JPH03123622A - Wet-way desulfurization method - Google Patents

Wet-way desulfurization method

Info

Publication number
JPH03123622A
JPH03123622A JP1258852A JP25885289A JPH03123622A JP H03123622 A JPH03123622 A JP H03123622A JP 1258852 A JP1258852 A JP 1258852A JP 25885289 A JP25885289 A JP 25885289A JP H03123622 A JPH03123622 A JP H03123622A
Authority
JP
Japan
Prior art keywords
compound
slurry
nitrite
calcium
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1258852A
Other languages
Japanese (ja)
Other versions
JPH0675665B2 (en
Inventor
Tsutomu Ueno
上野 務
Hiroaki Doai
宏明 土合
Toshiya Kodama
小玉 俊也
Kunihiro Mori
森 邦広
Takeshi Murayama
岳史 村山
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP1258852A priority Critical patent/JPH0675665B2/en
Publication of JPH03123622A publication Critical patent/JPH03123622A/en
Publication of JPH0675665B2 publication Critical patent/JPH0675665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To highen desulfurization efficiency and recover a highly pure gypsum only using a sole adsorption tower by bringing a SO2 -containing gas into contact with a slurry containing a calcium compound and a nitrite compound. CONSTITUTION:A SO2 -containing waste gas E is led to an absorption tower 2 and brought into contact with a slurry containing a Ca compound and a nitrite compound sprayed from a spray by a pump 3 in the tower 2. In this way, SO2 is absorbed and removed and the resulting waste gas is sent to a chimney 5 through a duct 4 and discharged to the air. The pH of the slurry is controlled to be 1-13 by controlling the flowing rate of the slurry sent to the absorption tower 2 from a slurry preparation apparatus 6 through a duct 8 by a pump 7. As the Ca compound to be used, there are quicklime, soaked lime, and calcium carbonate, etc. and as the nitrite compound, there are sodium nitrite, calcium nitrite, aluminum nitrite, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は湿式排煙脱硫方法、さらに詳しくは石灰セラコ
ラ法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wet flue gas desulfurization method, and more particularly to an improvement of the lime ceracola method.

[従来の技術および発明が解決しようとする課題]石灰
セラコラ法は、浄化しようとするガスに、CaCO3,
Ca (Of() zなどを含むスラリーを接触させて
S02を吸収除去するものであって、主な反応は次のよ
うに考えることもできる。
[Prior art and problems to be solved by the invention] The lime ceracola method adds CaCO3,
S02 is absorbed and removed by contacting with a slurry containing Ca(Of()z, etc.), and the main reaction can be considered as follows.

Sow + Ca (O)I) @ −CaSO3+ 
H2O(1)SO2+CaCO5= Ca5Os+CO
i   (2)Ca5Os+COi  −’ CaSO
4’2HzO(3)実際の吸収装置で (3)の反応を
起させるには酸化装置を設けるか、吸収装置に空気を吹
込むなどの操作が必要で、SO2濃度、02濃度、 C
a5Os濃度などを厳密に調整する必要があった。
Sow + Ca (O) I) @ -CaSO3+
H2O(1)SO2+CaCO5= Ca5Os+CO
i (2) Ca5Os+COi −' CaSO
4'2HzO (3) In order to cause the reaction (3) in an actual absorption device, it is necessary to install an oxidation device or to perform operations such as blowing air into the absorption device, and the SO2 concentration, 02 concentration, C
It was necessary to strictly adjust the a5Os concentration, etc.

本発明の目的は、従来の石灰セラコラ法の欠点を解消し
、排ガス組成によっては空気吹込みなしに単一の吸収塔
のみで脱硫率が高く、かつ回収するセラコラの純度も高
い湿式脱硫法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the conventional lime ceracola method, and to provide a wet desulfurization method that, depending on the composition of the exhaust gas, can achieve a high desulfurization rate using only a single absorption tower without blowing air, and the recovered ceracola can have a high purity. It's about doing.

[課題を解決するための手段] 本発明はS02を含有するガスをCa化合物を含むスラ
リーと接触させる脱硫方法において、スラリー中に亜硝
酸化合物を含有させることを特徴とする湿式脱硫方法で
ある。
[Means for Solving the Problems] The present invention is a wet desulfurization method characterized in that a nitrite compound is contained in the slurry in a desulfurization method in which a gas containing S02 is brought into contact with a slurry containing a Ca compound.

