JPS61242985A - Apparatus for production of semiconductor single crystal - Google Patents

Apparatus for production of semiconductor single crystal

Info

Publication number
JPS61242985A
JPS61242985A JP8426685A JP8426685A JPS61242985A JP S61242985 A JPS61242985 A JP S61242985A JP 8426685 A JP8426685 A JP 8426685A JP 8426685 A JP8426685 A JP 8426685A JP S61242985 A JPS61242985 A JP S61242985A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
heat
opening
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8426685A
Other languages
Japanese (ja)
Inventor
Tetsuo Saito
斎藤 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8426685A priority Critical patent/JPS61242985A/en
Publication of JPS61242985A publication Critical patent/JPS61242985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To suppress the heat dissipation from the circumferential edge of an opening effectively, and to obtain a high-quality single crystal, by using an inner heat-insulation materials having a shape to cover not only the outer circumference of a crucible but also the circumferential edge of the opening, and insulating the crucible in a semiconductor single crystal production apparatus using said heat-insulation material. CONSTITUTION:The semiconductor single crystal production apparatus is furnished with the crucible 6 to hold the semiconductor material 7 for growth, the upper, outer and inner heat-insulation materials 3, 4, 5', and a single crystal pulling up apparatus 10. The crucible 6 has anisotropic thermal conductivity and the heat-dissipation is large at the circumferential edge of the opening part. The inner heat-insulation material 5' has a shape to cover not only the outer circumference of a crucible 6 but also the circumferential edge of the opening of the crucible to suppress the heat-dissipation from the circumferential edge of the opening. The inner heat-insulation material 5' is made of carbon, aluminum nitride, quartz, PBN, etc. The temperature distribution in the crucible 6 is higher at the circumferential part than at the middle part, and a high- quality single crystal can be grown by the use of the crucible.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体単結晶製造装置、特にPBN(パイロリ
ティック窒化硼素)製の坩堝を用いて引上げ法によって
単結晶を育成させる半導体単結晶製造装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor single crystal manufacturing apparatus, and more particularly to a semiconductor single crystal manufacturing apparatus for growing a single crystal by a pulling method using a crucible made of PBN (pyrolytic boron nitride). .

(発明の技術的背景) 半導体単結晶の製造方法の1つとして、引上げ法は非常
に広く用いられでいる方法である。特に、蒸気圧の高い
半導体単結晶の製造には、LEC(Liquid  E
ncapsulated  Czochralski 
)法と呼ばれる引上げ法が用いられる。第7図に従来一
般に使われているLEC法による半導体単結晶製造装置
を示す。この装置は、高耐圧容器1内に加熱用ヒータ2
、上部保温部材3、外側保温部材4、内側保温部材5が
設けられている。高耐圧容器1の中央部には坩堝6が置
かれており、この坩堝6内には半導体材料融液7が収容
されている。半導体材料融液7の液面は液体ガラス状の
封止剤8によって封止され、半導体材料融液7の蒸発を
防止している。坩堝6および半導体材料融液7は加熱用
ヒータ2によって加熱され、各保温部材3,4゜5によ
って保温される。坩堝6は上下移動および回転ができる
駆動軸9上に載置され、この回転により半導体材料融液
7に適当な対流が与えられる。
(Technical Background of the Invention) As one of the methods for manufacturing semiconductor single crystals, the pulling method is a method that is very widely used. In particular, LEC (Liquid E
ncapsulated Czochralski
) method is used. FIG. 7 shows a semiconductor single crystal manufacturing apparatus using the LEC method, which has been commonly used in the past. This device has a heating heater 2 inside a high pressure resistant container 1.
, an upper heat retaining member 3, an outer heat retaining member 4, and an inner heat retaining member 5 are provided. A crucible 6 is placed in the center of the high pressure container 1, and a semiconductor material melt 7 is contained in the crucible 6. The surface of the semiconductor material melt 7 is sealed with a liquid glass sealant 8 to prevent the semiconductor material melt 7 from evaporating. The crucible 6 and the semiconductor material melt 7 are heated by the heater 2 and kept warm by the heat insulating members 3, 4.5. The crucible 6 is placed on a drive shaft 9 that can be moved up and down and rotated, and this rotation provides appropriate convection to the semiconductor material melt 7.

