JPH04190820A - Preparation of exhaust gas treatment agent and treatment of exhaust gas - Google Patents

Preparation of exhaust gas treatment agent and treatment of exhaust gas

Info

Publication number
JPH04190820A
JPH04190820A JP2318074A JP31807490A JPH04190820A JP H04190820 A JPH04190820 A JP H04190820A JP 2318074 A JP2318074 A JP 2318074A JP 31807490 A JP31807490 A JP 31807490A JP H04190820 A JPH04190820 A JP H04190820A
Authority
JP
Japan
Prior art keywords
exhaust gas
treatment
treated
treatment agent
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2318074A
Other languages
Japanese (ja)
Other versions
JPH0722671B2 (en
Inventor
Tsutomu Ueno
上野 務
Takeshi Murayama
岳史 村山
Kunihiro Mori
森 邦広
Toshiya Kodama
小玉 俊也
Hideki Nakamura
秀樹 中村
Tomohiro Ishizuka
朋弘 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Original Assignee
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc filed Critical Hokkaido Electric Power Co Inc
Priority to JP2318074A priority Critical patent/JPH0722671B2/en
Publication of JPH04190820A publication Critical patent/JPH04190820A/en
Publication of JPH0722671B2 publication Critical patent/JPH0722671B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To activate and reuse a used exhaust gas reacting substance by a method wherein the exhaust gas reacting substance is treated with gas containing SO2, NOx or the like and subsequently washed with water or the like and, subsequently, the treated substance is separated from the washing solution to be used as it is or dried before use. CONSTITUTION:One or more kind of a substance (e.g. CaSO4) selected from the group consisting of substances capable of supplying a sulfur compound, a hologen element compound, sulfide and alkali metal hydroxide is added to a substance capable of supplying CaO, Al2O3 and SiO2 and the resulting composition is mixed with water to be subjected to hydration treatment to obtain an exhaust gas reacting substance which is, in turn, washed with gas containing SO2, NOx, HCl and/or HF. Thereafter, the treated substance is washed with water or an aqueous alkali solution and/or an aqueous alkali suspension and subsequently separated from the washing solution and used as an exhaust gas treatment agent as it is or dried to prepare the exhaust gas treatment agent. As a result, the used exhaust gas reacting substance can be activated and reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は各種排ガスの処理、特にNo、、を含む排ガ
スの処理剤の製造方法および排ガス処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the treatment of various exhaust gases, and particularly to a method for producing an exhaust gas treatment agent containing No. 1, and a method for treating exhaust gas.

〔従来の技術および発明が解決しようとする課題〕各種
燃料の空気中における燃焼時に空気中の窒素等が酸化さ
れ、種々の窒素化合物いわゆるNO。
[Prior art and problems to be solved by the invention] When various fuels are burned in the air, nitrogen, etc. in the air is oxidized and various nitrogen compounds, so-called NO, are formed.

か発生し、これか環境に及ぼす影響の大きいことから、
燃焼排ガス中のNOxの除去すなわち脱硝法が種々研究
されてきた。
Because of the large impact it has on the environment,
Various studies have been conducted on the removal of NOx from combustion exhaust gas, that is, denitrification methods.

本発明の属する乾式脱硝法として、すでに低廉な原料か
ら比較的簡単な製法で得られる硬化組成物を使用した新
規な脱硝方法を開示した(特開昭63−69523)。
As the dry denitrification method to which the present invention pertains, a novel denitrification method using a cured composition obtained by a relatively simple manufacturing method from inexpensive raw materials has been disclosed (Japanese Patent Laid-Open No. 63-69523).

しかしながら、その脱硝剤の寿命などに、なお改善か望
まれていた。この発明は同じ系統の改良された脱硝性能
および脱硫性能等をもつ排ガス処理剤の製造方法および
これを用いた排ガス処理方法を提供することを目的とす
るものである。
However, improvements were still desired in terms of the lifespan of the denitrification agent. The object of the present invention is to provide a method for producing an exhaust gas treatment agent having improved denitrification performance, desulfurization performance, etc. in the same system, and an exhaust gas treatment method using the same.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、酸化カルシウム、酸化アルミニウム、およ
び二酸化ケイ素に、さらにこれらにg、酸化合物、ハロ
ゲン元素化合物、硫化物およびアルカリ金属の水酸化物
を供給できる物質の群れから選ばれる1種以上の物質を
加え、水と混合し水和処理して得た排ガス反応物質を、
S02、HCI、HFおよび/またはNO,を含むガス
で処理し、ついて水またはアルカリ水溶液および/また
はその水懸濁液で洗浄処理を行い、洗浄液から分離し、
そのまま、あるいは乾燥する゛ことを特徴とする排ガス
処理剤の製造方法、およびこの方法で得られる排ガス処
理剤を用いてS02、HCl、HFおよび/またはNO
,、を含有する排ガスを処理する方法において、排ガス
処理剤の製造における排ガス反応物質のガス処理を、該
被処理排ガスまたは該排ガス処理剤で処理した後の被処
理排ガスで行うことを特徴とする排ガス処理方法である
This invention provides calcium oxide, aluminum oxide, and silicon dioxide, and one or more substances selected from the group of substances capable of supplying g, acid compounds, halogen element compounds, sulfides, and alkali metal hydroxides to calcium oxide, aluminum oxide, and silicon dioxide. The exhaust gas reactants obtained by adding and mixing with water and hydration treatment are
treated with a gas containing S02, HCI, HF and/or NO, followed by washing treatment with water or an alkaline aqueous solution and/or a water suspension thereof, and separated from the washing liquid,
A method for producing an exhaust gas treatment agent, which is characterized in that it is produced as is or by drying, and the exhaust gas treatment agent obtained by this method is used to produce S02, HCl, HF and/or NO.
, , is characterized in that the gas treatment of the exhaust gas reactant in the production of the exhaust gas treatment agent is performed using the exhaust gas to be treated or the exhaust gas to be treated after being treated with the exhaust gas treatment agent. This is an exhaust gas treatment method.

この発明で、酸化カルシウムを供給できる物質とは、例
えば生石灰、消石灰、炭#石灰、セメント、スラグ、ド
ロマイトプラスタ=(石灰含有)、およびアセチレン滓
などの副生品などである。
In the present invention, substances capable of supplying calcium oxide include by-products such as quicklime, slaked lime, charcoal lime, cement, slag, dolomite plaster (containing lime), and acetylene slag.

酸化アルミニウムを供給しつる物質とは、例えばアルミ
ナ、水酸化アルミニウム、ケイ酸アルミニウム、硫酸ば
ん土、明ばん、硫化アルミニウム、硫酸アルミニウム、
塩化アルミニウム、アルミン酸カルシウム、ヘントナイ
ト、カオリン、ケイソウ土、ゼオライト、パーライト、
ホーキサイド、アルミン酸ナトリウム、氷晶石、アルミ
洗浄残滓(アルサイト)などの反応性アルミニウムを含
有する化合物などである。
Substances that supply aluminum oxide include, for example, alumina, aluminum hydroxide, aluminum silicate, sulfuric acid, alum, aluminum sulfide, aluminum sulfate,
Aluminum chloride, calcium aluminate, hentonite, kaolin, diatomaceous earth, zeolite, perlite,
These include compounds containing reactive aluminum such as phooxide, sodium aluminate, cryolite, and aluminum cleaning residue (alcite).

