JPS61245822A - Removal of sulfur dioxide - Google Patents

Removal of sulfur dioxide

Info

Publication number
JPS61245822A
JPS61245822A JP60088300A JP8830085A JPS61245822A JP S61245822 A JPS61245822 A JP S61245822A JP 60088300 A JP60088300 A JP 60088300A JP 8830085 A JP8830085 A JP 8830085A JP S61245822 A JPS61245822 A JP S61245822A
Authority
JP
Japan
Prior art keywords
sulfur dioxide
dioxide gas
exhaust gas
bed
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60088300A
Other languages
Japanese (ja)
Inventor
Kazuo Sakanaya
和夫 魚屋
Teizou Oide
尾出 貞蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60088300A priority Critical patent/JPS61245822A/en
Publication of JPS61245822A publication Critical patent/JPS61245822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove SO2 with high efficiency by a perfect dry system without generating a problem of waste water treatment, by passing exhaust gas containing SO2 through an accumulation bed or packed bed comprising a mixture of calcium hypochlorite and slaked lime mixed at a specific ratio. CONSTITUTION:Powdery or molded Ca(OCl)2 and Ca(OH)2 are mixed in a Ca wt. ratio of 0.05-20 and diatomaceous earth is further added to the resulting mixture to form a dry absorbent bed 1 on a support 2 and SO2- containing exhaust gas G1 is passed through said bed. SO2 in the exhaust gas is oxidized by Ca(OCl)2 and simultaneously immobilized in a CaSO4 form by Ca(OH)2 to be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、亜硫酸ガス除去方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for removing sulfur dioxide gas.

〔従来の技術とその問題点〕[Conventional technology and its problems]

排カス中の亜硫酸ガスを除去する方法は、■湿式法及び
■乾式法に大別芒れる。湿式法は。
Methods for removing sulfur dioxide gas from waste residue can be broadly divided into ① wet method and ② dry method. The wet method.

水酸化カルシウム(Ca(on)t)%炭酸カルシクム
(CaCO,)、水酸化マグネシウム(Mg(OH)t
)のスラリーや水酸化す)IJウム(NaOH)水溶液
を吸収剤としたスクラバーにより亜硫酸ガスを中和吸収
し、源側へ移行して固定化するものである。この方法で
は亜硫酸ガスの除去率としては90%以上が期待でき有
効であるが、亜硫酸ガスを吸収したあとに廃水処理が残
り、処理システムが複雑になるという問題がある。
Calcium hydroxide (Ca(on)t)% Calcium carbonate (CaCO,), Magnesium hydroxide (Mg(OH)t)
The sulfur dioxide gas is neutralized and absorbed by a scrubber using a slurry of hydroxide or an aqueous solution of hydroxide (NaOH) as an absorbent, and then transferred to the source side where it is fixed. Although this method is effective and can be expected to have a sulfur dioxide gas removal rate of 90% or more, there is a problem in that wastewater remains to be treated after the sulfur dioxide gas is absorbed, making the treatment system complicated.

一方、乾式法は、■活性炭吸着法と■CaC0゜の高温
噴射法(5°OO〜600’C以上の雰囲気が必要)が
ある。活性炭吸着法は、亜硫酸ガスを含む排ガスを略2
00c、以下のガス温度下で。
On the other hand, dry methods include (1) activated carbon adsorption method and (2) CaC0° high temperature injection method (requires an atmosphere of 5°00 to 600'C or higher). Activated carbon adsorption method removes exhaust gas containing sulfur dioxide by approximately 2
00c, under gas temperatures below.

活性炭層を通過させ、亜硫酸ガスを活性炭に吸着はせて
除去するもので、亜硫酸ガスの除去率としては90%以
上の高い効果が期待できる。
It passes through an activated carbon layer and adsorbs sulfur dioxide gas on the activated carbon to remove it, and a high sulfur dioxide removal rate of 90% or more can be expected.

しかし、亜硫酸ガスを吸着した活性炭は再生して再使用
する必要があることから、活性炭の再生時に発生する廃
水の処理が必要になり、全体システムとしては複雑にな
るという問題がある。
However, since the activated carbon that has adsorbed sulfur dioxide gas needs to be regenerated and reused, it is necessary to treat the wastewater generated during activated carbon regeneration, making the overall system complex.