坩堝6の上部には引上装置10が設けられている。A pulling device 10 is provided at the top of the crucible 6.

この引上装置10は上下移動および回転ができる。This lifting device 10 can move up and down and rotate.

この引上装置10の下端に種結晶11を取付け、種結晶
11を半導体材料融液7に接触させた後、徐々に回転さ
Uながら引上げてゆくと半導体単結晶12が成長してゆ
く。
A seed crystal 11 is attached to the lower end of this pulling device 10, and after the seed crystal 11 is brought into contact with the semiconductor material melt 7, the semiconductor single crystal 12 is gradually pulled up while being rotated.

〔背景技術の問題点〕[Problems with background technology]

坩堝6の材質として石英を用いることもあるが、Si等
の不純物を嫌う場合は一般にPBN製の坩堝が用いられ
る。ところがPBN製の坩堝は第8図(a)に示すよう
に熱伝導に関して異方性をもっている。即ち、図の六方
向についての熱伝導率は図のB方向についての熱伝導率
に比べて非常に大きくなる。例えば800℃においては
、B方向の熱伝導率が0 、007 cal/cm、s
ec、 ℃程度であるのに対し、六方向の熱伝導率は0
.15cal/amsec、 ℃にもなる。石英の坩堝
では六方向、B方向ともに0.003 cal/cm、
sec、 ℃であることからみると、PBN製の坩堝は
極端な熱伝導に関する異方性をもっていることになる。
Although quartz is sometimes used as the material for the crucible 6, a crucible made of PBN is generally used when impurities such as Si are disliked. However, a crucible made of PBN has anisotropy in terms of heat conduction, as shown in FIG. 8(a). That is, the thermal conductivity in the six directions in the figure is much larger than the thermal conductivity in the B direction in the figure. For example, at 800°C, the thermal conductivity in the B direction is 0.007 cal/cm, s
ec, about ℃, while the thermal conductivity in six directions is 0.
.. 15 cal/amsec, ℃. In a quartz crucible, 0.003 cal/cm in both the six directions and the B direction,
sec, °C, it means that the PBN crucible has extreme anisotropy regarding heat conduction.

これは第8図(b)に示すPBN製の坩堝の断面図によ
り説明される。この図かられかるように、PBN製の坩
堝はPBNの多層から構成されており、各層は層の面方
向とこれに垂直な方向との間で熱伝導に関する異方性を
もっているのである。従って六方向(層の面方向)とB
方向(層の面に垂直な方向)との間で熱伝導に関する異
方性があられれることになる。
This is explained by the cross-sectional view of a PBN crucible shown in FIG. 8(b). As can be seen from this figure, the PBN crucible is composed of multiple layers of PBN, and each layer has anisotropy regarding heat conduction between the plane direction of the layer and the direction perpendicular thereto. Therefore, six directions (plane direction of the layer) and B
(direction perpendicular to the plane of the layer) with respect to thermal conduction.

さて、このようにPBN製の坩堝では、六方向について
の熱伝導率が非常に大きくなるため、坩堝の熱は主に六
方向から散逸することになる。この熱散逸によって坩堝
の温度は低下する。第9図は従来装置による単結晶育成
中の坩堝内の温度分布を示すグラフである。同図(a)
はPBN製の坩堝を、同図(b)は石英製の坩堝を示す
。石英製の坩堝では熱の散逸が少ないため、坩堝内の温
度分布は周辺部の方が中心部よりかなり高くなる。
As described above, in a crucible made of PBN, the thermal conductivity in six directions is extremely high, so that the heat in the crucible is mainly dissipated from six directions. This heat dissipation reduces the temperature of the crucible. FIG. 9 is a graph showing the temperature distribution inside a crucible during single crystal growth using a conventional apparatus. Figure (a)
1 shows a crucible made of PBN, and FIG. 3(b) shows a crucible made of quartz. In a quartz crucible, there is less heat dissipation, so the temperature distribution inside the crucible is much higher at the periphery than at the center.