本発明のCa化合物とは、従来石灰セラコラ法に使用さ
れている生石灰、消石灰、炭酸石灰のほかに、「酸化カ
ルシウム、二酸化ケイ素および酸化アルミニウムを供給
できる物質に、硫酸化合物、ハロゲン元素化合物、硫化
物、アルカリ金属の水酸化物を供給できろ物質の群から
選ばれた一種以上の物質を加え、水和処理してなるCa
−3t−Al系砂硬化物またはこの硬化物を乾式排ガス
処理剤として使用した後のものであってもよい。
In addition to the quicklime, slaked lime, and carbonated lime conventionally used in the lime ceracola process, the Ca compounds of the present invention include sulfuric compounds, halogen element compounds, sulfuric acid compounds, and other substances that can supply calcium oxide, silicon dioxide, and aluminum oxide. Ca produced by adding one or more substances selected from the group of substances capable of supplying alkali metal hydroxides and hydrating them.
-3t-Al-based hardened sand or this hardened product may be used as a dry exhaust gas treatment agent.

酸化カルシウムを供給できる物質とは、例えば生石灰、
消石灰、炭酸石灰、セメント、スラグ。
Substances that can supply calcium oxide include quicklime,
Slaked lime, carbonated lime, cement, slag.

ドロマイトプラスター(石灰含有)、およびアセチレン
滓などの副生品等である。
By-products include dolomite plaster (containing lime) and acetylene slag.

二酸化ケイ素を供給しつる物質とは、例えばケイ酸、含
水ケイ酸、メタケイ酸、ケイ酸アルミニウム、ケイ酸カ
ルシウムおよびクリストバライト、トリジマイト、カオ
リン、ベントナイト、タルク、パーライト、シラス、ケ
イソウ、土、ガラス、モミ殻灰1本灰などの焼却灰等反
応性二酸化ケイ素を含有する化合物などである。
Substances that supply silicon dioxide include, for example, silicic acid, hydrous silicic acid, metasilicic acid, aluminum silicate, calcium silicate, cristobalite, tridymite, kaolin, bentonite, talc, perlite, shirasu, diatom, earth, glass, and fir. Compounds containing reactive silicon dioxide, such as incinerated ash such as single shell ash, etc.

酸化アルミニウムを供給しつる物質とは、例えばアルミ
ナ、水酸化アルミニウム、ケイ酸アルミニウム、硫酸ば
ん土、明ばん、酸化アルミニウム、硫酸アルミニウム、
塩化アルミニウム、アルミン酸カルシウム、ベントナイ
ト、カオリン、ケイソウ土、ゼオライト、パーライト、
ボーキサイト、アルミン酸ナトリウム、氷晶石等の反応
性アルミニウムを含有する化合物等である。
Substances that supply aluminum oxide include, for example, alumina, aluminum hydroxide, aluminum silicate, sulfuric acid, alum, aluminum oxide, aluminum sulfate,
Aluminum chloride, calcium aluminate, bentonite, kaolin, diatomaceous earth, zeolite, perlite,
These include compounds containing reactive aluminum such as bauxite, sodium aluminate, and cryolite.

硫酸化合物、ハロゲン元素化合物を供給できる物質とは
、例えばカルシウム、マグネシウムなどのアルカリ土類
金属、ナトリウム、カリウム等のアルカリ金属と硫酸、
ハロゲン化水素とを組合せることによって生成する物質
で、硫酸カルシウム、硫酸マグネシウム、塩化カルシウ
ム、塩化マグネシウム、硫酸すトリウム、亜硫酸カルシ
ウム、硫酸水素カルシウム、塩化ナトリウム、塩化スト
ロンチウム、臭化カルシウム、ヨウ化カルシウム、塩化
カリウム、チオ硫酸ナトリウム、炭酸水素ナトリウム、
炭酸水素カルシウム等である。
Substances that can supply sulfuric acid compounds and halogen element compounds include, for example, alkaline earth metals such as calcium and magnesium, alkali metals such as sodium and potassium, and sulfuric acid,
Substances produced by combining with hydrogen halides, including calcium sulfate, magnesium sulfate, calcium chloride, magnesium chloride, sodium sulfate, calcium sulfite, calcium hydrogen sulfate, sodium chloride, strontium chloride, calcium bromide, and calcium iodide. , potassium chloride, sodium thiosulfate, sodium bicarbonate,
Calcium hydrogen carbonate, etc.

硫化物を供給できる物質とは、例えば硫化カルシウム、
硫化鉄、硫化亜鉛等である。
Substances that can supply sulfide include, for example, calcium sulfide,
These include iron sulfide and zinc sulfide.

アルカリ金属の水酸化物を供給できる物質とは、水酸化
ナトリウム、水酸化カリウム等である。
Substances that can supply alkali metal hydroxides include sodium hydroxide, potassium hydroxide, and the like.

