JPS61242963A - Ceramic member and manufacture - Google Patents

Ceramic member and manufacture

Info

Publication number
JPS61242963A
JPS61242963A JP8312285A JP8312285A JPS61242963A JP S61242963 A JPS61242963 A JP S61242963A JP 8312285 A JP8312285 A JP 8312285A JP 8312285 A JP8312285 A JP 8312285A JP S61242963 A JPS61242963 A JP S61242963A
Authority
JP
Japan
Prior art keywords
base
cvd reaction
cvd
heat
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8312285A
Other languages
Japanese (ja)
Other versions
JPH058147B2 (en
Inventor
茅根 美治
房雄 藤田
和久 松本
横山 康志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8312285A priority Critical patent/JPS61242963A/en
Publication of JPS61242963A publication Critical patent/JPS61242963A/en
Publication of JPH058147B2 publication Critical patent/JPH058147B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス部材の製造方法に係り、特に耐熱
性M1#1により強化したセラミックス部材の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a ceramic member, and particularly to a method of manufacturing a ceramic member reinforced with heat-resistant M1#1.

[従来の技術] 近年高温高強度構造材料として窒化珪素、炭化珪素、サ
イアロン等の非酸化物セラミックス、あるいは酸化アル
ミニウム、酸化ジルコニウム等、いわゆるニューセラミ
ックスが急速にクローズアップされ、多くの研究や開発
がなされている。
[Prior art] In recent years, non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as so-called new ceramics such as aluminum oxide and zirconium oxide, have been rapidly attracting attention as high-temperature, high-strength structural materials, and much research and development has been carried out. being done.

これらのセラミックスの用途は、ガスタービンのブレー
ドや燃焼器、ディーゼルエンジンのシリンダやピストン
その他高温用機械部品として数多くある。
These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

しかしながら、周知の如くセラミックスは脆性材料であ
り、h記のニューセラミックスといえども金属材料に比
べれば亀裂の伝播が速く、わずかな欠陥で破壊する等、
信頼性に欠ける。
However, as is well known, ceramics are brittle materials, and even with the new ceramics described in section H, cracks propagate faster than metal materials, and even the slightest defect can destroy them.
Lacking reliability.

また、セラミックス製品は、通常、セラミックス粉末原
料を適宜の手法により形成した後、焼結することによっ
て製造されているが、この焼結に際しては、通常、焼結
助剤を必要とする。この結果、この焼結助剤により製品
全体の高温強度が低下するようになる。即ち、セラミッ
クス自体は本来高温でも高強度であるにもかかわらず、
低融点の焼結助剤成分が結晶粒界に多く集まり、このた
めに得られる製品の強度は、高温度域で低下するのであ
る。
Furthermore, ceramic products are usually manufactured by forming a ceramic powder raw material by an appropriate method and then sintering it, but this sintering usually requires a sintering aid. As a result, this sintering aid reduces the high temperature strength of the entire product. In other words, although ceramics themselves inherently have high strength even at high temperatures,
A large amount of low-melting-point sintering aid components gather at grain boundaries, and for this reason the strength of the resulting product decreases at high temperatures.

これに対し、近年、全く新しいセラミックス製造法とし
てCVD法やPVD法等の蒸着法が、特に薄膜形成手段
として表面処理の分野で実用されている、CVD法によ
れば、極めて緻密な組織のセラミックを製造でき、かつ
、そもそも焼結プロセスを経ないので焼結助剤を混入さ
せる必要もない、そのため、得られる製品の強度は高温
度域でも低下しないという利点を有する。
On the other hand, in recent years, vapor deposition methods such as CVD and PVD have been introduced as completely new ceramic manufacturing methods.The CVD method, which is used in the field of surface treatment as a means of forming thin films, produces ceramics with extremely dense structures. Moreover, since it does not go through a sintering process, there is no need to mix a sintering aid, and therefore the strength of the resulting product does not decrease even in a high temperature range.

[発明が解決しようとする問題点] CVD法等の気相蒸着法によれば、焼結助剤が不要なこ
とから、セラミックス本体の高温強度を有する製品が得
られるため、セラミックス被膜の製造には極めて有利で
ある。
[Problems to be Solved by the Invention] According to the vapor phase deposition method such as the CVD method, since a sintering aid is not required, a product having high-temperature strength of the ceramic body can be obtained, so it is suitable for the production of ceramic coatings. is extremely advantageous.