二酸化ケイ素を供給し得る物質とは、例えばケイ酸、含
水ケイ酸、メタケイ酸、ケイ酸アルミニウム、水ガラス
、ケイ酸カルシウムおよびクリストバライト、トリジマ
イト、カオリン、ヘントナイト、タルク、パーライト、
シラス、ケイソウ土、ガラス、モミ殻灰、木灰などの焼
却灰などの反応性二酸化ケイ素を含有する化合物などで
ある。
Substances that can supply silicon dioxide include, for example, silicic acid, hydrous silicic acid, metasilicic acid, aluminum silicate, water glass, calcium silicate, cristobalite, tridymite, kaolin, hentonite, talc, perlite,
These include compounds containing reactive silicon dioxide, such as whitebait, diatomaceous earth, glass, rice husk ash, incineration ash such as wood ash, etc.

また、前述の3種の化合物中央なくとも2種以上を同時
に供給しつる物質の例として、−石炭灰及び火山灰、石
炭流動層燃焼灰(酸化カルシウム、二酸化ケイ素、酸化
アルミニウム源)、セメント及びセメントクリンカ−(
酸化カルシウム、二酸化ケイ素、酸化アルミニウム源)
、スラグ及びシラス、安山岩、チャート、石英粗面岩、
オパール、沸石、長石、粘土鉱物、エトリンガイト(二
酸化ケイ素、酸化アルミニウム、酸化カルシウム源)な
どの反応性二酸化ケイ素、およびアルミニウム、カルシ
ウムなどの酸化物、塩化物、硫酸塩などを含有する鉱物
、流動層燃焼灰などの炉内脱硫法及び煙道脱硫の使用済
脱硫剤、汚泥焼却灰、都市ゴミ焼却灰、セメントぐず、
アセチレン滓、使用済廃水処理剤などがあげられる。こ
こで、使用済脱硫剤とは、CaO1Ca (0)1) 
2、CaCO3なとのカルシウム系脱硫剤の使用済みの
ものおよび特開昭61−209038 ニ示されルCa
O1Aha3.5in2、Ca5Oa系組成物からなる
脱硫剤の使用済みのものなどをいう。
In addition, examples of substances that simultaneously supply at least two or more of the three types of compounds mentioned above include - coal ash and volcanic ash, coal fluidized bed combustion ash (source of calcium oxide, silicon dioxide, and aluminum oxide), cement, and cement. Clinker (
Calcium oxide, silicon dioxide, aluminum oxide sources)
, slag and shirasu, andesite, chert, quartz trachyte,
Minerals containing reactive silicon dioxide such as opal, zeolite, feldspar, clay minerals, ettringite (silicon dioxide, aluminum oxide, calcium oxide source), and oxides such as aluminum, calcium, chlorides, sulfates, etc., fluidized bed Used desulfurization agents for in-furnace desulfurization and flue desulfurization of combustion ash, sludge incineration ash, municipal waste incineration ash, cement waste,
Examples include acetylene slag and used wastewater treatment agents. Here, the used desulfurization agent is CaO1Ca (0)1)
2. Used calcium-based desulfurization agents such as CaCO3 and JP-A No. 61-209038.
It refers to used desulfurization agents made of O1Aha3.5in2, Ca5Oa-based compositions, etc.

第1表にこれらの代表的原料の化学組成の例を示す。Table 1 shows examples of chemical compositions of these typical raw materials.

硫酸化合物、ハロゲン元素化合物、硫化物およびアルカ
リ金属の水酸化物を供給できる物質の群とは、石膏、硫
酸マグネシウム、塩化カルシウム、塩化マグネシウム、
硫酸ナトリウム、亜硫酸カルシウム、硫酸水素カルシウ
ム、塩化ナトリウム、塩化ストロンチウム、臭化カルシ
ウム、ヨウ化カルシウム、塩化カリウム、チオ硫酸ナト
リウム、炭酸水素ナトリウム、炭酸水素カルシウム、硫
化カルシウム、硫化鉄、硫化亜鉛、水酸化ナトリウムお
よび水酸化カリウムなどで、とくに石膏および水酸化ナ
トリウムが好ましい。
The group of substances that can supply sulfuric compounds, halogen element compounds, sulfides and alkali metal hydroxides are gypsum, magnesium sulfate, calcium chloride, magnesium chloride,
Sodium sulfate, calcium sulfite, calcium hydrogen sulfate, sodium chloride, strontium chloride, calcium bromide, calcium iodide, potassium chloride, sodium thiosulfate, sodium hydrogen carbonate, calcium hydrogen carbonate, calcium sulfide, iron sulfide, zinc sulfide, hydroxide Among sodium and potassium hydroxide, gypsum and sodium hydroxide are particularly preferred.

上記成分の硬化物中の割合は(CaSO4を含存させた
場合) CaO(およびGa50< )を CaOとして      1〜90%、八1203 と
して     2〜70%、5i02として     
  2〜90%、好ましくは CaOとして      2〜80%、(CaSO4と
して    0.1〜70%、)Al2O2として  
   5〜70%、5in2として       5〜
80%、である。
The proportion of the above components in the cured product (when CaSO4 is included) is 1 to 90% for CaO (and Ga50<) as CaO, 2 to 70% for 81203, and 2 to 70% for 5i02.
2-90%, preferably 2-80% as CaO, (0.1-70% as CaSO4,) as Al2O2
5~70%, as 5in2 5~
80%.

石膏以外の硫酸化合物、ハロゲン元素化合物、硫化物お
よびアルカリ金属の水酸化物を供給できる物質の群から
選ばれた1種以上の物質を加えた場合は、 Na25o、、CaCl2 NaC1の1種以上か  0.1〜50%硫化物として
好ましくは 硫化カルシウムが  0.1〜50% アルカリ金属の水酸化物として好ましくはNa1l(お
よび/またはK1−10か 0.1〜to%である。
When one or more substances selected from the group of substances other than gypsum that can supply sulfuric compounds, halogen element compounds, sulfides, and alkali metal hydroxides are added, one or more of Na25o, CaCl2, NaCl1 or The sulfide is preferably 0.1 to 50% calcium sulfide, and the alkali metal hydroxide is preferably Na11 (and/or K1-10) 0.1 to %.

この発明で水和処理とは、例えば特開昭64−381:
]0に開示したように、前述の諸物質(原料)間の水和
反応を進行させるために必要な処理を−いい、例えば常
圧もしくは高圧の常温水または熱水養生、湿空養生、蒸
気養生などか一含まれ、硬化性水和処理と、非固結性水
和処理とに分類される。
In this invention, hydration treatment refers to, for example, JP-A-64-381:
] As disclosed in 0, it refers to the treatments necessary to advance the hydration reaction between the various substances (raw materials) mentioned above, such as normal pressure or high pressure room temperature water or hot water curing, humid air curing, steam It includes curing, etc., and is classified into hardening hydration treatment and non-caking hydration treatment.

硬化性水和処理とは処理時の前記諸原料と水との割合(
固液比)を小に、例えば1:0.2〜1 :  0.8
0とすることによフて、材料粒子間の結合を促進させ、
硬化体を得る水和処理をいう。
Curing hydration treatment refers to the ratio of the above raw materials and water during treatment (
(solid-liquid ratio) to be small, e.g. 1:0.2 to 1:0.8
By setting it to 0, the bond between material particles is promoted,
A hydration process to obtain a hardened product.