PBN製の坩堝では熱の散逸のため、周辺部と中心部と
の温度差はかなり小さくなってしまう。
In a PBN crucible, the temperature difference between the periphery and the center becomes considerably small due to heat dissipation.

良質の単結晶を育成させるためには、坩堝内の周辺部の
温度が中心部の温度に対して、十分に高くなっているこ
とが必要となる。これは、坩堝内の周辺部の温度を高く
することで引き上げられた単結晶の側面の温度と、その
周辺の雰囲気温度との差を小さくし、単結晶の側面から
の熱の逃げをおさえ、良・質な単結晶を得るのに必要な
、結晶と融液との境界面付近の適切な固相状態を作りだ
すことができるからである。ところが、従来の装置では
坩堝内の周辺部の温度を十分に高くすることが困難なた
めに、単結晶の側面からの熱の逃げが大きくなり、良質
な単結晶を得るために必要な結晶と融液との境界面付近
の固相状態を得ることが困難であった。
In order to grow a high-quality single crystal, it is necessary that the temperature at the periphery of the crucible be sufficiently higher than the temperature at the center. This reduces the difference between the temperature of the side of the pulled single crystal and the ambient temperature around it by increasing the temperature of the surrounding area in the crucible, suppressing the escape of heat from the side of the single crystal, This is because it is possible to create an appropriate solid state near the interface between the crystal and the melt, which is necessary to obtain a high-quality single crystal. However, with conventional equipment, it is difficult to raise the temperature of the surrounding area of the crucible to a sufficiently high temperature, which results in a large amount of heat escaping from the sides of the single crystal. It was difficult to obtain a solid state near the interface with the melt.

〔発明の目的〕[Purpose of the invention]