つぎに、 CaC0,の高温噴射法は、下記式(1)%
式% 以上の高温で熱分解してCaOになり、とのCaOが亜
硫酸ガスと高温、酸素雰囲気下で反応して硫酸カルシウ
ム〔CaSO4〕としテ、亜硫酸カスを固定するもので
ある。
Next, the high-temperature injection method of CaC0, is calculated using the following formula (1)%
It is thermally decomposed to CaO at a high temperature of % or more, and the CaO reacts with sulfur dioxide gas at high temperature in an oxygen atmosphere to form calcium sulfate [CaSO4], which fixes sulfite scum.

反応式  CaC0,−−CaO+CO,・・・・・−
(1)CaO+SO*+  2 0t    C”SO
4・・・t2’caso、  は、集じん機(例えば、
?イクロ/、電気業じん機、バッグフィルター)で補集
嘔れるため、廃水処理の問題がなく、いわゆる完全乾式
法であり、亜硫酸ガスを除去できるという大きな特徴を
もっている0しかし、前述の方法のような高い除去率を
得難い問題がある。また。
Reaction formula CaC0,--CaO+CO,...-
(1) CaO+SO*+ 2 0t C”SO
4...t2'caso, is a dust collector (for example,
? It is a so-called completely dry method, and has the great feature of being able to remove sulfur dioxide gas. However, there is a problem in that it is difficult to obtain a high removal rate. Also.

この方法は500〜6000以上の高温雰囲気という制
約条件があり、低温雰囲気では効果が発揮きれないとい
う欠点かある。
This method has the constraint of a high-temperature atmosphere of 500 to 6,000 or higher, and has the disadvantage that it cannot be as effective in a low-temperature atmosphere.

〔問題点を解決するための子役〕[Child actor to solve problems]

本発明は、次亜塩素酸カルシウムと消石灰とをカルシウ
ムの重量比が0.05〜20の範囲で混合してなる堆積
層もしくは充填層に、亜硫酸ガス含有排ガスを通して亜
硫酸ガスを除去することを特徴とする亜硫酸ガス除去方
法でおる。
The present invention is characterized in that sulfur dioxide gas is removed by passing sulfur dioxide gas-containing exhaust gas through a deposited layer or a packed bed formed by mixing calcium hypochlorite and slaked lime with a calcium weight ratio in the range of 0.05 to 20. This method is used to remove sulfur dioxide gas.

ここで1本発明方法にて亜m酸カスを除去する乾式吸収
剤は、消石灰と次亜塩素酸カルシウムから構成され、粉
末状及び成形状(円筒形。
Here, 1. The dry absorbent for removing atomite scum by the method of the present invention is composed of slaked lime and calcium hypochlorite, and is available in powder form and molded form (cylindrical form).

球形いずれでも良い。)で使用できる。粉末状で使用す
るときは、粉末の粒径は、1〜1000p好ましくは1
0〜100IIが適当である。成形状で使用するときは
、1〜50m好ましくは3〜20+sが適当である。こ
れらの数値限定の根拠は、亜硫酸ガスの除去を効果的か
つ十分に行うことにある。また、粉末状及び成形状いず
れの形状で使用する場合でも、上記吸収剤構成成分の他
に1通気性、接着性、吸湿防止を考慮して他の態様成分
(例えば、アルミナ、シリカ。
Any spherical shape is fine. ) can be used. When used in powder form, the particle size of the powder is 1 to 1000p, preferably 1
0 to 100 II is suitable. When used for molding, 1 to 50 m, preferably 3 to 20+s, is appropriate. The basis for these numerical limitations is to effectively and sufficiently remove sulfur dioxide gas. In addition to the above-mentioned absorbent components, other components (for example, alumina, silica, etc.) may be added in consideration of air permeability, adhesion, and prevention of moisture absorption, regardless of whether the absorbent is used in powdered or molded form.

シリカ・アルミナ、ゼオライト、ケイソウ士。Silica alumina, zeolite, diatomaceous material.

パーライト、長石、白土など)を加えることもできる。Perlite, feldspar, white clay, etc.) can also be added.