非固結性水和処理とは、材料粒子同志か水和処理中に結
合して粗大粒子に成長するのを妨げる処理をいい、処理
開始時の固液比を大に、例えば1:1.5〜1:20と
し、熱水養生においては、40℃〜180℃で水中に原
料を分散し、原料が下部に沈澱硬化しないように攪拌、
バブリング、循環、振とうなとを数分間から数日間行う
処理である。
Non-caking hydration treatment refers to treatment that prevents material particles from bonding together and growing into coarse particles during hydration treatment, and the solid-liquid ratio at the start of treatment is increased, for example, 1:1. In hot water curing, the raw materials are dispersed in water at 40°C to 180°C, and stirred to prevent the raw materials from settling and hardening at the bottom.
This process involves bubbling, circulation, and shaking for several minutes to several days.

水和処理工程においては、処理剤中の活性物質の生成の
必要な水分を十分に与えた状態を経て、排ガス浄化に必
要な活性化合物形成に重要な段階を終了し、この間、水
分の一部あるいは大部分は、該化合物形成反応に消費さ
れる。
In the hydration treatment process, after providing sufficient moisture necessary for the production of active substances in the treatment agent, the important stage for the formation of active compounds necessary for exhaust gas purification is completed, and during this period, some of the moisture is Alternatively, most of it is consumed in the compound formation reaction.

硬化性水和処理における湿空養生−は、温度10℃〜4
0℃、相対湿度50%〜100%で、数分間あるいは数
十日間が好ましく、また蒸気養生は、温度40℃〜18
0℃、相対湿度100%で、数分間〜数日間か好ましい
Humid air curing in hardening hydration treatment is performed at a temperature of 10°C to 4°C.
A period of several minutes or several tens of days is preferable at 0°C and a relative humidity of 50% to 100%, and steam curing is performed at a temperature of 40°C to 18°C.
Preferably, the temperature is 0°C and 100% relative humidity for several minutes to several days.

SO□、HCl、HF、および/またはNしを含むガス
による処理は、これらのガスを10ppm〜90%含む
温度20℃〜500℃のガスで、SV5〜50.000
 h−1て排ガス反応物質1kg当たりこれらのガスの
単独または混合物の少なくとも1モルと接触するのに充
分な時間処理すればよく、通常処理すべき排ガス(被処
理排ガス)を用いることができる。
Treatment with a gas containing SO□, HCl, HF, and/or N2 is performed with a gas containing 10 ppm to 90% of these gases at a temperature of 20°C to 500°C, with an SV of 5 to 50.000.
It is only necessary to treat the exhaust gas at h-1 for a time sufficient to contact with at least 1 mole of these gases alone or in a mixture per 1 kg of the exhaust gas reactant, and the exhaust gas to be normally treated (exhaust gas to be treated) can be used.

排ガス反応物質の形状は、スラリーの蒸発によって生成
する粉体、粉体噴霧によって得られる粉体なとのO,1
mm以下の微細な粒子および0 、1 mm以上数数十
mまでの粒子状のものである。
The shape of the exhaust gas reactant is O,1, such as powder produced by evaporation of slurry or powder obtained by powder spraying.
These include fine particles with a diameter of 1 mm or less, and particles with a diameter of 0.1 mm or more up to several tens of meters.

洗浄処理は、水または、アルカリの水溶液または水懸濁
液を使用する。アルカリは、アルカリ金属および/また
はアルカリ土類金属の水酸化物、炭酸塩で、これらの水
溶液および/またはその水懸濁液を用いる。洗浄処理時
の液の濃度、処理時間、処理の具体的方法などに特に制
限はないが、処理液温は、5℃から180℃までの広い
範囲で、好ましくは50℃から150℃である。この洗
浄処理により、排ガス反応物質中のCa5o4、CaC
l2、NaC1,NaNO3、Ca(N(1+)2など
、排ガス反応物質と前記処理ガスが反応することによっ
て「生成した物質」か溶出し、特に粒子の表面に近い部
分に空隙が多くなり粒子内部へガスが拡散し易くなる。
The cleaning process uses water or an alkaline aqueous solution or aqueous suspension. The alkali is a hydroxide or carbonate of an alkali metal and/or an alkaline earth metal, and an aqueous solution and/or suspension thereof is used. Although there are no particular restrictions on the concentration of the liquid during the cleaning treatment, the treatment time, the specific method of treatment, etc., the temperature of the treatment liquid is within a wide range from 5°C to 180°C, preferably from 50°C to 150°C. Through this cleaning process, Ca5o4 and CaC in the exhaust gas reactants are removed.
12, NaC1, NaNO3, Ca(N(1+)2, etc.), "generated substances" are eluted by the reaction between the exhaust gas reactants and the processing gas, and voids increase especially in the part near the surface of the particles, causing the inside of the particles to This makes it easier for gas to diffuse into the air.

したかっててきるだけ多くの「生成した物質」を溶出さ
せることが好ましく、さらにこれらの溶出した物質を含
む洗浄液から排ガス反応物質を分離することか本発明技
術の特徴である。
Therefore, it is preferable to elute as many "produced substances" as possible, and furthermore, it is a feature of the technology of the present invention that exhaust gas reactants are separated from the cleaning liquid containing these eluted substances.

洗浄液かアルカリの水溶液および/またはその水懸濁液
の場合、そのアルカリ物質か排ガス反応物質に保持され
るが、単に物理的に吸着しているのか、排ガス反応物質
の成分と化学的に反応して結合しているのかは、明かで
はない。しかし、処理後の粒子状排ガス反応物質の硬化
強度か上昇するところから、何らかの反応が進行してい
るのは明かである。さらに、この処理が、NO,、と排
ガス処理剤の構成成分との反応またはN08の排ガス処
理剤への吸着を促進するのか、あるいは保持されたアル
カリ物質が排ガス中のNOxあるいは排ガスを処理した
排ガス反応物質中のNO,(特定条件下で、排ガス反応
物質から気中へ放出される。〉あるいはその化合物と反
応しているのかなどについては確証はないが、何れにし
ても後述の実施例のように、NO,1除去に有効なこと
および、処理後の粒子状排ガス反応物質の強度上昇に有
効なこと、さらにS02、HF除去能力にも有意な効果
があることは明かである。
In the case of cleaning fluids or alkaline aqueous solutions and/or aqueous suspensions thereof, the alkaline substances or exhaust gas reactants may be retained, either by physical adsorption or by chemical reaction with components of the exhaust gas reactants. It is not clear whether they are connected. However, from the fact that the curing strength of the particulate exhaust gas reactants increases after treatment, it is clear that some kind of reaction is progressing. Furthermore, it is unclear whether this treatment promotes the reaction of NO with the constituent components of the exhaust gas treatment agent or the adsorption of N08 to the exhaust gas treatment agent, or whether the retained alkaline substances promote the NOx in the exhaust gas or the exhaust gas that has been treated with the exhaust gas. There is no certainty as to whether NO in the reactant (released into the air from the exhaust gas reactant under specific conditions) or its compounds reacts, but in any case, the Thus, it is clear that it is effective in removing NO, 1, is effective in increasing the strength of particulate exhaust gas reactants after treatment, and also has a significant effect on the ability to remove S02 and HF.