更に、これまでに記述した所要材料が例えば単体イ才つ
を添加することによって、材料間の相互の反応が進行し
、その結果、硫化カルシウム、硫化カルシウム等を生成
して供給されるような場合、さらにケイ酸と苛性アルカ
リが反応して生成されろ水ガラスなども含まれる。
Furthermore, when the necessary materials described so far are supplied, for example, by adding a single substance, mutual reactions between the materials proceed, and as a result, calcium sulfide, calcium sulfide, etc. are produced and supplied. It also includes filtered water glass, which is produced by the reaction of silicic acid and caustic alkali.

また、前述の少なくとも4種の化合物中2種以上を同時
に供給しつる他の物質の例として、石炭灰および火山灰
1石炭流動層燃焼灰(酸化カルシウム、二酸化ケイ素、
酸化アルミニウム、硫酸カルシウム、硫酸ナトリウム、
硫酸カリウム源)、セメントおよびセメントクリンカ−
(酸化カルシウム、二酸化ケイ素、酸化アルミニウム源
)、スラグおよびシラス、安山岩、チャート、石英粗面
岩、オパール、沸石、長石、粘度鉱物、エトリンガイト
(硫酸カルシウム、二酸化ケイ素、酸化アルミニウム、
酸化カルシウム)などの反応性二酸化ケイ素、ナトリウ
ム、アルミニウム、カルシウム等および塩化物。
In addition, as examples of other substances that simultaneously supply two or more of the above-mentioned at least four types of compounds, coal ash and volcanic ash 1 coal fluidized bed combustion ash (calcium oxide, silicon dioxide,
aluminum oxide, calcium sulfate, sodium sulfate,
sources of potassium sulfate), cement and cement clinker
(calcium oxide, silicon dioxide, aluminum oxide sources), slag and shirasu, andesite, chert, quartz trachyte, opal, zeolite, feldspar, clay minerals, ettringite (calcium sulfate, silicon dioxide, aluminum oxide,
Reactive silicon dioxide such as calcium oxide, sodium, aluminum, calcium etc. and chlorides.

硫酸塩等を含有する鉱物、同様に流動層燃焼灰等の炉内
脱硫灰および煙道脱硫後の使用済硫剤。
Minerals containing sulfates, etc., as well as in-furnace desulfurization ash such as fluidized bed combustion ash and spent sulfurizers after flue desulfurization.

汚泥焼却灰、都市ゴミ焼却灰、セメントくず。Sludge incineration ash, municipal waste incineration ash, cement waste.

アセチレン滓、使用済廃水処理剤などがあげられる。こ
こで使用済脱硫剤とは、Cab、 Ca (OH) x
Examples include acetylene slag and used wastewater treatment agents. Here, the used desulfurization agent refers to Cab, Ca (OH) x
.

CaC0□等のカルシウム系脱硫剤の使用済のものおよ
び特開昭61−209038−に示されるCab、 A
1203SI02. Ca50m系組成物からなる脱硫
剤の使用済のものなどをいう。
Used calcium-based desulfurization agents such as CaC0□ and Cab, A shown in JP-A No. 61-209038-
1203SI02. Refers to used desulfurization agents made of Ca50m-based compositions.

第1表にこれらの代表的原料およびその化学組成の例を
示す。
Table 1 shows examples of these typical raw materials and their chemical compositions.

Ca−3i−Al系砂硬化物、前記材料を組合せて、少
なくとも CaOとして             1%SiO□
 として             1%Al2O5と
して             1%硫酸化合物、ハロ
ゲン元素化合物 硫化物および/またはアルカリ金属 の水酸化物として           0.1%好ま
しくは CaOとして           1〜80%5iO
z  として           5〜90%Al2
O3として            5〜90%CaS
O4,Na2SO4,CaC1g、 NaC1の一種以
上が           0.1〜70%CaS  
 が                 0.1 〜5
0%NaOHが      0.1−10%になるよう
に使用するものである。
Ca-3i-Al-based hardened sand, a combination of the above materials, containing at least 1% SiO□ as CaO
As 1% Al2O5 1% As sulfuric acid compounds, halogen element compound sulfides and/or alkali metal hydroxides 0.1% Preferably as CaO 1-80% 5iO
z as 5-90% Al2
5-90%CaS as O3
One or more of O4, Na2SO4, CaC1g, NaC1 is 0.1-70%CaS
is 0.1 to 5
It is used so that 0% NaOH becomes 0.1-10%.

水和処理とは、例えば特開昭64−38130に開示し
たように、前述の諸物質(原料)間の水和反応を進行さ
せるために必要な処理を言い、例えば常圧もしくは高圧
の常温水もしくは熱水養生、湿空養生、蒸気養生などが
含まれ、硬化性水和処理と、非固結性水和処理とに分類
される。
The hydration treatment refers to the treatment necessary to advance the hydration reaction between the aforementioned substances (raw materials), for example, as disclosed in JP-A No. 64-38130. Alternatively, it includes hot water curing, humid air curing, steam curing, etc., and is classified into hardening hydration treatment and non-hardening hydration treatment.

硬化性水和処理とは処理時の前記諸原料と水との混合割
合(固液比)を小に、例えば1:0.2〜!+0.99
とすることによって、材料粒子間の結合を促進させ、硬
化体を得る水和処理をいう。
Curing hydration treatment is a process in which the mixing ratio (solid-liquid ratio) of the various raw materials and water during treatment is reduced, for example from 1:0.2! +0.99
This refers to a hydration treatment that promotes bonding between material particles and obtains a cured product.

非固結性水和処理とは、材料粒子同志が水和処理中に結
合して粗大粒子に成長するのを妨げる処理を言い、処理
開始時の固液比を大に、例えば1:1〜1:20とし、
熱水養生においては40℃〜180℃で水中に原料を分
散し、原料が下部に沈澱硬化しないように攪拌、バブリ
ング、循環、振どうなどを数分間から数日間行う処理で
ある。
Non-caking hydration treatment refers to treatment that prevents material particles from bonding together and growing into coarse particles during hydration treatment, and the solid-liquid ratio at the start of treatment is increased, for example from 1:1 to 1:20 and
In hot water curing, raw materials are dispersed in water at 40°C to 180°C, and stirring, bubbling, circulation, shaking, etc. are performed for several minutes to several days to prevent the raw materials from settling and hardening at the bottom.

水和処理工程において、処理剤中の活性物質の生成に必
要な水分を充分に与えた状態を経て、排ガス浄化に必要
な活性化合物形成の重要な段階を終了し、この間、水分
の一部あるいは大部分は、該化合物形成反応に消費され
る。
In the hydration treatment process, the important stage of forming active compounds necessary for exhaust gas purification is completed after providing sufficient moisture necessary for the production of active substances in the treatment agent. Most of it is consumed in the compound forming reaction.

硬化性水和処理における湿空養生は、温度lO℃〜40
℃、相対湿度50%〜100%で、数分間あるいは数十
日間が好ましく、また蒸気養生は、温度40℃〜180
℃、相対湿度100%で、数分間〜数日間が好ましい。
Humid air curing in hardening hydration treatment is performed at a temperature of 10°C to 40°C.
℃ and relative humidity of 50% to 100% for several minutes or several tens of days, and steam curing is performed at a temperature of 40℃ to 180℃.
℃ and 100% relative humidity for several minutes to several days.

このような水和処理で得られる硬化体は、必要により公
知の方法で粉砕1ノでスラリーとして使用する。
The cured product obtained by such a hydration treatment is used as a slurry by pulverization by a known method if necessary.

スラリー中のCa化合物の粒度は微細なほどよく、スラ
リー中の濃度は10mg/β〜400g/氾である。
The finer the particle size of the Ca compound in the slurry, the better, and the concentration in the slurry is 10 mg/β to 400 g/flood.

本発明の亜硝酸化合物とは、例えば亜硝酸ナトリウム、
亜硝酸カリウム、亜硝酸カルシウム、亜硝酸アルミニウ
ム、亜硝酸アンモニウム、亜硝酸スズ、亜硝酸ストロン
チウム、亜硝酸鉄、亜硝酸銅、亜硝酸ニッケル、亜硝酸
マグネシウム、亜硝酸マンガンなどである。スラリー中
にこれら亜硝酸化合物を含有させるためには、上記塩そ
のものを使用することはもちろん、これら塩を含む原料
を使用し、または反応によって亜硝酸化合物を生成する
ような材料の組合せ例えば硝酸と金属銅。
The nitrite compound of the present invention includes, for example, sodium nitrite,
These include potassium nitrite, calcium nitrite, aluminum nitrite, ammonium nitrite, tin nitrite, strontium nitrite, iron nitrite, copper nitrite, nickel nitrite, magnesium nitrite, and manganese nitrite. In order to contain these nitrite compounds in the slurry, it is possible to use not only the above-mentioned salts themselves, but also raw materials containing these salts, or combinations of materials that produce nitrite compounds by reaction, such as nitric acid and metal copper.

硝酸化合物とアルミナ等を使用することもてぎる。It is also possible to use nitric acid compounds and alumina.

亜硝酸化合物のスラリー中の濃度は、Noよとして少な
くとも0.001%以上、好ましくは0.旧%〜lO%
である。
The concentration of the nitrite compound in the slurry is at least 0.001%, preferably 0.001%. old% ~ lO%
It is.

上述の組成のスラリーを使用する脱硫方法の具体例を第
1図によって説明する。
A specific example of a desulfurization method using a slurry having the above composition will be explained with reference to FIG.