しかしながら、CVD法により厚膜部材を製造する場合
には、第2図に示す如く、基体lに垂直な方向にセラミ
ックスの柱状晶2が発達し、垂直方向の高強度は達成さ
れるものの、水平方向の強度が低くなるという問題があ
る。
However, when manufacturing thick film members by the CVD method, as shown in Figure 2, ceramic columnar crystals 2 develop in the direction perpendicular to the base l, and although high strength in the vertical direction is achieved, horizontal There is a problem that the strength in the direction becomes low.

また、CVD法はセラミックスの生成速度が比較的遅く
、20〜30 ILm/ h r程度の膜生成速度であ
るため、通常の構造物を形成するには長時間を要し、工
業的に有利ではないという欠点を有する。
In addition, the CVD method has a relatively slow ceramic production rate, with a film production rate of about 20 to 30 ILm/hr, so it takes a long time to form a normal structure, making it not industrially advantageous. It has the disadvantage that it is not.

[問題点を解決するための手段] 本発明は、基体に耐熱繊維を巻き付ける等して持着させ
、次いでこの基体表面にセラミックスを気相基若するこ
とによりセラミックス部材を得るものである。
[Means for Solving the Problems] According to the present invention, a ceramic member is obtained by wrapping heat-resistant fibers around a base body and attaching the fibers to the base body, and then depositing ceramics on the surface of the base body in a vapor phase.

[作用] 本発明によれば、基体に持着させた耐熱性繊維により強
化されたセラミックス部材が提供される。また、気相蒸
着層の柱状晶の発達が抑制され、これによってもセラミ
ックスの面内方向の強度が増大される。しかも耐熱性繊
維の体積分だけ気相蒸着量が減らされるため、製造時間
が短縮される。
[Function] According to the present invention, a ceramic member reinforced by heat-resistant fibers attached to a base is provided. Furthermore, the development of columnar crystals in the vapor-deposited layer is suppressed, and this also increases the strength of the ceramic in the in-plane direction. Moreover, since the amount of vapor phase deposition is reduced by the volume of the heat-resistant fiber, the manufacturing time is shortened.

従って、極めて高強度なセラミックスの厚膜層を、気相
蒸着法により効率的に製造することが可使となる。
Therefore, it becomes possible to efficiently produce thick ceramic layers with extremely high strength by vapor phase deposition.

[実施例] 以下に本発明の実施例について図面を参照して詳細に説
明する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図(a)〜(C)は本発明の一実施例に係るセラミ
ックス部材の製造方法を説明する概略的な断面図である
FIGS. 1(a) to 1(C) are schematic cross-sectional views illustrating a method of manufacturing a ceramic member according to an embodiment of the present invention.

本発明においては、第1図(a)に示す如く、基体11
に耐熱性繊[12を巻き付けやその他の手法により持着
させ、次いで基体11の繊維持着面11aにCVD法等
の気相蒸着法によりセラミックスの蒸着を行なう。
In the present invention, as shown in FIG. 1(a), the base 11
Heat-resistant fibers [12 are attached by winding or other methods, and then ceramics are deposited on the fiber attachment surface 11a of the base 11 by a vapor phase deposition method such as a CVD method.

基体11の繊維接着面11aに、CVD法によりセラミ
ックスの蒸着を行なう場合には、まず基体11の少なく
ともその表面11aをCVD反応の析出温度域に加熱す
る。
When ceramics are deposited on the fiber bonding surface 11a of the base 11 by the CVD method, first, at least the surface 11a of the base 11 is heated to a precipitation temperature range for the CVD reaction.

加熱方法は、特に限定されないが、基体11の形状が簡
単であったり、導電性である場合は、装置構成の簡単な
高周波誘導加熱等が有利である。
The heating method is not particularly limited, but if the base 11 has a simple shape or is conductive, high-frequency induction heating or the like with a simple device configuration is advantageous.

加熱方法としては、その他1反応容器の外側から加熱す
る外部加熱法等も採用可能である。
As a heating method, an external heating method of heating from the outside of one reaction container can also be adopted.