館記排ガス反応物質のガス処理は、得られる排ガス処理
剤か処理すべき被処理ガスまたは排ガス処理剤で処理さ
れた後のガスを利用すればよい。洗浄処理前の排ガス反
応物質は、出願人がすでに特開昭61−209038.
82−97640.52−213842.62−254
824.63−69523.64−38130.64−
80425で開示したように、脱硫、脱硝などの排ガス
処理の能力をもつものであるから、第1〜3図に示す排
ガス処理システムに組立てることができる。
For gas treatment of the exhaust gas reactant, the obtained exhaust gas treatment agent, the gas to be treated, or the gas treated with the exhaust gas treatment agent may be used. The exhaust gas reactants before cleaning treatment have already been disclosed by the applicant in Japanese Patent Application Laid-Open No. 61-209038.
82-97640.52-213842.62-254
824.63-69523.64-38130.64-
As disclosed in No. 80425, it has the ability to treat exhaust gas such as desulfurization and denitrification, so it can be assembled into the exhaust gas treatment system shown in FIGS. 1 to 3.

すなわち第1図においては、前記の排ガス反応物質Sは
、まず第1除害装置1でNOx、 SO2、MCI、お
よび/またはHFを含む被処理排ガスGの除害を行い、
自らは、この被処理排ガスで処理され、次に洗浄処理装
置3で、水あるいはアルカリの水溶液および/またはそ
の水懸濁液(洗浄液)Aで処理されて、この発明の排ガ
ス処理剤Rとなり、さらに第2除害装置2に充填されて
被処理排ガス中に残存する存置ガスの除去、主として脱
硝に威力を発揮する。
That is, in FIG. 1, the exhaust gas reactant S is first subjected to the abatement of the to-be-treated exhaust gas G containing NOx, SO2, MCI, and/or HF in the first abatement device 1;
itself is treated with this to-be-treated exhaust gas, and then treated with water or an aqueous alkali solution and/or its water suspension (cleaning liquid) A in the cleaning treatment device 3 to become the exhaust gas treatment agent R of the present invention, Furthermore, it is filled into the second abatement device 2 and is effective in removing residual gas remaining in the exhaust gas to be treated, mainly in denitrification.

第2図においては、排ガス反応物質Sは、まず第2除害
装置2に充填されて、第1除害装置1を経たNし、SO
□、HCIおよび/または)IFの残存する被処理排ガ
スの除害処理を行い、みずからはこの被処理排ガスで処
理され、ついで洗浄処理装置3で洗浄液Aで処理されて
、この発明の排ガス処理剤Rとなり、次に第1除害装置
1に充填されて、脱硝能力を強化された処理剤として被
処理排ガスの一次除害を行う。
In FIG. 2, the exhaust gas reactant S is first filled into the second abatement device 2, passed through the first abatement device 1, and then converted to SO.
□, HCI and/or) IF performs a detoxification treatment on the remaining treated exhaust gas, and is itself treated with this treated exhaust gas, and then treated with cleaning liquid A in the cleaning treatment device 3 to obtain the exhaust gas treatment agent of the present invention. R, and then filled into the first abatement device 1 to perform primary abatement of the exhaust gas to be treated as a treatment agent with enhanced denitrification ability.

第3図においては、被処理排ガスは第1、第2、第3除
害装置の順に除害装置を通る。排ガス反応物質Sはまず
第2除害装置2に充填されて、第1除害装置を経たNo
X、 S02、HClおよび/またはHFが残存する被
処理排ガスの二次除害処理を行い、みずからはこの被処
理ガスで処理され、ついて洗浄処理装置3で洗浄液Aで
処理されて、この発明の排ガス処理剤Rとなり、次に第
1除害装置1に充填されて脱硝能力の強化された処理剤
として被処理排ガスの一次除害を行う。さらに脱硝能力
の低下した処理剤は洗浄処理装置3で洗浄液Aで洗浄処
理さね、脱硝能力を回復して第3除害装置4に充填され
て被処理ガスの三次除害を行うプロセスを示す。
In FIG. 3, the exhaust gas to be treated passes through the abatement devices in the order of the first, second, and third abatement devices. The exhaust gas reactant S is first filled into the second abatement device 2, and passed through the first abatement device No.
A secondary abatement treatment is performed on the treated exhaust gas in which X, S02, HCl and/or HF remain, and the waste gas itself is treated with this treated gas, and then treated with the cleaning liquid A in the cleaning treatment device 3. The exhaust gas treatment agent R is then filled into the first abatement device 1 to perform primary abatement of the exhaust gas to be treated as a treatment agent with enhanced denitrification ability. Furthermore, the processing agent whose denitrification ability has decreased is cleaned with cleaning liquid A in the cleaning treatment device 3, and the denitration ability is restored and the process is filled into the third abatement device 4 to perform tertiary abatement of the gas to be treated. .

以下実施例によフてこの排ガス処理剤について詳細に説
明する。
The exhaust gas treatment agent will be described in detail below using Examples.

〔実施例〕〔Example〕

実施例1 石炭灰(海外産)  (AlO322%、 5in26
4%)51重量部、Ca(Of()230重量部、Ca
SO419重量部の粉状物に水45重量部を加えて混練
し、95〜100℃で12時間蒸気養生し、130℃で
2時間乾燥後、破砕して粒径3.36〜4.76 mm
の粒子状排ガス反応物質を得た。
Example 1 Coal ash (produced overseas) (AlO322%, 5in26
4%) 51 parts by weight, Ca (Of() 230 parts by weight, Ca
45 parts by weight of water was added to a powder containing 19 parts by weight of SO4, kneaded, steam-cured at 95-100°C for 12 hours, dried at 130°C for 2 hours, and then crushed to give a particle size of 3.36-4.76 mm.
of particulate exhaust gas reactants were obtained.

この排ガス反応物質を第2表に示すガスで、5vioo
oh−’、温度130℃て200時間処理し、ついで、
室温まで冷却し、その40gを、Ca(叶)22gを純
水2flに懸濁させ5分間放置後の上澄液(1立)に投
入し、液温を20℃に保ち、ときどき攪拌して30分間
洗浄後、粒子状排ガス反応物質を目開き3田口のステン
レス製網て濾過して分離して、表乾状態にした排ガス処
理剤(実施例1−1)と、100℃で1時間乾爆した排
ガス処理剤(実施例1−2)を得た。さらに、上澄液(
洗浄液〉温度を95℃とし、同様に処理した後、粒子状
排ガス反応物質を取り出し、表乾状態にした排ガス処理
剤(実施例!−3)と、100℃で1時−間乾燥した排
ガス処理剤(実施例1−4)を得た。これらの排ガス処
理剤30mj2(かさ比重0.9)を試験装置に充填し
、第2表に示したガスを5V2000(h−1)、温度
130℃で通過させ、入口および出口ガス中のNしおよ
びS02の濃度を測定して脱硝、脱硫率を求めた。さら
に処理液中のNOxおよびSO□の濃度を測定して、脱
硝、脱硫率を求めた。さらに洗浄液中のNO3−1SO
4“濃度も測定し、結果を第3表に示した。
This exhaust gas reactant is the gas shown in Table 2, and 5vio
oh-', treated at a temperature of 130°C for 200 hours, and then
After cooling to room temperature, 40 g of the suspension was added to the supernatant liquid (1 tate) that had been prepared by suspending 22 g of Ca (leaf leaves) in 2 fl of pure water and left for 5 minutes.The temperature of the liquid was kept at 20°C, and the suspension was stirred occasionally. After washing for 30 minutes, the particulate exhaust gas reactants were separated by filtration through a stainless steel screen with 3 openings, and the exhaust gas treatment agent (Example 1-1) was dried at 100°C for 1 hour. An exploded exhaust gas treatment agent (Example 1-2) was obtained. Furthermore, supernatant liquid (
Cleaning liquid> Exhaust gas treatment agent (Example!-3) which was heated to 95℃ and treated in the same manner, after which particulate exhaust gas reactants were taken out and dried on the surface (Example!-3), and exhaust gas treatment agent that was dried at 100℃ for 1 hour. (Example 1-4) was obtained. A test device was filled with 30mj2 of these exhaust gas treatment agents (bulk specific gravity 0.9), and the gases shown in Table 2 were passed through at 5V2000 (h-1) and a temperature of 130°C, and the nitrogen content in the inlet and outlet gases was evaluated. The concentrations of S02 and S02 were measured to determine the denitrification and desulfurization rates. Furthermore, the concentrations of NOx and SO□ in the treatment liquid were measured to determine the denitrification and desulfurization rates. Furthermore, NO3-1SO in the cleaning solution
4" concentration was also measured and the results are shown in Table 3.

