 can be omitted.However, when the current detection resistor 22 is used, the influence of fluctuations in the current ls flowing through the gauge resistor 15.16 It has the advantage of not being affected by current I.
! 21 is simplified, and instead of a current source,
A voltage source can also be used.

第3図は本発明装置の他の実施例を示す接続図である。FIG. 3 is a connection diagram showing another embodiment of the device of the present invention.

第3図の実施例において、第1図の実施例と異るところ
は、減算回路26を設け、基準電圧Erから出力電圧E
oを分圧器27で分圧した電圧Erを減算し、(Er 
−Er )を演算回路24に加えるようにした点である
。この場合分圧器27の分圧比をnとすると、減算回路
26の出力E4は次式で与えられる。
The embodiment shown in FIG. 3 differs from the embodiment shown in FIG. 1 in that a subtraction circuit 26 is provided, and the output voltage E
The voltage Er obtained by dividing o by the voltage divider 27 is subtracted, and (Er
-Er) is added to the arithmetic circuit 24. In this case, if the voltage division ratio of the voltage divider 27 is n, the output E4 of the subtraction circuit 26 is given by the following equation.

Ea −Er  nEo       −(12)よっ
て、出力電圧Eoは、 Eo=−πσEr / (1−n ti π(7)・・
・(13) となり、応力σが大きくなる程出力電圧Eoの増加率が
上がり、入出力関係を非直線にできる。一方被測定圧P
Mと応力σとの間の非直線性はPr+が大きくなる程σ
の増加率が下る傾向にあるので、分圧抵抗器27の分圧
比nを調整することによって、被測定圧力PMと応力σ
との非直線性の影響を補償できる。この調整は、PM 
2− (PM ++pH3)/2なる関係にある被測定
圧力P M l *PMa、PNaにそれぞれ対応した
出力電圧E。
Ea −ErnEo −(12) Therefore, the output voltage Eo is Eo=−πσEr / (1−n ti π(7)...
・(13) The larger the stress σ, the higher the rate of increase in the output voltage Eo, making the input-output relationship non-linear. On the other hand, the pressure to be measured P
The nonlinearity between M and stress σ increases as Pr+ increases.
Since the increase rate of
The effects of nonlinearity can be compensated for. This adjustment is
Output voltage E corresponding to the measured pressure P M l *PMa and PNa having the relationship of 2-(PM ++ pH3)/2.

+ * EO2* EO3が Eo 2− (Eo +
 +E。
+ * EO2 * EO3 is Eo 2- (Eo +
+E.

3)/2となるように分圧抵抗器27の分圧比nを決定
することによって容易に行なうことができる。
This can be easily done by determining the voltage dividing ratio n of the voltage dividing resistor 27 so that it becomes 3)/2.

なお演算回路24としては、アナログの加減算器や掛算
器および割算器を組合せて構成してもよく、また検出用
増幅器23a 、23b 、23cの出力等をA/D変
換器でディジタル量に変換後マイクロコンピュータに与
え、マイクロコンピュータで(7)式に相当するディジ
タル演算を行なうように構成してもよい。
Note that the arithmetic circuit 24 may be configured by combining analog adders/subtracters, multipliers, and dividers, or the outputs of the detection amplifiers 23a, 23b, 23c, etc. may be converted into digital amounts by an A/D converter. It may also be configured so that the microcomputer performs a digital operation corresponding to equation (7).

〈発明の効果〉 以上説明したように本発明においては、温度係数の項を
有効に除去できるので、l1r1に変動による影響を受
けることなく、高精度に被測定物理量を測定できる抵抗
式変換装置が得られる。
<Effects of the Invention> As explained above, in the present invention, since the temperature coefficient term can be effectively removed, a resistive converter that can measure the physical quantity to be measured with high accuracy without being affected by fluctuations in l1r1 is provided. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す電気的接続図、第2図
は本発明に用いる検出器の一例を示す構成説明図、第3
図は本発明の他の実施例を示す電気的接続図である。 10・・・・・・検出器 11・・・・・・単結晶半導体基板 12・・・・・・受圧ダイヤフラム部 15.16−・・・・・ゲージ抵抗 20・・・・・・信号処理回路 21−−− ・−電*s! 22・・・・・・電流検出用の抵抗 23a 、23b 、23c −・・・・・検出増幅器
24・・・・・・演算回路 25・・・・・・基準電圧源 26・・・・・・減算回路 27・・・・・・分圧器 M2圓 (イ) (ロ)
FIG. 1 is an electrical connection diagram showing one embodiment of the present invention, FIG. 2 is a configuration explanatory diagram showing an example of a detector used in the present invention, and FIG.
The figure is an electrical connection diagram showing another embodiment of the present invention. 10...Detector 11...Single crystal semiconductor substrate 12...Pressure diaphragm section 15.16-...Gauge resistor 20...Signal processing Circuit 21---・-Electric*s! 22...Resistors 23a, 23b, 23c for current detection...Detection amplifier 24...Arithmetic circuit 25...Reference voltage source 26...・Subtraction circuit 27... Voltage divider M2 circle (a) (b)

Claims (1)

【特許請求の範囲】 被測定物理量に応じて抵抗値が差動的に変化する一対の
ゲージ抵抗と、一方のゲージ抵抗の抵抗値に比例した測
定電圧E_1と他方のゲージ抵抗の抵抗値に比例した測
定電圧E_2を得る回路と、前記被測定物理量には無関
係な補償電圧E_3を得る回路と、前記測定電圧E_1
、E_2および補償電圧E_3とにより、実質的に (E_1−E_2)/[(E_1+E_2)(E_1+
E_2−E_3)]なる演算を行ない、被測定物理量に
応じた信号を出力する演算回路とを備えた抵抗式変換装
置。
[Claims] A pair of gauge resistors whose resistance value differentially changes according to the physical quantity to be measured, and a measurement voltage E_1 proportional to the resistance value of one gauge resistor and proportional to the resistance value of the other gauge resistor. a circuit for obtaining the measured voltage E_2, a circuit for obtaining the compensation voltage E_3 unrelated to the physical quantity to be measured, and a circuit for obtaining the measured voltage E_1.
, E_2 and compensation voltage E_3, substantially (E_1-E_2)/[(E_1+E_2)(E_1+
E_2-E_3)] and an arithmetic circuit that outputs a signal according to a physical quantity to be measured.
JP8832985A 1985-04-24 1985-04-24 Resistance-type conversion device Pending JPS61246617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8832985A JPS61246617A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8832985A JPS61246617A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Publications (1)

Publication Number Publication Date
JPS61246617A true JPS61246617A (en) 1986-11-01

Family

ID=13939840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8832985A Pending JPS61246617A (en) 1985-04-24 1985-04-24 Resistance-type conversion device

Country Status (1)

Country Link
JP (1) JPS61246617A (en)

Similar Documents

Publication Publication Date Title
CA2145698C (en) Electronic circuit for a transducer
JPH0862055A (en) Method and equipment for thermometry
JPH02177566A (en) Semiconductor distortion detection device
JPS645360B2 (en)
EP0456811B1 (en) Multi-variable sensor calibration
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JPS61246617A (en) Resistance-type conversion device
RU2036445C1 (en) Pressure converter
JPS6255629B2 (en)
JP3273889B2 (en) Hall element drive circuit
JP3166565B2 (en) Infrared detection circuit
JP3153463B2 (en) Hall element drive circuit
JPS6336447B2 (en)
JPS61246618A (en) Resistance-type conversion device
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPS61246619A (en) Resistance-type conversion device
JP2948958B2 (en) Transducer circuit
JPH0542610B2 (en)
JPH0476047B2 (en)
JPH042170A (en) Temperature compensation method for span voltage of semiconductor diffused resistor type of pressure sensor
JPS5932730B2 (en) temperature measurement circuit
JPS60171416A (en) Resistance type converter
KR830001352B1 (en) Semiconductor pressure detector with zero temperature compensation
JPS6228627A (en) Temperature compensating circuit for three-wire resistance type temperature sensor