そこで本発明は引上げ法によって良質な単結晶を育成さ
せることができる半導体単結晶製造装置を提供すること
を目的とする。
Therefore, an object of the present invention is to provide a semiconductor single crystal manufacturing apparatus that can grow a high quality single crystal by a pulling method.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、引上げ法によって単結晶を育成する半
導体単結晶製造装置において、育成すべき半導体材料を
収容する坩堝と、この坩堝を加熱する加熱装置と、坩堝
の外周面および開口部周縁を覆う保温部材と、半導体材
料を引上げて単結晶を形成させる引上げ装置と、を設け
、坩堝の開口部からの熱の散逸を抑制し、良質な単結晶
を育成させることができるようにした点にある。
The present invention is characterized in that a semiconductor single crystal manufacturing apparatus for growing a single crystal by a pulling method includes a crucible that accommodates a semiconductor material to be grown, a heating device that heats the crucible, and an outer circumferential surface of the crucible and an opening periphery. The present invention is equipped with a heat insulating member to cover the semiconductor material and a pulling device that pulls up the semiconductor material to form a single crystal, thereby suppressing the dissipation of heat from the opening of the crucible and making it possible to grow a high quality single crystal. be.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図示する実施例に基づいて説明する。第1
図は本発明に係る半導体単結晶製造装置の一実施例の説
明図である。ここで第7図に示す従来装置と同一構成要
素については同一符号を付し説明を省略する。従来装置
との相違点は内側保温部材5′の形状である。第2図は
坩堝6付近の拡大図であるが、この図に示すように内側
保温部材5′は、坩堝6の外周面だけでなく開口部周縁
までも覆う形状をしている。このように開口部周縁を保
温部材で覆らことにより開口部周縁からの熱の散逸を効
果的に抑制することができ、坩堝の温度低下を防ぐこと
ができる。第3図(a)〜(d)に内側保温部材5′の
形状のいくつかを例示する。同図(a)は内側保温部材
5′が坩堝6の壁面に接触し、かつ、開口部周縁の内側
まで入りこんでいる形状をしたもの、同図(b)は坩堝
と内部保温部材との間の熱膨張率の差を考慮して内側保
温部材5′と坩堝6の壁面との間に空間を設けたもの、
同図(C)は内側保温部材5′が開口部周縁の上端部ま
で覆い、内側には入りこんでいないもの、同図(d)は
内側保温部材5′が坩堝6の外周面を覆う部材5′−1
と、開口部周縁を覆う部材5′−2との2つの別々の部
材から構成されているものをそれぞれ示す。内側保温部
材にはカーボン、窒化アルミニアム、石英、PBN等の
材質を用いればよい。
The present invention will be described below based on illustrated embodiments. 1st
The figure is an explanatory diagram of an embodiment of a semiconductor single crystal manufacturing apparatus according to the present invention. Here, the same components as those of the conventional device shown in FIG. 7 are given the same reference numerals, and the description thereof will be omitted. The difference from the conventional device is the shape of the inner heat retaining member 5'. FIG. 2 is an enlarged view of the vicinity of the crucible 6, and as shown in this figure, the inner heat retaining member 5' has a shape that covers not only the outer peripheral surface of the crucible 6 but also the periphery of the opening. By covering the periphery of the opening with the heat insulating member in this way, it is possible to effectively suppress the dissipation of heat from the periphery of the opening, thereby preventing a drop in the temperature of the crucible. Some examples of the shapes of the inner heat retaining member 5' are illustrated in FIGS. 3(a) to 3(d). The figure (a) shows a shape in which the inner heat retaining member 5' is in contact with the wall surface of the crucible 6 and extends inside the periphery of the opening, and the figure (b) shows the shape between the crucible and the inner heat retainer. A space is provided between the inner heat insulating member 5' and the wall surface of the crucible 6 in consideration of the difference in the coefficient of thermal expansion of
The figure (C) shows a member 5 in which the inner heat retaining member 5' covers the upper end of the periphery of the opening and does not go inside, and the figure (d) shows a member 5 in which the inner heat retaining member 5' covers the outer peripheral surface of the crucible 6. '-1
and a member 5'-2 that covers the periphery of the opening. Materials such as carbon, aluminum nitride, quartz, and PBN may be used for the inner heat retaining member.

第4図は本発明に係る装置による単結晶育成中の坩堝内
の温度分布を示すグラフである。第9図(b)と比べれ
ば明らかなように、PBN製の坩堝を用いているにもか
かわらず温厚分布は従来の石英製の坩堝を用いたものに
近くなっている。第5図はPBN製の坩堝を用いた引上
げ過程における半導体材料融液の液面付近、即ち結晶と
融液との境界面付近の同相状態を示す図である。同図(
a)は従来装置、同図(b)は本発明に係る装置の固相
状態図である。従来装置では坩堝の壁からの熱散逸が大
きいため、周辺部から中心部にかけて境界面が大きく波
をうって変動が激しいが、本発明に係る装置ではこれに
比べて変動が少ない。
FIG. 4 is a graph showing the temperature distribution in the crucible during single crystal growth using the apparatus according to the present invention. As is clear from a comparison with FIG. 9(b), despite the use of a PBN crucible, the temperature distribution is close to that of a conventional quartz crucible. FIG. 5 is a diagram showing the in-phase state near the liquid surface of the semiconductor material melt, that is, near the interface between the crystal and the melt during the pulling process using a PBN crucible. Same figure (
Figure a) is a solid phase diagram of a conventional device, and figure (b) is a solid phase diagram of a device according to the present invention. In the conventional device, heat dissipates from the walls of the crucible so much that the boundary surface waves greatly and fluctuates from the periphery to the center, but in the device according to the present invention, the fluctuation is small compared to this.