S02を含有する排ガスEは、ガス性状に応じ滞留時間
を調節できる吸収塔2に導入される。吸収塔2では、排
ガスはポンプ3によってスプレーから噴霧されるスラリ
ーと接触しSO2を吸収除去され、導路4から煙突5へ
送られ大気中へ放出される。スラリーのpHは、スラリ
ー調製装置6よりポンプ7.導路8を経て吸収塔へ送ら
れるスラリーの流量を調節することによりpl=1〜1
3に調整される。スラリーの一部は、導路9から沈降式
固液分離装置IOへ送られ、濃縮されたスラリーは、ポ
ンプ11、導路12を経て固液分離装置13へ送られ、
石膏Gを分離する。沈降式固液分離装置10の上澄液は
、導路15からスラリー調製装置6へ送られる。スラリ
ー調製装置6ではCa化合物Cおよび亜硝酸化合物Nを
投入し必要により水を加え、スラリーの調製が行われる
。上澄液の一部は、排水りとして放出される。固液分離
装置13の濾液は、導路18より沈降式分離装置10へ
戻される。
The exhaust gas E containing S02 is introduced into an absorption tower 2 whose residence time can be adjusted depending on the gas properties. In the absorption tower 2, the exhaust gas comes into contact with the slurry sprayed by the pump 3, absorbs and removes SO2, and is sent to the chimney 5 through the conduit 4 and released into the atmosphere. The pH of the slurry is adjusted by pump 7. By adjusting the flow rate of the slurry sent to the absorption tower via the conduit 8, pl=1 to 1.
Adjusted to 3. A part of the slurry is sent to the sedimentation type solid-liquid separator IO from the conduit 9, and the concentrated slurry is sent to the solid-liquid separator 13 via the pump 11 and the conduit 12.
Separate gypsum G. The supernatant liquid of the sedimentation type solid-liquid separator 10 is sent to the slurry preparation device 6 through a conduit 15. In the slurry preparation device 6, Ca compound C and nitrite compound N are introduced, water is added if necessary, and a slurry is prepared. A portion of the supernatant liquid is discharged as a drain. The filtrate from the solid-liquid separator 13 is returned to the settling type separator 10 through a conduit 18.

本発明の特徴は、従来のCa化合物スラリーによるSO
2吸収除去において問題とされていたCa5Osの生成
を亜硝酸化合物を添加することによって、場合によって
は過剰空気を入れることなく高純度なCaSO4にする
ところにある。また、さらに脱硫効率も著しく向上させ
ることができることである。
The feature of the present invention is that SO using the conventional Ca compound slurry
By adding a nitrous acid compound, the production of Ca5Os, which has been a problem in 2 absorption and removal, can be made into highly pure CaSO4 without introducing excess air in some cases. Moreover, the desulfurization efficiency can also be significantly improved.

すなわち、これまでCa5OsをCaSO4とするため
に吸収塔内に多量に吹き込んでいた空気を著しく低減さ
せることが可能であり、更に亜硝酸化合物の酸化作用に
よってSO□の吸収効率を向上させることができる。
In other words, it is possible to significantly reduce the amount of air that was previously blown into the absorption tower in order to convert Ca5Os to CaSO4, and the oxidation effect of the nitrite compound can improve the absorption efficiency of SO□. .

本発明の吸収塔における反応については、まだ不明な部
分が多いが、Ca化合物として水酸化カルシウムを用い
た場合、概路次のように推定することができる。
There are still many aspects of the reaction in the absorption tower of the present invention that are unclear, but when calcium hydroxide is used as the Ca compound, the general reaction can be estimated as follows.

以下本発明の方法を実施例によって説明する。The method of the present invention will be explained below with reference to Examples.

[実施例] 実施例1〜6 SO2を含有するガスとして、第2表に示す組成を有す
るガスを調製し、第3表に示すように組成の異なる6種
のスラリー各50cc中を、室温、ガス流ff1601
2N/Hでバブリングさせて脱硫試験を行った。ただし
、ガス中の水分がスラリー中に凝縮するのを防ぐため、
ガスはバブリング前に除湿した。
[Example] Examples 1 to 6 A gas having the composition shown in Table 2 was prepared as a gas containing SO2, and 50 cc of each of six types of slurry having different compositions as shown in Table 3 were heated at room temperature, gas flow ff1601
A desulfurization test was conducted by bubbling with 2N/H. However, to prevent moisture in the gas from condensing into the slurry,
The gas was dehumidified before bubbling.