比較例の剤は、各実施例において洗浄処理を行わなかっ
たものである(第4〜11表においても同じ)。
The agents of Comparative Examples were not subjected to the washing treatment in each Example (the same applies to Tables 4 to 11).

第2表 502   (ppm)     90 ONO,(p
pm)     450 0□  (*)6 co2  (*)       13 H20(96)       1O N2(!l;)  残部 第3表 本1 排ガス反応物質を第2表に示すガスによる処理後
、S V 2000 h−’での試験を5時間行い、そ
の平均値。
Table 2 502 (ppm) 90 ONO, (p
pm) 450 0□ (*)6 co2 (*) 13 H20 (96) 1O N2 (!l;) Remainder Table 3 Book 1 After treating the exhaust gas reactants with the gases shown in Table 2, SV 2000 h- The test was conducted for 5 hours and the average value.

ネ2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) ネ3 この場合の脱硝能力は無い。逆に排ガス反応物質
中のNOX化合物か分解してNO,、を放出するため、
排ガス反応物質層を通過した排ガス中のNOxは人口濃
度に比べて高くなる。以下このような現象が起こる場合
「吐き出し」と表示する。all、で示した数字は5時
間に放出されたNしのガス量である。
Ne2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage Ne3 There is no denitrification ability in this case. Conversely, NOX compounds in the exhaust gas reactants are decomposed to release NO.
NOx in the exhaust gas that has passed through the exhaust gas reactant layer becomes higher than the population concentration. Below, when such a phenomenon occurs, it will be indicated as "vomiting". The number indicated by "all" is the amount of N gas released in 5 hours.

実施例2 実施例1て得た粒子状排ガス反応物質を、第2表に示す
ガスで、5V1000h−’、温度130℃で、200
時間処理し、ついで室温まで冷却し、その40gを、(
:a(OH)220 gを純水22に懸濁させた液に投
入し、ときどき攪拌して処理温度、処理時間を変えた洗
浄を行い、ついで口開き3mmのステンレス製網て濾過
して分離し、表乾状態の粒子状排ガス処理剤を得た。2
0℃液温て30分間処理を実施例2−1とし、95℃液
温で30分間処理を実施例2−2とした。実施例2−3
は95℃液温て60分間処理した。
Example 2 The particulate exhaust gas reactant obtained in Example 1 was heated at 5 V 1000 h-' and a temperature of 130° C. for 200 min with the gas shown in Table 2.
After processing for an hour and then cooling to room temperature, 40 g of (
: Pour 220 g of a(OH) into a solution suspended in 22% pure water, stir occasionally and wash by varying the treatment temperature and treatment time, then filter through a stainless steel mesh with a 3 mm opening to separate. A surface-dried particulate exhaust gas treatment agent was obtained. 2
Example 2-1 was a treatment at a liquid temperature of 0° C. for 30 minutes, and Example 2-2 was a treatment at a liquid temperature of 95° C. for 30 minutes. Example 2-3
The solution was heated to 95°C for 60 minutes.

実施例2−1.2−2.2−3の剤をそれぞれさらに1
00℃で1時間乾燥したものをそれぞれ実施例2−4、
実施例2−5、実施例2−6とした。
Further 1 of each of the agents of Example 2-1.2-2.2-3
Examples 2-4 and 2-4 were dried at 00°C for 1 hour, respectively.
This was referred to as Example 2-5 and Example 2-6.

これらの排ガス処理剤の性能試験および洗浄液中のNo
3〜、SO4”濃度の測定は、実施例1と同様にして行
った。
Performance tests of these exhaust gas treatment agents and No.
3~, SO4'' concentration was measured in the same manner as in Example 1.

試験結果は、第4表に示した。The test results are shown in Table 4.

第4表 ネ1 排ガス反応物質を第2表に示すガスによる処理後
、S V 2000 h−’での試験を5時間行い、そ
の平均値。
Table 4 - 1 After treatment of the exhaust gas reactants with the gases shown in Table 2, a test was conducted at SV 2000 h-' for 5 hours, and the average value.

峠 通ガス後、5時間の平均脱硫率(%)および平均脱
硝率(%) 本3 第3表示3参照 実施例3 実施例1で得た粒子状排ガス反応物質を、第2表に示す
ガステ、5V1000h”、温度130℃で、200時
間処理し、ついで室温まで冷却し、その40gを水IJ
2中に加え、液温を20℃または95℃に保ち、ときど
き攪拌して30分間洗浄後、粒子状排ガス反応物質を口
開3oonのステンレス製網で濾過して、分離し、表乾
状態にした排ガス処理剤で、20℃液温処理を実施例3
−1とし、95℃液温処理を実施例3−2とした。
Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after passing the gas Book 3 Third Display 3 Reference Example 3 The particulate exhaust gas reactant obtained in Example 1 was subjected to the gas test shown in Table 2. , 5V 1000h'' and a temperature of 130°C for 200 hours, then cooled to room temperature, and 40g of it was poured into water IJ.
2, keep the liquid temperature at 20°C or 95°C, stir occasionally and wash for 30 minutes, then filter the particulate exhaust gas reactants through a 3-ounce stainless steel mesh to separate them and leave them to dry on the surface. Example 3: 20°C liquid temperature treatment using an exhaust gas treatment agent
-1, and 95°C liquid temperature treatment was set as Example 3-2.

実施例3−1および3−2の剤をさらに1o。An additional 1o of the agents of Examples 3-1 and 3-2 was added.

℃で1時間乾燥した排ガス処理剤を、それぞれ実施例3
−3、実施例3−4とした。
Exhaust gas treatment agents dried at ℃ for 1 hour were prepared in Example 3.
-3 and Example 3-4.

これらの排ガス処理剤の性能試験および洗浄液中のNo
3−5o4”濃度の測定は、実施例1と同様にして行っ
た。
Performance tests of these exhaust gas treatment agents and No.
The measurement of the 3-5o4'' concentration was carried out in the same manner as in Example 1.

試験結果は、第5表に示した。The test results are shown in Table 5.

第5表 ネ1 排ガス反応物質を第2表に示すガスによる処理後
、S V 2000 h−’での試験を5時間行い、そ
の平均値。
Table 5 - 1 After treatment of the exhaust gas reactants with the gases shown in Table 2, a test was conducted at SV 2000 h-' for 5 hours, and the average value.

*2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) 傘3 第3表*3参照 実施例4 実施例1て得た粒子状反応物質を、第2表に示すガスで
、5vtoooh−’、温度130℃で、200時間処
理し、ついで室温まで冷却し、その40gを、(:a(
:O,、2gを水iILの純水に懸濁させ5分間放置後
の上澄液IJ:tに加え、液温を95℃に保ち、ときど
き攪拌して30分間洗浄後、粒子状反応物質を目間3m
Inのステンレス製網で濾過して分離し、表乾状態にし
た排ガス処理剤(実施例4−1)と、100℃て1時間
乾燥した排ガス処理剤(実施例4−2)を得た。
*2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage Umbrella 3 Table 3 *3 Reference Example 4 The particulate reactants obtained in Example 1 are shown in Table 2. Treated with gas for 200 hours at 5vtoooh-' and a temperature of 130°C, then cooled to room temperature, and 40g thereof was treated with (:a(
:O,, 2g was suspended in pure water iIL and left to stand for 5 minutes, then added to the supernatant liquid IJ:t, kept the liquid temperature at 95°C, and after washing for 30 minutes with occasional stirring, the particulate reactant was removed. distance of 3m
An exhaust gas treatment agent (Example 4-1) which was separated by filtration through an In stainless steel net and dried on the surface, and an exhaust gas treatment agent (Example 4-2) which was dried at 100° C. for 1 hour were obtained.

これらの排ガス処理剤の性能試験および洗浄液中のNO
3−5S04“濃度の測定は、実施例1と同様にして行
った。
Performance tests of these exhaust gas treatment agents and NO in cleaning solutions
3-5S04" The concentration was measured in the same manner as in Example 1.

傘1 排ガス反応物質を第2表に示すガスによる処理後
、5V2000h−’での試験を5時間行い、その平均
値。
Umbrella 1 After treating the exhaust gas reactants with the gases shown in Table 2, a test was conducted at 5V2000h-' for 5 hours, and the average value.

本2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) 峠 第3哀悼参照 実施例5 実施例1て得た粒子状反応物質を、第2表に示すガステ
、5V1000h−’、温度13−0”Cで、200時
間処理し、ついで、室温まて冷却し、そ(7)40gを
、Na01+ 0.2gを21の純水に溶解した水溶液
に加え、液温を95℃に保ち、ときとき攪拌して30分
間洗浄後、粒子状反応物質を目間31nlIlのステン
レス製網で濾過して分離し、表乾状態にした排ガス処理
剤(実施例5−1)と、100℃で1時間乾燥した排ガ
ス処理剤(実施例5−2)を得た。
Book 2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after passing gas -', treated at a temperature of 13-0"C for 200 hours, then cooled to room temperature, and added 40g of it (7) to an aqueous solution of 0.2g of Na01+ dissolved in pure water of step 21, and the temperature of the solution was lowered. After washing for 30 minutes while maintaining the temperature at 95°C and stirring occasionally, the particulate reactants were separated by filtration through a stainless steel mesh with a mesh size of 31 nlIl, and the exhaust gas treatment agent (Example 5-1) was dried on the surface. , an exhaust gas treatment agent (Example 5-2) was obtained by drying at 100° C. for 1 hour.

これらの排ガス処理剤の性能試験および洗浄液中のNO
,−1S04“濃度の測定は、実施例1と同様にして行
った。
Performance tests of these exhaust gas treatment agents and NO in cleaning solutions
, -1S04" concentration was measured in the same manner as in Example 1.

試験結果は、第7表に示した。The test results are shown in Table 7.

本l 排ガス反応物質を第2表に示すガスによる処理後
、5V2000h−’で(7)試験を5時間行い、その
平均値。
After treating the exhaust gas reactants with the gases shown in Table 2, a (7) test was conducted at 5V2000h-' for 5 hours, and the average value.

峠 通ガス後、5時間の平均脱硫率(%)および平均脱
硝率(%) *3 第3表*3参照 実施例6 水500重量部にCa037.8重量部(Ca (OR
) 2換算fi50重量部)を加えて充分消化した後、
第1表に示す石炭灰(海外炭)30重量部、使用済排ガ
ス反応物質20重量部の順に加え95℃〜100℃で1
2時間熱水中における水和養生を行フた後、真空脱水機
て固液分難し、アトリターて粉砕、乾燥して0.1+n
m以下の粉状排ガス反応物質を得た。
Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after passing the gas *3 Table 3 *3 Reference Example 6 37.8 parts by weight of Ca (Ca (OR)
) 2 equivalent fi 50 parts by weight) was added and sufficiently digested,
Add 30 parts by weight of coal ash (overseas coal) shown in Table 1 and 20 parts by weight of the spent exhaust gas reactant in that order and heat at 95°C to 100°C.
After hydration and curing in hot water for 2 hours, solid-liquid separation was carried out using a vacuum dehydrator, pulverized using an attritor, and dried to 0.1+n.
A powdery exhaust gas reactant of less than m was obtained.

この粉状排ガス反応物質を第2表に示すガス中に噴霧し
、バグフィルタ−で粉状排ガス反応物質を捕集した。捕
集した粉状排ガス反応物質は、くり返し使用しハゲフィ
ルター通過後の脱硫率が10%以下になった時点で取り
出した。この使用済粉状排ガス反応物質を比較例とし、
以下に示す性能試験を行フだ。結果は、第8表に示す。
This powdered exhaust gas reactant was sprayed into the gas shown in Table 2, and the powdered exhaust gas reactant was collected using a bag filter. The collected powdered exhaust gas reactant was used repeatedly and taken out when the desulfurization rate after passing through the bald filter became 10% or less. This used powdered exhaust gas reactant is used as a comparative example.
Perform the performance test shown below. The results are shown in Table 8.

ついて、使用済粉状排ガス反応物質を室温まで冷却し、
その40gを、Ca(OH)22 g 全純水2kに懸
濁させた液に投入し、液温を95℃に保ち、ときどき攪
拌して30分間洗浄後、真空脱水機で固液分離し、10
0’Cで1時間乾燥後、遠心粉砕機で固着した粒子を分
離して排ガス処理剤を得た。
Then, the spent powdered exhaust gas reactant is cooled to room temperature,
40g of the suspension was added to a solution containing 22g of Ca(OH) suspended in 2k of pure water, the temperature of the solution was maintained at 95°C, and after washing for 30 minutes with occasional stirring, solid-liquid separation was performed using a vacuum dehydrator. 10
After drying at 0'C for 1 hour, fixed particles were separated using a centrifugal pulverizer to obtain an exhaust gas treatment agent.

剤の性能は、この排ガス処理剤10gを5gの脱脂綿に
分散付着させ32mmφX高さ180amのパイレック
スガラス製反応管に充填し、第2表のガスを温度130
℃て通過させ入口および出口ガス中のNO8および50
.の濃度を測定して脱硝、脱硫率を求めた。さらに洗浄
液中のNO3−1Soj″濃度も測定し試験結果を第8
表に示した。
The performance of the agent was determined by dispersing and adhering 10 g of this exhaust gas treatment agent to 5 g of absorbent cotton and filling a Pyrex glass reaction tube with a diameter of 32 mm and a height of 180 am.
NO8 and 50 in the inlet and outlet gases passed through at
.. The denitrification and desulfurization rates were determined by measuring the concentration of Furthermore, we measured the concentration of NO3-1Soj'' in the cleaning solution and reported the test results in the 8th test.
Shown in the table.