次亜塩素酸カルシウムと消石灰の混合比は、亜硫酸ガス
の除去を効果的かつ十分に行うためにカルシウムの重量
比が0.05〜20.好ましくは0゜1〜2の範囲で設
定するのが適当である◇第1図は、粉末状乾式吸収剤層
lの構造を示し、第2図は、成形乾式吸収剤層3の構成
を示している。粉末状乾式吸収剤層lの場合、亜硫酸カ
スを含む排カスG1は、粉末状乾式吸収剤層1を通過す
るとき、亜硫酸ガスが吸収除去嘔れる。同図中2は粉末
支持体である。粉末支持体2としては、ガラス繊維フィ
ルター、金属繊維フィルター、セラミックスフィルター
などを使用できる。成形乾式吸収剤層3の場合、亜硫酸
カスを含む排ガスG、は成形乾式吸収剤層3を通過する
とき、亜硫酸カスが吸収除去される。
The mixing ratio of calcium hypochlorite and slaked lime is such that the weight ratio of calcium is 0.05 to 20.0 to effectively and sufficiently remove sulfur dioxide gas. Preferably, it is appropriate to set it in the range of 0°1 to 2. ing. In the case of the powder dry absorbent layer 1, when the waste gas G1 containing sulfite gas passes through the powder dry absorbent layer 1, sulfur dioxide gas is absorbed and removed. 2 in the figure is a powder support. As the powder support 2, a glass fiber filter, a metal fiber filter, a ceramic filter, etc. can be used. In the case of the shaped dry absorbent layer 3, when the exhaust gas G containing sulfite scum passes through the shaped dry absorbent layer 3, the sulfite scum is absorbed and removed.

同図中4は成形吸収剤支持体である。成形吸収支持体と
しては、金網、パンチングメタルなどを使用できる。
In the figure, 4 is a molded absorbent support. As the shaped absorbent support, wire mesh, punched metal, etc. can be used.

排ガス中の亜硫酸ガスは、上記各吸収剤層l、3t−通
過するとき1次式(31、(4の反応によって1次亜塩
素酸カルシウムに酸化でれ、同時に酸化場れ九亜硫酸ガ
スは消石灰により硫酸カルシウムのかたちで固定される
When the sulfur dioxide gas in the exhaust gas passes through each of the absorbent layers 1 and 3T, it is oxidized to primary calcium chlorite by the reaction of the linear equation (31, (4), and at the same time, the sulfur dioxide gas is converted into slaked lime in the oxidation field. is fixed in the form of calcium sulfate.

2SO@ + Ca (0CII ) t  →2 S
Os +C”C6t ”・(31So @ 十Ca (
OH) * ” Ca So 4 + H! O−”・
(4〔発明の作用、効果〕 本発明に係る亜硫酸ガス除去方法によれば。
2SO@ + Ca (0CII) t →2 S
Os +C"C6t"・(31So @ 10Ca (
OH) * ” Ca So 4 + H! O-”・
(4 [Operations and Effects of the Invention] According to the method for removing sulfur dioxide gas according to the present invention.

消石灰(主成分Ca(OH)t)と次亜塩素酸カルシウ
ム(Ca(OC6)t)  の混合粉体もしくは成形材
の堆積層もしくは充填層を形成し、この層に亜硫酸ガス
を含む排ガスを通過嘔せて亜硫酸ガスを廃水処理の問題
かなく、完全乾式で、しかも高い効率で除去することが
できるものである。
A deposited layer or packed layer of mixed powder or molding material of slaked lime (main component Ca(OH)t) and calcium hypochlorite (Ca(OC6)t) is formed, and exhaust gas containing sulfur dioxide gas is passed through this layer. This method can remove sulfur dioxide gas with high efficiency without the problems of wastewater treatment, and in a completely dry manner.