第3表中分子式で示した化合物はすべて市販試薬1級品
を使用した。実施例3および6の60U 40とは、粒
径約10mm以下のCa0454gを水264flに加
え、15分間攪拌した後に第1表の使用済脱硫剤400
gを加え、再度加熱攪拌しながら、98℃、12時間養
生して得たスラリー状のSO□吸収剤で、このうち固形
物換算量で0.075gをSO□吸収スラリーとして使
用した。
All of the compounds shown by the molecular formulas in Table 3 were first grade commercially available reagents. 60U 40 in Examples 3 and 6 means that 454 g of Ca with a particle size of about 10 mm or less is added to 264 fl of water, stirred for 15 minutes, and then added to the used desulfurizing agent 400 in Table 1.
of the slurry-form SO□ absorbent obtained by curing at 98° C. for 12 hours while heating and stirring again. Of this slurry, 0.075 g in terms of solid matter was used as SO□ absorption slurry.

なお、使用済脱硫剤とは下記の製法および使用経歴のも
のである。
In addition, the used desulfurization agent is one with the following manufacturing method and usage history.

石炭灰(海外炭)  (Ah0322%、  Si0□
64%)51重量部、 Ca(OH)i 30重量部、
 CaSO419重量部の粉状物に水45重量部を加え
て混練し、95〜100℃で12時間蒸気養生し、13
0℃で2時間乾燥した後破砕し、粒径を3〜10mmに
揃えた硬化物(脱硫剤)に第2表に示した組成のガスを
130℃、5v101)O(h”’)で17時間処理し
た後の脱硫剤をいう。
Coal ash (overseas coal) (Ah0322%, Si0□
64%) 51 parts by weight, Ca(OH)i 30 parts by weight,
45 parts by weight of water was added to a powder containing 419 parts by weight of CaSO, kneaded, steam-cured at 95 to 100°C for 12 hours, and
After drying at 0°C for 2 hours, the cured product (desulfurizing agent) was crushed to have a particle size of 3 to 10 mm, and a gas having the composition shown in Table 2 was added to the cured product (desulfurizing agent) at 130°C at 5v101)O(h'') for 17 hours. Refers to the desulfurization agent after time treatment.

脱硫性能の評価は、通ガス後5分毎に70分まで吸収液
および通過ガスの分析により行い、試験結果を第4−1
表に示した。
The desulfurization performance was evaluated by analyzing the absorbed liquid and passing gas every 5 minutes until 70 minutes after passing the gas, and the test results were evaluated in Section 4-1.
Shown in the table.

第2表 ガス組成 第4−1表によれば、例久ば実施例1では、通ガス開始
後20分間は、SO3を100%除去するが30分以降
は、徐々にSO□O□が増加し70分後には、800p
pmとなった。この時の液のpHは、通ガス後40分ま
では6.9〜6.3と、あまり大きな変化は起さないが
50分後になると2.1となり急激に低下する。この時
S02吸収液通過後のガス中のNOx濃度も急激に増加
しSO□吸収吸収液通過方ス中のNO。
According to Table 2 Gas Composition Table 4-1, in Example 1, 100% of SO3 is removed for 20 minutes after the start of gas flow, but after 30 minutes, SO□O□ gradually increases. After 70 minutes, 800p
It became pm. The pH of the liquid at this time is 6.9 to 6.3 up to 40 minutes after passing the gas, and does not change much, but after 50 minutes it rapidly drops to 2.1. At this time, the NOx concentration in the gas after passing through the SO2 absorption liquid also increases rapidly, and the NOx concentration in the gas after passing through the SO□ absorption liquid increases.

濃度(設定値45(lppm)を越え500ppmとな
る。しかし70分後には同じp)12.1でも415p
pmとなった。この現象は、■含有する亜硝酸化合物が
分解してNOXを発生する。■分解すべき亜硝酸塩がな
くなるとNO,の発生も時間経過とともに減少する。こ
の傾向は、液中NOx量を見ると明確である。
Concentration (exceeds the set value 45 (lppm) and becomes 500ppm. However, after 70 minutes, the same p) Even at 12.1, it is 415p
It became pm. This phenomenon occurs as follows: (1) The contained nitrite compound decomposes and generates NOX. ■When there is no more nitrite to decompose, the generation of NO will decrease over time. This tendency is clear when looking at the amount of NOx in the liquid.

SO8吸収液中のN(hが削減すると脱硫能力が著しく
悪くなり亜硫酸塩の生成量が増加するようになる。
When the amount of N (h) in the SO8 absorption liquid is reduced, the desulfurization ability deteriorates significantly and the amount of sulfite produced increases.

すなわちNO□の存在下に、SO□O□液のpHを6以
上に保つことによって脱硫率を高率に維持でき、更に亜
硫酸塩の生成を抑制することができることを示している
In other words, it is shown that by maintaining the pH of the SO□O□ solution at 6 or more in the presence of NO□, the desulfurization rate can be maintained at a high rate, and the generation of sulfites can be further suppressed.

また用いた3種のCa化合物間ではCaCO3の場合脱
硫率がやや劣り、2種の亜硝酸塩間にはほとんど差がな
かった。
Furthermore, among the three types of Ca compounds used, the desulfurization rate was slightly inferior in the case of CaCO3, and there was almost no difference between the two types of nitrites.

比較例1〜6 亜硝酸塩および/またはCa化合物を含まない第3表に
示すSO2吸収液を用いて、実施例1と同様の脱硫試験
を行い、試験結果を第4−2表に示した。
Comparative Examples 1 to 6 Desulfurization tests similar to those in Example 1 were conducted using the SO2 absorption liquids shown in Table 3 that did not contain nitrite and/or Ca compounds, and the test results are shown in Table 4-2.

比較例7〜8 比較例2および8と同様の脱硫試験を行い、その後さら
にこれら吸収液50ccに各通ガス時間と同じ時間、流
量604N/H、室温で空気をバブリングさせて、吸収
液を分析し−た。
Comparative Examples 7 to 8 A desulfurization test similar to Comparative Examples 2 and 8 was conducted, and then air was bubbled through 50 cc of these absorbents for the same time as each gas passage time, at a flow rate of 604 N/H, at room temperature, and the absorbents were analyzed. I did it.

得られた結果を下表に示す。The results obtained are shown in the table below.

実施例7〜9 吸収時の温度を60.80.90℃に変えて実施例1.
2.3を繰り返した。
Examples 7 to 9 Example 1 was carried out by changing the absorption temperature to 60, 80, and 90°C.
2.3 was repeated.

得られた結果は下表のようで吸収時の温度が低いほど良
い脱硫効率を示した。
The results obtained are shown in the table below, showing that the lower the absorption temperature, the better the desulfurization efficiency.

加えて、20分間吸収試験を行うという操作を繰り返し
、この繰り返しを20回行った(実施例10゜11、1
2)。
In addition, the operation of conducting an absorption test for 20 minutes was repeated, and this process was repeated 20 times (Examples 10, 11, 1).
2).

比較例2.3および4についても同様の繰り返し試験を
20回行い(比較例9.10.11) 、通液後のガス
中の802およびNOxの含有濃度(ppm)の測定値
を法衣に示した。
Similar repeated tests were conducted 20 times for Comparative Examples 2.3 and 4 (Comparative Examples 9.10.11), and the measured values of the concentration (ppm) of 802 and NOx in the gas after passing the liquid were shown on the vestibule. Ta.

吸収液の繰り返し使用は、使用する水量の低減とともに
、排水の減少、排水処理費の低減に有効である。
Repeated use of the absorbing liquid is effective in reducing the amount of water used, as well as reducing wastewater and wastewater treatment costs.

実施例10〜12.比較例9〜11 亜硝酸塩の使用量を0.085gにした以外は実施例1
.2および3と同じ試験を20分行い、次いで前記吸収
液50mI2の調製に使用した同じ亜硝酸塩およびCa
化合物を各実施例と同じ重量ずつ吸収液に[発明の効果
] 以上詳細に説明したようにスラリー中にCa化合物を含
む湿式脱硫法において、スラリーに亜硝酸化合物を含有
させることによって、脱硫率は向上し、また通常の過剰
空気を用いた燃焼排ガスの脱硫においては、新たな空気
を吹き込むことなく吸収液中の石膏化を行うことができ
る。
Examples 10-12. Comparative Examples 9 to 11 Example 1 except that the amount of nitrite used was 0.085 g
.. The same tests as 2 and 3 were carried out for 20 minutes and then the same nitrite and Ca
The same weight of the compound as in each example was added to the absorption liquid. [Effects of the Invention] As explained in detail above, in the wet desulfurization method containing a Ca compound in the slurry, by containing a nitrite compound in the slurry, the desulfurization rate can be increased. In addition, in normal desulfurization of combustion exhaust gas using excess air, it is possible to gypsum in the absorption liquid without blowing in new air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法による脱硫方式の一例を示す図で
ある。 E・・・・・・・・・・・・・・・・・・・・排ガス2
・・・・・・・・・・・・・・・・・・・吸収塔3、7
.11・・・・・・・・・・・・ポンプ4、8.9.1
2.18・・・・導路
FIG. 1 is a diagram showing an example of a desulfurization method according to the method of the present invention. E・・・・・・・・・・・・・・・・・・Exhaust gas 2
・・・・・・・・・・・・・・・・・・Absorption towers 3 and 7
.. 11・・・・・・・・・Pump 4, 8.9.1
2.18...guiding path