このようにして加熱された基体11の繊維持着面11a
に、第1図(a)の如<、CVD反応ガスを供給してC
VD反応させ1表面にCVD反応析出物13を析出させ
る(第1図(b)参照)。
The fiber attachment surface 11a of the substrate 11 heated in this way
As shown in Fig. 1(a), CVD reaction gas is supplied and C
A CVD reaction is carried out to deposit a CVD reaction precipitate 13 on the surface of the substrate 1 (see FIG. 1(b)).

このCVD反応析出物13の析出量は、CVD反応ガス
の供給に又は加熱時間を調部することにより容易に調整
し得る。
The amount of the CVD reaction precipitate 13 can be easily adjusted by adjusting the supply of the CVD reaction gas or the heating time.

CVD反応析出物13を所望厚さに析出させた後、所t
i1によりその表面を研磨し、第1図(C)の如く、基
体tiにCVD反応析出物13の層を形成した部材を得
る。
After depositing the CVD reaction precipitate 13 to a desired thickness,
The surface is polished by i1 to obtain a member in which a layer of CVD reaction precipitate 13 is formed on the substrate ti, as shown in FIG. 1(C).

なお、基体11は第1図(C) (7)如<、CVD反
応析出物13と一体物とした状態でそのまま製品として
も良いが、基体ti布部分不要の場合には、第1図(d
)の如く基体11を分離拳除去して製品としても良い。
The substrate 11 may be integrated with the CVD reaction precipitate 13 as it is as a product as shown in FIG. d
) The base body 11 may be separated and removed to produce a product.

このような本発明の方法において、基体11の材質とし
ては特に制限はなく、金属あるいはセラミック等が採用
可能であるが、CVD反応後、基体11を取り付けたま
ま使用する場合には、使用時の高温度により熱応力が付
与されるのを防止するために、ノ^体llの材質は析出
させるCVD反応析出物と熱膨張率が同程度のものとす
るのが好適である。
In such a method of the present invention, there is no particular restriction on the material of the substrate 11, and metals, ceramics, etc. can be used. However, if the substrate 11 is used with the substrate 11 attached after the CVD reaction, In order to prevent thermal stress from being applied due to high temperatures, it is preferable that the material of the nozzle 11 has a coefficient of thermal expansion comparable to that of the CVD reaction precipitate to be precipitated.

一方、CVD反応後に基体11とCVD反応析出物とを
分離する場合には、基体11としては、CVD反応析出
物と実質的に反応せず、かつCVD反応析出物と異なる
熱膨張率を有する材質からなるものとするのが好ましい
、このような材質のものを選定することにより、基体1
1とCVD反応析出物13とは、軽い機械的衝撃を析出
物13と基体11との界面近傍に与えるか、あるいは、
該界面近傍を加熱もしくは冷却することにより、剥離さ
せるようにして容易に取りはずすことが可f戯となる。
On the other hand, when the substrate 11 and the CVD reaction precipitate are separated after the CVD reaction, the substrate 11 is made of a material that does not substantially react with the CVD reaction precipitate and has a coefficient of thermal expansion different from that of the CVD reaction precipitate. By selecting such a material, which is preferably made of
1 and the CVD reaction precipitate 13, a light mechanical impact is applied to the vicinity of the interface between the precipitate 13 and the substrate 11, or
By heating or cooling the vicinity of the interface, it is possible to easily remove it by peeling it off.

なお、基体11を可燃性のものとしておけば、この基体
11を酸化消失せしめることが可能である。また、鋳造
における砂鋳型の様に、崩して除去しうる材質のものも
用い得るし、機械的な加工により除去してもよい。
Note that if the base 11 is made of a combustible material, it is possible to oxidize and eliminate the base 11. Furthermore, a material that can be broken and removed, such as a sand mold in casting, may be used, or it may be removed by mechanical processing.

基体11に耐熱性縁fi12を持着させる方法としては
、高耐熱性繊、[112を基体11に巻回する方法が最
も筒便で有利である。その他、基体11に耐熱性縁fi
12を適当な方法で接着させても良い。
As a method for attaching the heat-resistant edge fi12 to the base body 11, the most convenient and advantageous method is to wind the highly heat-resistant fiber [112] around the base body 11. In addition, there is a heat-resistant edge fi on the base 11.
12 may be adhered by any suitable method.

耐熱性繊維としては、CVD反応温度や得られる製品部
材の使用温度にト分耐え得るようなものであれば良く、
其体的にはSiCやW、Mo等の繊維が挙げられる。
The heat-resistant fibers may be of any kind as long as they can withstand the CVD reaction temperature and the usage temperature of the resulting product components.
Specific examples include fibers such as SiC, W, and Mo.

また析出させるセラミックスとしては、MgO1SiC
,Si3N+、AJL203. サイアロン等が挙げら
れる。
In addition, as the ceramic to be precipitated, MgO1SiC
, Si3N+, AJL203. Examples include Sialon.

なお、上記の説明では、本発明により平板状の基体の表
面に高耐熱性繊維を接着させ、この面にcvn反応析出
物を析出させて、平板状の部材を製造する方法について
説明したが、本発明においては、第3図〜第5図に示す
如く、基体11の形状をLI的とする部材の形状にあわ
せて加工することにより、立体的な部材をも製造し得る
In addition, in the above explanation, the method of manufacturing a flat member by adhering highly heat resistant fibers to the surface of a flat substrate and depositing a CVN reaction precipitate on this surface was explained. In the present invention, as shown in FIGS. 3 to 5, a three-dimensional member can also be manufactured by processing the shape of the base 11 to match the shape of the LI member.

即ち、第3図の例においては、第3図(a)の如く、長
方体の基体11の周囲に耐熱性繊維12を巻回し、これ
にCVD反応ガスを図中の矢印の如く、外側から送給し
、第3図(b)に示す如く基体11の周囲にCVD反応
析出物13を析出させたものである。このものは、基体
11を取りのぞくことにより、第3図(C)の如き中空
の繊維強化セラミックス部材とすることができる。
That is, in the example shown in FIG. 3, as shown in FIG. 3(a), a heat-resistant fiber 12 is wound around a rectangular base 11, and a CVD reaction gas is applied to the outside as shown by the arrow in the figure. A CVD reaction precipitate 13 was deposited around the substrate 11 as shown in FIG. 3(b). By removing the base 11, this can be made into a hollow fiber-reinforced ceramic member as shown in FIG. 3(C).

第4図の例においては、第4図(a)の如く。In the example of FIG. 4, it is as shown in FIG. 4(a).

円筒形の基体11の側面周囲に耐熱性縁fi12を巻回
し、これにCVD反応ガスを送給し、第4図(b)の如
く基体11の周囲にCVD反応析出物13を析出させた
ものである。このものも、基体11を取りのぞくことに
より、第4図(C)の如き中空の繊維強化セラミックス
部材とすることができる。
A heat-resistant edge fi 12 is wound around the side surface of a cylindrical base 11, a CVD reaction gas is supplied to this, and CVD reaction precipitates 13 are deposited around the base 11 as shown in FIG. 4(b). It is. By removing the base 11, this can also be made into a hollow fiber-reinforced ceramic member as shown in FIG. 4(C).

第5図は本発明の方法によりガスタービンのブレードを
製造する場合を説明するものであり、第5図(a)の如
く、目的とするブレード形状よりもいくぶん小さい相似
形の基体llに耐熱性繊維12を巻回し、CVD反応ガ
スを送給して、第5図(b)の如く、CVD反応析出物
13を析出させ、次いで基体11を除去して目的とする
形状のブレードを製造するものである。
FIG. 5 explains the case of manufacturing gas turbine blades by the method of the present invention. As shown in FIG. 5(a), a heat resistant The fiber 12 is wound, a CVD reaction gas is supplied, a CVD reaction precipitate 13 is precipitated as shown in FIG. It is.

なお、耐熱性縁fi12は高強度を必要とする所には密
に、特に高強度を必要としない所には粗に設けるように
しても良く、また、基体に2層以上屯ねて巻回させるよ
うにしても良い、この場合には、例えば第6図(a)に
示す如く隣り合う耐熱性繊維の巻回層の巻き方向をクロ
スさせることにより、より高強度なセラミック部材(第
6図(b))を製造することができる。
Note that the heat-resistant edge fi12 may be provided densely in areas that require high strength, and loosely in areas that do not require particularly high strength, or may be wound in two or more layers on the base. In this case, for example, as shown in FIG. 6(a), by crossing the winding directions of adjacent heat-resistant fiber winding layers, a ceramic member with higher strength (see FIG. 6(a)) may be created. (b)) can be produced.

また基体への繊維の接着及びCVD反応を数回祿り返し
て、即ち、例えば第1図(C)又は(d)のセラミック
部材のCVD反応析出物13の表面13aに、更に耐熱
性繊維を設けてCVD反応ガスを供給し、CVD反応析
出物を積層させるようにすることもできる。
Further, the adhesion of the fibers to the substrate and the CVD reaction are repeated several times, that is, for example, heat-resistant fibers are further applied to the surface 13a of the CVD reaction precipitate 13 of the ceramic member shown in FIG. 1(C) or (d). It is also possible to provide a CVD reaction gas and to stack CVD reaction deposits.

1−記の説明ではCVD法が採用されているが、本発明
では、PVD法等その他の気相蒸着法をも用い得る。
Although the CVD method is employed in the explanation of item 1-, other vapor phase deposition methods such as the PVD method may also be used in the present invention.

[作用] 基体に持着させた耐熱性繊維により、補強されると共に
気相蒸着層の柱状晶の発達が抑制された。極めて高強度
なセラミック層が得られる。しかも耐熱性繊維の体積分
だけ気相蒸着部が減らされるため、製造時間が短縮され
る。
[Function] The heat-resistant fibers attached to the substrate provided reinforcement and suppressed the development of columnar crystals in the vapor-deposited layer. A ceramic layer with extremely high strength can be obtained. Moreover, since the vapor deposition area is reduced by the volume of the heat-resistant fiber, the manufacturing time is shortened.

従って、極めて高強度なセラミ−2りの厚膜層を気相蒸
着法により効率的に製造することが可能となる。
Therefore, it becomes possible to efficiently produce a thick film layer of Ceramic-2 with extremely high strength by the vapor phase deposition method.

[実施例] 以下に本発明を実施例により更に具体的に説明する。[Example] The present invention will be explained in more detail below using examples.

実施例1 本発明の製造方法に従って、第4図(C)に示すセラミ
ックス部材を製造した。
Example 1 A ceramic member shown in FIG. 4(C) was manufactured according to the manufacturing method of the present invention.

まず基体11として黒鉛棒(φ30 m m X120
mm)を用い、これに第4図(a)の如くWalk (
’l’均直径0.02mm)を巻回シタ、コのものを外
部加熱法により加熱し、基体の端部にセットされた熱電
対により温度を検出し、加熱部の温度を1300〜14
00℃に保持した。
First, a graphite rod (φ30 mm x 120
Walk (mm) as shown in Figure 4(a).
'l' (uniform diameter 0.02mm) is wound around the top and heated by an external heating method, the temperature is detected by a thermocouple set at the end of the base, and the temperature of the heated part is set to 1300-1400mm.
The temperature was maintained at 00°C.

次いで基体tiにCVDガスとして5ICfL4/ C
H4/ H2を供給り、、CVD反応析出物(SiC)
13を析出させた後、ガス供給を停止した。
Then, 5ICfL4/C was applied to the substrate ti as a CVD gas.
Supply H4/H2, CVD reaction precipitate (SiC)
After depositing 13, the gas supply was stopped.

しかる後、ノ、lli体11を機械加工により取りはず
した。
Thereafter, the lli body 11 was removed by machining.

得られたSiC部材は基体llの形状の中空部分を右す
る円筒部材であったが、本発明の方法により極めて短時
間で製造され、しかも極めて高強度なものであった。
The obtained SiC member was a cylindrical member having a hollow portion in the shape of the base 11, but it was manufactured in an extremely short time by the method of the present invention and had extremely high strength.

[効果] 以し詳述した通り、本発明のセラミックス部材の製造方
法によれば、耐熱繊維の強度向上効果と柱状晶抑制効果
により、得られるセラミックス部材は極めて高強度で耐
久性及び信頼性の高いものとなる。しかも製造されるセ
ラミックス部材の外表面は極めて緻密なものとなる。
[Effects] As described in detail below, according to the method for manufacturing a ceramic member of the present invention, the resulting ceramic member has extremely high strength, durability, and reliability due to the strength-improving effect and columnar crystal suppressing effect of the heat-resistant fiber. It will be expensive. Moreover, the outer surface of the manufactured ceramic member becomes extremely dense.

また、基体の形状を選定することにより任意の形状のセ
ラミックス部材を製造することができる。さらに、高耐
熱性繊維の存在によりセラミックス蒸着量が低減され、
生産効率も極めて高い。
Further, by selecting the shape of the base, a ceramic member of any shape can be manufactured. Furthermore, the amount of ceramics deposited is reduced due to the presence of highly heat-resistant fibers.
Production efficiency is also extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例に係るセラミ
ックス部材の製造過程を説明する概略的な断面図、第2
図はCVD法により厚膜を形成した場合に得られる柱状
晶を示す断面図、第3図(a) 〜(c) 、第4図(
a) 〜(c) 、第5図(a)、(b)は、各々1本
発明の他の実施例に係るセラミックス部材の製造過程を
説明する斜視図、第6図(a)、(b)は本発明の別の
実施例を説明する断面図である。 11・・・・・・基体、    12・・・・・・高耐
熱性繊維、13・・・・・・CVD析出物。 代理人 弁理士  重 野、 剛 第1図 (c) 第2図 cvo反応ガス               (b)
cvorL応ガス 第5図 第6図 (a)        (b)
1(a) to 1(d) are schematic cross-sectional views illustrating the manufacturing process of a ceramic member according to an embodiment of the present invention;
The figure is a cross-sectional view showing columnar crystals obtained when a thick film is formed by the CVD method.
a) to (c) and FIGS. 5(a) and (b) are respectively perspective views and FIGS. 6(a) and (b) illustrating the manufacturing process of a ceramic member according to another embodiment of the present invention. ) is a sectional view illustrating another embodiment of the present invention. 11...Base, 12...High heat resistant fiber, 13...CVD precipitate. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 (c) Figure 2 CVO reaction gas (b)
cvorL corresponding gas Fig. 5 Fig. 6 (a) (b)

Claims (1)

【特許請求の範囲】[Claims] (1)基体の表面に耐熱性繊維を巻き付ける等して持着
させ、次いで基体の繊維持着面にセラミックスを気相蒸
着させ、繊維間隔を埋めることを特徴とするセラミック
ス部材の製造方法。
(1) A method for producing a ceramic member, which comprises the steps of: wrapping heat-resistant fibers around the surface of a substrate to attach them; and then vapor-depositing ceramics on the fiber attachment surface of the substrate to fill in gaps between the fibers.
JP8312285A 1985-04-18 1985-04-18 Ceramic member and manufacture Granted JPS61242963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312285A JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312285A JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Publications (2)

Publication Number Publication Date
JPS61242963A true JPS61242963A (en) 1986-10-29
JPH058147B2 JPH058147B2 (en) 1993-02-01

Family

ID=13793399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312285A Granted JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Country Status (1)

Country Link
JP (1) JPS61242963A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538449B (en) * 2012-01-09 2013-11-20 宁波市鄞州圣安炉业有限公司 Heating furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Also Published As

Publication number Publication date
JPH058147B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
US5553455A (en) Hybrid ceramic article
EP2970024B1 (en) Method for producing high strength ceramic matrix composites
US7387758B2 (en) Tabbed ceramic article for improved interlaminar strength
JP2006189029A (en) Sic/sic composite material with coat-free fiber built in to improve interlaminar strength
US5674585A (en) Composite thermal insulation structure
US20040214051A1 (en) Hybrid structure using ceramic tiles and method of manufacture
JPS6051421B2 (en) Method of manufacturing composite parts
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
JPS641551B2 (en)
JPS61242963A (en) Ceramic member and manufacture
CN108130507A (en) A kind of surface recombination structure shock resistance coating die casting and preparation method thereof
JPH07252662A (en) High purity composite material and production thereof
CN114163263B (en) Novel environmental barrier coating and structure for SiC ceramic matrix composite
US20210009480A1 (en) Method of altering a surface of a ceramic matrix composite to aid in nodule removal
CN208167094U (en) A kind of multilayer crucible
JPS61141678A (en) Manufacture of fiber reinforced ceramic shell structure part
JP3057670B2 (en) Multilayer ceramic heater
US20050028728A1 (en) Method for fabricating a diamond film having low surface roughness
JPS61242945A (en) Manufacture of high purity ceramic product
JPH044748B2 (en)
JP4078453B2 (en) Manufacturing method of ceramic fiber / SiC composite material
JP2876529B1 (en) Method for producing fiber-reinforced ceramic matrix composite
JPH0927566A (en) Manufacture of submount
CN108411280A (en) A kind of multilayer crucible and its manufacturing method
JPH0318487Y2 (en)