〔実施例〕〔Example〕

平均粒子径が1811の次亜塩素酸カルシウムと平均粒
子径が15μの消石灰の混合比がカルシウム重量比で2
=8(すなわち0.25)の粉末吸収剤に対し、平均粒
子径が207Jのケイソウ土を重量基準で10%添加し
て、ガラス繊維フィルターに約10 m11厚さにケー
キ層をつくった。ケーキ層からなる粉末吸収層へ、亜硫
酸カスを1100pp含む空気を1cm/sの流速で流
したところ1通ガス後1時間たった時点で、粉末吸収層
後方の亜硫酸カス濃度は7 ppmに達していることが
確認された。
The mixing ratio of calcium hypochlorite with an average particle size of 1811 and slaked lime with an average particle size of 15μ is 2 in terms of calcium weight ratio.
= 8 (ie 0.25), diatomaceous earth having an average particle size of 207 J was added in an amount of 10% by weight to form a cake layer on the glass fiber filter to a thickness of about 10 ml. When air containing 1,100 ppm of sulfite sludge was flowed at a flow rate of 1 cm/s through the powder absorption layer consisting of a cake layer, the sulfite sludge concentration behind the powder absorption layer reached 7 ppm one hour after the first gas pass. This was confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、粉末状乾式吸収剤層の構造を示す説明図、第
2図は、成形乾式吸収剤層の構造を示す説明図である。 l・・・乾式吸収剤層、2・・・粉末支持体、3・・・
成形乾式吸収剤層、4・・・粉末状乾式吸収剤層、G1
・・・亜硫酸カスを含む排ガス。 出願人復代理人 弁理士 鈴 江 武 彦第1図 ■ 第2図 ↓
FIG. 1 is an explanatory diagram showing the structure of a powdery dry absorbent layer, and FIG. 2 is an explanatory diagram showing the structure of a molded dry absorbent layer. l... Dry absorbent layer, 2... Powder support, 3...
Molded dry absorbent layer, 4... Powdered dry absorbent layer, G1
...Exhaust gas containing sulfite residue. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1■ Figure 2↓

Claims (1)

【特許請求の範囲】[Claims] 次亜塩素酸カルシウムと消石灰とをカルシウムの重量比
が0.05〜20の範囲で混合してなる堆積層もしくは
充填層に、亜硫酸ガス含有排ガスを通して亜硫酸ガスを
除去することを特徴とする亜硫酸ガス除去方法。
A sulfur dioxide gas characterized in that sulfur dioxide gas is removed by passing sulfur dioxide gas-containing exhaust gas through a deposited layer or a packed bed formed by mixing calcium hypochlorite and slaked lime with a calcium weight ratio in the range of 0.05 to 20. Removal method.
JP60088300A 1985-04-24 1985-04-24 Removal of sulfur dioxide Pending JPS61245822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60088300A JPS61245822A (en) 1985-04-24 1985-04-24 Removal of sulfur dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60088300A JPS61245822A (en) 1985-04-24 1985-04-24 Removal of sulfur dioxide

Publications (1)

Publication Number Publication Date
JPS61245822A true JPS61245822A (en) 1986-11-01

Family

ID=13939073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60088300A Pending JPS61245822A (en) 1985-04-24 1985-04-24 Removal of sulfur dioxide

Country Status (1)

Country Link
JP (1) JPS61245822A (en)

Similar Documents

Publication Publication Date Title
US4859438A (en) Method for separation of impurities from flowing gas
WO1988009203A3 (en) Process for manufacturing reactive calcium hydroxide for purifying gases and exhaust gases and process for purifying gases and exhaust gases
TW353624B (en) Desulfurization process for flue gases
JP2678697B2 (en) Method of removing acid gas from combustion exhaust gas
US5817283A (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
US4735788A (en) Process of removing of COS and CS2 compounds contained in an industrial gas
JPS61245822A (en) Removal of sulfur dioxide
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JP2778031B2 (en) Nitrogen oxide / sulfur oxide absorbent
JP2547260B2 (en) Exhaust gas treatment method
JP2000288338A (en) Method and equipment for treating exhaust gas desulfurization waste
JPH01258746A (en) Catalytic filter and production thereof
JPS61171526A (en) Treatment of exhaust gas
KR100225474B1 (en) Method for removing sulfur dioxide and nitrogen oxides from combustion gases
JPS63267421A (en) Method for removing nitrogen oxide out of gas
JPH03123622A (en) Wet-way desulfurization method
JPS60225624A (en) Treatment of gas containing sulfur oxide
JPH03213143A (en) Preparation of exhaust gas treatment agent and treatment of exhaust gas
JPH04243910A (en) Carbon dioxide recovering material and method for recovering carbon dioxide utilizing the same
JP2547901B2 (en) Mud treatment agent and treatment method
JPH035203B2 (en)
JPH04190820A (en) Preparation of exhaust gas treatment agent and treatment of exhaust gas
JPH04197419A (en) Preparation of exhaust gas treatment agent and exhaust gas treatment method
JPH0555181B2 (en)
CN113578022A (en) In-situ ex-situ normal-temperature thermal desorption activation red mud desulfurization method