Claims (2)

【特許請求の範囲】[Claims] (1)SO_2を含有するガスをCa化合物を含むスラ
リーと接触させる脱硫方法において、スラリー中に亜硝
酸化合物を含有させることを特徴とする湿式脱硫方法。
(1) A wet desulfurization method in which a gas containing SO_2 is brought into contact with a slurry containing a Ca compound, which is characterized by containing a nitrous acid compound in the slurry.
(2)Ca化合物が、酸化カルシウム、二酸化ケイ素お
よび酸化アルミニウムを供給できる物質に、硫酸化合物
、ハロゲン元素化合物、硫化物、アルカリ金属の水酸化
物を供給できる物質の群から選ばれた一種以上の物質を
加え、水和処理してなるCa−Si−Al系硬化物、生
石灰、消石灰および/または炭酸石灰である請求項1記
載の方法。
(2) The Ca compound is one or more substances selected from the group of substances capable of supplying sulfuric compounds, halogen element compounds, sulfides, and alkali metal hydroxides to substances capable of supplying calcium oxide, silicon dioxide, and aluminum oxide. 2. The method according to claim 1, which is a Ca-Si-Al based hardened product, quicklime, slaked lime and/or carbonated lime obtained by adding a substance and hydrating the product.
JP1258852A 1989-10-05 1989-10-05 Wet desulfurization method Expired - Lifetime JPH0675665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1258852A JPH0675665B2 (en) 1989-10-05 1989-10-05 Wet desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1258852A JPH0675665B2 (en) 1989-10-05 1989-10-05 Wet desulfurization method

Publications (2)

Publication Number Publication Date
JPH03123622A true JPH03123622A (en) 1991-05-27
JPH0675665B2 JPH0675665B2 (en) 1994-09-28

Family

ID=17325933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1258852A Expired - Lifetime JPH0675665B2 (en) 1989-10-05 1989-10-05 Wet desulfurization method

Country Status (1)

Country Link
JP (1) JPH0675665B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975346A (en) * 2017-03-31 2017-07-25 盐城工学院 Absorbent solution and preparation method thereof
CN109850922A (en) * 2019-03-11 2019-06-07 东方电气集团东方锅炉股份有限公司 A kind of sodium bicarbonate Desulphurization resource utilization method and device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215665A (en) * 2016-08-31 2016-12-14 天峨县全盛蜂业科技有限公司 A kind of efficient fume desulphurization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975346A (en) * 2017-03-31 2017-07-25 盐城工学院 Absorbent solution and preparation method thereof
CN109850922A (en) * 2019-03-11 2019-06-07 东方电气集团东方锅炉股份有限公司 A kind of sodium bicarbonate Desulphurization resource utilization method and device
CN109850922B (en) * 2019-03-11 2023-10-03 东方电气集团东方锅炉股份有限公司 Method and device for recycling baking soda desulfurization ash

Also Published As

Publication number Publication date
JPH0675665B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
US6613141B2 (en) Recovery of cement kiln dust through precipitation of calcium sulfate using sulfuric acid solution
FR2578753A1 (en) PROCESS FOR THE PREPARATION OF SULFURIZING AND DENITRIFYING AGENTS FOR A COMBUSTION RESIDUAL GAS
US5560894A (en) Process for treatment of exhaust gas
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JPH03123622A (en) Wet-way desulfurization method
JPH0359737B2 (en)
JP2547260B2 (en) Exhaust gas treatment method
AT395683B (en) Exhaust gas cleaning agent - useful for removing sulphur- and nitrogen-oxide(s) also hydrochloric- and hydrofluoric- acids
JPH03258343A (en) Production of treatment agent for exhaust gas
JPH0358766B2 (en)
JPH07102320B2 (en) Exhaust gas treatment agent manufacturing method and exhaust gas treatment method
JPH0615033B2 (en) Exhaust gas purification agent
JP2547901B2 (en) Mud treatment agent and treatment method
JPH01176447A (en) Method for activating exhaust gas treating agent
JPH0253085B2 (en)
JPH01297144A (en) Activation of exhaust gas treatment agent
JPH04197419A (en) Preparation of exhaust gas treatment agent and exhaust gas treatment method
JPH0555181B2 (en)
JPH04190820A (en) Preparation of exhaust gas treatment agent and treatment of exhaust gas
JP3867306B2 (en) Dust disposal method
JPH0763581B2 (en) Manufacturing method of flue gas treatment agent
US20040247519A1 (en) Method for regenerating calcium sulfate
JPH0156814B2 (en)
RU2049063C1 (en) Process for treating concentrated sulfite-sulfate solution into gypsum
JPS61245822A (en) Removal of sulfur dioxide