第6図は従来装置および本発明に係る装置によって製造
された単結晶の欠陥分布を示すグラフである。実線は本
発明に係る装置によって製造された単結晶、破線は従来
装置によって製造された単結晶を示す。後者では周辺近
傍で転位密度が非常に高くなるが、前者では周辺近傍で
も転位密度は抑制され良質な単結晶が得られることがわ
かる。
FIG. 6 is a graph showing the defect distribution of single crystals produced by the conventional apparatus and the apparatus according to the present invention. The solid line shows the single crystal produced by the apparatus according to the present invention, and the broken line shows the single crystal produced by the conventional apparatus. It can be seen that in the latter case, the dislocation density becomes extremely high near the periphery, but in the former case, the dislocation density is suppressed even near the periphery, and a high-quality single crystal can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によれば引上げ法による半導体単結
晶製造装置において、坩堝の外周面および開口部周縁を
保温部材で覆うようにしたため、坩堝の開口部からの熱
の散逸が抑制され、良質な単結晶を育成させることがで
きるようになる。
As described above, according to the present invention, in the semiconductor single crystal manufacturing apparatus using the pulling method, the outer circumferential surface of the crucible and the periphery of the opening are covered with a heat insulating member, so that the dissipation of heat from the opening of the crucible is suppressed, and high quality It becomes possible to grow single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体単結晶製造装置の一実施例
の説明図、第2図は第1図に示す装置における坩堝付近
の拡大図、第3図(a)〜(d)は第1図に示す装置に
用いる保温部材の形状を示す図、第4図は本発明に係る
装置による単結晶育成中の坩堝内の温度分布を示すグラ
フ、第5図(a)、(b)はPBN製の坩堝を用いた引
上げ過程における半導体材料融液の液面付近の固相状態
を示す図、第6図は従来装置および本発明に係る装置に
よって製造された単結晶の欠陥分布を示すグラフ、第7
図は従来一般に使われているLEC法による半導体単結
晶製造装置の説明図、第8図(a)、(b)はPBN製
の坩堝の熱伝導方向を示す説明図、第9図(a)、(b
)は従来装置による単結晶育成中の坩堝内の温度分布を
示すグラフである。 1・・・高耐圧容器、2・・・加熱用ヒータ、3・・・
上部保温部材、4・・・外側保温部材、5,5′・・・
内側保温部材、6・・・坩堝、7・・・半導体材料融液
、8・・・液体ガラス状の封止剤、9・・・駆動軸、1
0・・・引上装置、11・・・種結晶、12・・・半導
体単結晶。 出願人代理人  猪  股    清 堵1因 第6図 茅1「シーー内イ1【署【 第7図
FIG. 1 is an explanatory diagram of one embodiment of a semiconductor single crystal manufacturing apparatus according to the present invention, FIG. 2 is an enlarged view of the vicinity of a crucible in the apparatus shown in FIG. 1, and FIGS. 1 is a diagram showing the shape of a heat-retaining member used in the apparatus shown in FIG. A diagram showing the solid phase state near the liquid surface of the semiconductor material melt during the pulling process using a PBN crucible, and FIG. 6 is a graph showing the defect distribution of single crystals produced by the conventional device and the device according to the present invention. , 7th
The figure is an explanatory diagram of a semiconductor single crystal manufacturing apparatus using the LEC method, which is commonly used in the past. Figures 8 (a) and (b) are explanatory diagrams showing the direction of heat conduction in a PBN crucible. Figure 9 (a) , (b
) is a graph showing the temperature distribution inside the crucible during single crystal growth using a conventional device. 1...High pressure container, 2...Heating heater, 3...
Upper heat insulating member, 4... Outer heat insulating member, 5, 5'...
Inner heat retaining member, 6... Crucible, 7... Semiconductor material melt, 8... Liquid glass sealant, 9... Drive shaft, 1
0... Pulling device, 11... Seed crystal, 12... Semiconductor single crystal. Applicant's agent Seito Inomata 1 Cause Figure 6 Kaya 1

Claims (1)