*1 排ガス反応物質を第2表に示すガスによる処理後
、5V2000h−’ての試験を5時間行い、その平均
値。
*1 After treating the exhaust gas reactants with the gases shown in Table 2, a test was conducted at 5V2000h-' for 5 hours, and the average value.

*2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) *3 第3表較参照 実施例7 実施例1で得た排ガス処理剤、1−1.1−2.1−3
.1−4を、洗浄前の処理ガスおよび試験用のガス(第
2表に示すガス)中の502濃度を800 ppcに、
NOx濃度を100 ppmに変えた以外は実施例1と
同し試験条件で排ガス処理試験を行い、その結果をそれ
ぞれ実施例7−1.7−2.7−3.7−4として第9
表に示した。
*2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage *3 Third Table Comparison Reference Example 7 Exhaust gas treatment agent obtained in Example 1, 1-1.1-2. 1-3
.. 1-4, the 502 concentration in the processing gas and test gas (gas shown in Table 2) before cleaning was adjusted to 800 ppc,
An exhaust gas treatment test was conducted under the same test conditions as in Example 1 except that the NOx concentration was changed to 100 ppm, and the results were designated as Example 7-1.7-2.7-3.7-4 and No. 9.
Shown in the table.

第9表 *1 排ガス反応物質を第2表に示すガスによる処理後
、5V2000h−’ で17)試験を5時間行い、そ
の平均値。
Table 9 *1 After treating the exhaust gas reactants with the gases shown in Table 2, a 17) test was conducted at 5V2000h-' for 5 hours, and the average value.

ネ2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) ネ3  第3表 傘3 参肪 実施例8 排ガス反応物質の処理ガスの組成を第6表とし、処理時
間を150時間に変えた以外は、実施例1と同様の操作
で、この発明の排ガス処理剤を得た。
Ne2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage An exhaust gas treatment agent of the present invention was obtained in the same manner as in Example 1, except that the time was changed to 150 hours.

すなわち実施例1−1.1−2.1−3.1−4に対応
する剤を、それぞれ8−1.8−2.8−3.8−4の
剤とした。これらにでいて実施例1と同じ試験条件で排
ガス処理試験を行い、第10表に示す結果を得た。
That is, the agents corresponding to Examples 1-1.1-2.1-3.1-4 were used as agents 8-1.8-2.8-3.8-4, respectively. Exhaust gas treatment tests were conducted on these under the same test conditions as in Example 1, and the results shown in Table 10 were obtained.

第6表 HCI    910ppID NOw    aopp印 5Q260 ppm 0026% 02    14% N2   残部 第10表 *l 排ガス反応物質を第2表に示すガスによる処理後
、S V 2000 h−’での試験を5時間行い、そ
の平均値。
Table 6 HCI 910ppID NOw aopp Mark 5Q260 ppm 0026% 02 14% N2 Balance Table 10 *l After treating the exhaust gas reactants with the gases shown in Table 2, a test at SV 2000 h-' was carried out for 5 hours. its average value.

ネ2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) 峠 第3表*3参照 実施例9 石炭灰(海外炭)(A1□0322%、 Si0□64
%)、68重量部、C,1(Of()230重量部の粉
状物に水25重量部を加えて混練した後、N a (l
 ft2重量部に水10重量部を加えて溶解した液を加
え再度混練し、穴径4Ua+nのダイスを使用した押し
2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage Table 3 *3 Reference Example 9 Coal ash (overseas coal) (A1□0322%, Si0□64
%), 68 parts by weight, C,1(Of()) After adding 25 parts by weight of water to 230 parts by weight of powder and kneading, N a (l
A solution obtained by adding 10 parts by weight of water to 2 parts by weight of ft was added, kneaded again, and pressed using a die with a hole diameter of 4 Ua+n.

出し成形機で成形後、30分間常温湿空養生し。After molding with a molding machine, it is cured at room temperature and in a humid air for 30 minutes.

その後95〜100℃で12時間蒸気養生し、130℃
で2時間乾燥後、直径4vn、長さ約4)の粒子状排ガ
ス反応物質を得た。
After that, it was steam-cured at 95-100℃ for 12 hours, and then heated to 130℃.
After drying for 2 hours, a particulate exhaust gas reactant with a diameter of 4 vn and a length of about 4 mm was obtained.

この排ガス反応物質を第2表に示すガスてsvi、oo
oh−’、温度130℃で200時間処理し、ついで室
温まで冷却し、その40gを、Ca(叶)22gを純粋
22に懸濁させ5分間放置後上澄液12の抽出処理液に
投入し、液温を20℃に保ち、ときどき攪拌して30分
間洗浄後、粒子状排ガス反応物質を目開き311101
のステンレス製網で濾過して分離して、表乾状態にした
排ガス処理剤(実施例9−1)と100℃で1時間乾燥
した排ガス処理剤(実施例9−2)を得た。さらに抽出
処理液温度を95℃とし、同様に処理した後、粒子状排
ガス反応物質を取り出し、表乾状態にした排ガス処理剤
(実施例9−3)と、100℃て1時間乾燥した排ガス
処理剤(実施例9−4)を得た。
The exhaust gas reactants are the gases shown in Table 2.svi,oo
oh-', treated at a temperature of 130°C for 200 hours, then cooled to room temperature, suspended 22 g of Ca (leaf leaves) in Pure 22, left for 5 minutes, and then added to the extraction treatment liquid of supernatant 12. After washing for 30 minutes while keeping the liquid temperature at 20°C and stirring occasionally, the particulate exhaust gas reactants were washed with aperture 311101.
An exhaust gas treatment agent (Example 9-1) which was dried on the surface by filtration through a stainless steel net and an exhaust gas treatment agent (Example 9-2) which was dried at 100° C. for 1 hour were obtained. Furthermore, the temperature of the extraction treatment liquid was set to 95°C, and after the same treatment, the particulate exhaust gas reactants were taken out and dried on the surface. (Example 9-4) was obtained.

これらの排ガス処理剤30mu(かさ比重0.95)を
試験装置に充填し、第2表に示したガスをSV2.00
0 (h−’)、温度130℃で通過させ、大口および
出口ガス中のNo。およびSO,の濃度乞測定して脱硝
、脱硫率を求めた6更に洗浄液中のN03−1504′
濃度も測定し結果を第11*1 排ガス反応物質を第2
表に示すガスによる処理後、5V2000SV−”’j
の試験を5時間行い、その平均値。
The test equipment was filled with 30 mu of these exhaust gas treatment agents (bulk specific gravity 0.95), and the gases shown in Table 2 were heated to SV2.00.
0 (h-'), passed at a temperature of 130 °C, No. in the main and outlet gases. The denitrification and desulfurization rates were determined by measuring the concentrations of SO, and N03-1504' in the cleaning solution.
The concentration was also measured and the results were reported in the 11th *1. The exhaust gas reactants were reported in the 2nd.
After treatment with the gas shown in the table, 5V2000SV-”'j
The test was conducted for 5 hours and the average value.

本2 通ガス後、5時間の平均脱硫率(%)および平均
脱硝率(%) *3 第3表ネ3参照 〔発明の効果〕 この発明の排ガス処理剤による脱硝率は、50%以下で
高いとはいえないが、簡単な装置および操作で排ガス処
理能力が残存しているにもかかわらず性能が著しく低い
ために従来廃棄しなければならなかった使用済の排ガス
反応物質を賦活再使用することがてきる。すなわち脱硝
等の既に劣化している能力を効果よく引き出すことがで
き、しかも脱硝時の温度も低くてよいので、その実用的
価値はきわめて大きい。
Book 2 Average desulfurization rate (%) and average denitrification rate (%) for 5 hours after gas passage *3 See Table 3, page 3 [Effect of the invention] The denitrification rate by the flue gas treatment agent of this invention is 50% or less. Although not expensive, it is possible to activate and reuse used exhaust gas reactants that had to be disposed of due to extremely low performance despite remaining exhaust gas treatment capacity with simple equipment and operation. Something will happen. In other words, it is possible to effectively bring out already degraded abilities such as denitrification, and the temperature during denitration may be low, so its practical value is extremely great.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の方法を組み込んだ排ガス処理シス
テムの基本概念図である。 1・−・第1除害装置、 2・・・第2除害装置、 3.3′・・・洗浄処理装置、 4・−第3除害装置、 G・・・被処理排ガス、 S・・・排ガス反応物質、 R−・・排ガス処理剤、 A−・・洗浄液。
1 to 3 are basic conceptual diagrams of an exhaust gas treatment system incorporating the method of the present invention. 1.--First abatement device, 2...Second abatement device, 3.3'...Cleaning treatment device, 4.-Third abatement device, G...Exhaust gas to be treated, S. ...Exhaust gas reactant, R--Exhaust gas treatment agent, A--Cleaning liquid.

Claims (1)

【特許請求の範囲】 1、酸化カルシウム、酸化アルミニウム、および二酸化
ケイ素を供給できる物質に硫酸化合物、ハロゲン元素化
合物、硫化物およびアルカリ金属の水酸化物を供給でき
る物質の群から選ばれる1種以上の物質を加え、水と混
合し、水和処理して得た排ガス反応物質を、SO_2、
NO_x、HClおよび/またはHFを含むガスで処理
した後、水またはアルカリ水溶液および/またはアルカ
リの水懸濁液で洗浄処理し、ついで洗浄液から分離し、
そのままあるいは乾燥することを特徴とする排ガス処理
剤の製造方法。 2、硫酸化合物、ハロゲン元素化合物、硫化物およびア
ルカリ金属の水酸化物を供給できる物質の群から選ばれ
る1種以上の物質が、硫酸カルシウムである請求項1記
載の製造方法。 3、SO_2、NO_x、HClおよび/またはHFを
含む排ガスの処理を請求項1記載の製造法で得た排ガス
処理剤で行う排ガス処理方法において、排ガス処理剤の
製造における排ガス反応物質のガス処理を、該被処理排
ガスまたは該排ガス処理剤で処理した後の被処理排ガス
で行うことを特徴とする排ガス処理方法。
[Claims] 1. One or more substances selected from the group of substances capable of supplying sulfuric compounds, halogen element compounds, sulfides, and alkali metal hydroxides to substances capable of supplying calcium oxide, aluminum oxide, and silicon dioxide. The exhaust gas reactants obtained by adding the substances, mixing with water, and performing hydration treatment are SO_2,
After treatment with a gas containing NO_x, HCl and/or HF, cleaning treatment with water or an aqueous alkali solution and/or aqueous suspension of an alkali, and then separation from the cleaning liquid,
A method for producing an exhaust gas treatment agent, characterized in that it is produced as is or dried. 2. The manufacturing method according to claim 1, wherein the one or more substances selected from the group of substances capable of supplying sulfuric compounds, halogen element compounds, sulfides, and alkali metal hydroxides is calcium sulfate. 3. In an exhaust gas treatment method in which exhaust gas containing SO_2, NO_x, HCl and/or HF is treated with an exhaust gas treatment agent obtained by the production method according to claim 1, the exhaust gas reaction substance is gas treated in the production of the exhaust gas treatment agent. An exhaust gas treatment method, characterized in that the treatment is carried out using the exhaust gas to be treated or the exhaust gas to be treated after being treated with the exhaust gas treatment agent.
JP2318074A 1990-11-26 1990-11-26 Exhaust gas treatment agent manufacturing method and exhaust gas treatment method Expired - Lifetime JPH0722671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2318074A JPH0722671B2 (en) 1990-11-26 1990-11-26 Exhaust gas treatment agent manufacturing method and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2318074A JPH0722671B2 (en) 1990-11-26 1990-11-26 Exhaust gas treatment agent manufacturing method and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH04190820A true JPH04190820A (en) 1992-07-09
JPH0722671B2 JPH0722671B2 (en) 1995-03-15

Family

ID=18095186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2318074A Expired - Lifetime JPH0722671B2 (en) 1990-11-26 1990-11-26 Exhaust gas treatment agent manufacturing method and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPH0722671B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150207A (en) * 2004-11-29 2006-06-15 Mitsubishi Heavy Ind Ltd Washing solution for nitrogen oxide absorbent, and washing method and regeneration method of nitrogen oxide absorbent using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150207A (en) * 2004-11-29 2006-06-15 Mitsubishi Heavy Ind Ltd Washing solution for nitrogen oxide absorbent, and washing method and regeneration method of nitrogen oxide absorbent using it

Also Published As

Publication number Publication date
JPH0722671B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
EP0487913A1 (en) Highly reactive reagents and compositions for the purification of waste gas and waste water, their preparation and their use
US3762134A (en) Prevention of air pollution by using solid adsorbents to remove particulates of less than 0.5 microns in size from flue gases
CZ289749B6 (en) Method for removing contaminants harmful to environment from waste gases
JPH0620542B2 (en) Method for manufacturing wastewater treatment agent
JPH04190820A (en) Preparation of exhaust gas treatment agent and treatment of exhaust gas
TWI806025B (en) Treatment methods of incineration fly ash
JP4259633B2 (en) Method for producing smoke treatment agent
JP2547260B2 (en) Exhaust gas treatment method
JPH03258343A (en) Production of treatment agent for exhaust gas
JPH0358766B2 (en)
JP2547901B2 (en) Mud treatment agent and treatment method
JPH03213143A (en) Preparation of exhaust gas treatment agent and treatment of exhaust gas
JPH03123622A (en) Wet-way desulfurization method
JP2001220128A (en) Method for manufacturing hydrogrossular using coal- gasification slag
JPH0571284B2 (en)
JP2629042B2 (en) Method for producing exhaust gas treating agent
JPH0615033B2 (en) Exhaust gas purification agent
JPH0615037B2 (en) Exhaust gas treatment agent activation method
JPH01297144A (en) Activation of exhaust gas treatment agent
JP2003093837A (en) Exhaust gas treatment agent
JPH0669477B2 (en) Deodorant
JPH0555181B2 (en)
JP3302998B2 (en) Method for producing high-temperature acidic exhaust gas absorbent and method for removing high-temperature acidic exhaust gas
JP3867306B2 (en) Dust disposal method
JP3150497B2 (en) Dry purification method of exhaust gas