【特許請求の範囲】 1、引上げ法によつて単結晶を育成する半導体単結晶製
造装置であって、育成すべき半導体材料を収容する坩堝
と、この坩堝を加熱する加熱装置と、前記坩堝の外周面
および開口部周縁を覆う保温部材と、前記半導体材料を
引上げて単結晶を形成させる引上装置と、をそなえるこ
とを特徴とする半導体単結晶製造装置。 2、引上げ法がLEC(LiquidEncapsul
a−tedCzochralski)法であることを特
徴とする特許請求の範囲第1項記載の半導体単結晶製造
装置。 3、坩堝がPBN(パイロリティツク窒化硼素)製であ
ることを特徴とする特許請求の範囲第1項または第2項
記載の半導体単結晶製造装置。 4、保温部材がカーボン、窒化アルミニウム、石英また
はPBN製であることを特徴とする特許請求の範囲第1
項乃至第3項のいずれかに記載の半導体単結晶製造装置
[Claims] 1. A semiconductor single crystal manufacturing apparatus for growing a single crystal by a pulling method, which comprises: a crucible containing a semiconductor material to be grown; a heating device for heating the crucible; and a heating device for heating the crucible. A semiconductor single crystal manufacturing apparatus comprising: a heat insulating member that covers an outer circumferential surface and a periphery of an opening; and a pulling device that pulls up the semiconductor material to form a single crystal. 2. The pulling method is LEC (Liquid Encapsul)
2. The semiconductor single crystal manufacturing apparatus according to claim 1, wherein the semiconductor single crystal manufacturing apparatus is an a-ted Czochralski method. 3. The semiconductor single crystal manufacturing apparatus according to claim 1 or 2, wherein the crucible is made of PBN (pyrolytic boron nitride). 4. Claim 1, characterized in that the heat insulating member is made of carbon, aluminum nitride, quartz, or PBN.
3. A semiconductor single crystal manufacturing apparatus according to any one of items 1 to 3.
JP8426685A 1985-04-19 1985-04-19 Apparatus for production of semiconductor single crystal Pending JPS61242985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8426685A JPS61242985A (en) 1985-04-19 1985-04-19 Apparatus for production of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8426685A JPS61242985A (en) 1985-04-19 1985-04-19 Apparatus for production of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS61242985A true JPS61242985A (en) 1986-10-29

Family

ID=13825646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8426685A Pending JPS61242985A (en) 1985-04-19 1985-04-19 Apparatus for production of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS61242985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360524A (en) * 1991-06-07 1992-12-14 Murata Mfg Co Ltd Heat treatment furnace for compound semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360524A (en) * 1991-06-07 1992-12-14 Murata Mfg Co Ltd Heat treatment furnace for compound semiconductor substrate
JP2800464B2 (en) * 1991-06-07 1998-09-21 株式会社村田製作所 Annealing furnace for compound semiconductor substrates

Similar Documents

Publication Publication Date Title
JP4288792B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2020079192A (en) Reflection screen of single crystal growth furnace and single crystal growth furnace
US6451112B1 (en) Method and apparatus for fabricating high quality single crystal
JP3532978B2 (en) Method for growing SiC single crystal
JPS61242985A (en) Apparatus for production of semiconductor single crystal
JPH03153595A (en) Device for pulling single crystal
JPH0797299A (en) Method for growing sic single crystal
JP4066528B2 (en) Method for producing silicon carbide single crystal
TWI541390B (en) Method for manufacturing mono-like silicon
JPH04198084A (en) Jig for preventing bottom adhesion in pull-up of semiconductor single crystal
KR102167633B1 (en) Crystal pull-up heat tracing and impeller
JP3188923B2 (en) Container for growing lithium borate single crystal and method for growing lithium borate single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JP3876488B2 (en) Method for producing silicon carbide single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JPS6021900A (en) Apparatus for preparing compound semiconductor single crystal
JP2706272B2 (en) Compound semiconductor single crystal growth method
JPH05319973A (en) Single crystal production unit
JPH0449185Y2 (en)
JPH1160391A (en) Production of silicon carbide single crystal
JPS63107887A (en) Crucible for pulling up single crystal
JPS6077195A (en) Apparatus for producing compound semiconductor single crystal
JPH0416591A (en) Single crystal pulling up device for compound semiconductor
JPH04193798A (en) Production of sic single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal