JPH058147B2 - - Google Patents

Info

Publication number
JPH058147B2
JPH058147B2 JP60083122A JP8312285A JPH058147B2 JP H058147 B2 JPH058147 B2 JP H058147B2 JP 60083122 A JP60083122 A JP 60083122A JP 8312285 A JP8312285 A JP 8312285A JP H058147 B2 JPH058147 B2 JP H058147B2
Authority
JP
Japan
Prior art keywords
ceramic
substrate
heat
strength
cylindrical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60083122A
Other languages
Japanese (ja)
Other versions
JPS61242963A (en
Inventor
Miharu Kayane
Fusao Fujita
Kazuhisa Matsumoto
Koji Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8312285A priority Critical patent/JPS61242963A/en
Publication of JPS61242963A publication Critical patent/JPS61242963A/en
Publication of JPH058147B2 publication Critical patent/JPH058147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミツクス筒状部材の製造方法に係
り、特に耐熱性繊維により強化したセラミツクス
筒状部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a ceramic cylindrical member, and particularly to a method for manufacturing a ceramic cylindrical member reinforced with heat-resistant fibers.

[従来の技術] 近年高温高強度構造材料として窒化珪素、炭化
珪素、サイアロン等の非酸化物セラミツクス、あ
るいは酸化アルミニウム、酸化ジルコニウム等、
いわゆるニユーセラミツクスが急速にクローズア
ツプされ、多くの研究や開発がなされている。こ
れらのセラミツクスの用途は、ガスタービンのブ
レードや燃焼器、デイーゼルエンジンのシリンダ
やピストンその他高温用機械部品として数多くあ
る。
[Prior art] In recent years, non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as aluminum oxide, zirconium oxide, etc., have been used as high-temperature and high-strength structural materials.
So-called new ceramics are rapidly gaining attention, and much research and development is being carried out. These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

しかしながら、周知の如くセラミツクスは脆性
材料であり、上記のニユーセラミツクスといえど
も金属材料に比べれば亀裂が伝播が速く、わずか
な欠陥で破壊する等、信頼性に欠ける。
However, as is well known, ceramics are brittle materials, and even in the above-mentioned new ceramics, cracks propagate faster than metal materials, and the materials are destroyed by the slightest defect, so they lack reliability.

また、セラミツクス製品は、通常、セラミツク
ス粉末原料を適宜の手法により形成した後、焼結
することによつて製造されているが、この焼結に
際しては、通常、焼結助剤を必要とする。この結
果、この焼結助剤により製品全体の高温強度が低
下するようになる。即ち、セラミツクス自体は本
来高温でも高強度であるにもかかわらず、低融点
の焼結助剤成分が結晶粒界に多く集まり、このた
めに得られる製品の強度は、高温度域で低下する
のである。
Further, ceramic products are usually manufactured by forming a ceramic powder raw material by an appropriate method and then sintering it, but this sintering usually requires a sintering aid. As a result, this sintering aid reduces the high temperature strength of the entire product. In other words, although ceramics themselves inherently have high strength even at high temperatures, many of the low-melting point sintering aid components gather at grain boundaries, and as a result, the strength of the resulting product decreases at high temperatures. be.

これに対し、近年、全く新しいセラミツクス製
造法としてCVD法やPVD法等の蒸着法が、特に
薄膜形成手段として表面処理の分野で実用されて
いる。CVD法によれば、極めて緻密な組織のセ
ラミツクを製造でき、かつ、そもそも焼結プロセ
スを経ないので焼結助剤を混入させる必要もな
い。そのため、得られる製品の強度は高温度域で
も低下しないという利点を有する。
On the other hand, in recent years, vapor deposition methods such as CVD and PVD have been put into practical use as completely new ceramic manufacturing methods, particularly in the field of surface treatment as means for forming thin films. According to the CVD method, it is possible to produce ceramic with an extremely dense structure, and since there is no sintering process in the first place, there is no need to mix sintering aids. Therefore, the strength of the resulting product has the advantage of not decreasing even in a high temperature range.

[発明が解決しようとする問題点] CVD法等の気相蒸着法によれば、焼結助剤が
不要なことから、セラミツクス本体の高温強度を
有する製品が得られるため、セラミツクス被膜の
製造には極めて有利である。
[Problems to be solved by the invention] According to the vapor phase deposition method such as the CVD method, since a sintering aid is not required, a product with high-temperature strength of the ceramic body can be obtained. is extremely advantageous.

しかしながら、CVD法により厚膜部材を製造
する場合には、第2図に示す如く、基体1に垂直
な方向にセラミツクスの柱状晶2が発達し、垂直
方向の高強度は達成されるものの、水平方向の強
度が低くなるという問題がある。
However, when manufacturing thick film members by the CVD method, as shown in Figure 2, ceramic columnar crystals 2 develop in the direction perpendicular to the base 1, and although high strength in the vertical direction is achieved, There is a problem that the strength in the direction becomes low.

また、CVD法はセラミツクスの生成速度が比
較的遅く、20〜30μm/hr程度の膜生成速度であ
るため、通常の構造物を形成するには長時間を要
し、工業的に有利ではないという欠点を有する。
In addition, the CVD method has a relatively slow ceramic production rate, with a film production rate of about 20 to 30 μm/hr, so it takes a long time to form a normal structure, so it is not industrially advantageous. It has its drawbacks.

[問題点を解決するための手段] 本発明は、基本に耐熱繊維を巻回して持着さ
せ、次いでこの基体表面にセラミツクスを気相蒸
着させて繊維間の間〓を埋め、その後、基体を除
去することによりセラミツクス筒状部材を得るも
のである。
[Means for solving the problem] The present invention basically involves winding and holding heat-resistant fibers, then vapor-depositing ceramics on the surface of this substrate to fill the gaps between the fibers, and then fixing the substrate. By removing it, a ceramic cylindrical member is obtained.

[作用] 本発明によれば、基体に持着させた耐熱性繊維
により強化されたセラミツクス筒状部材が提供さ
れる。また、気相蒸着層の柱状晶の発達が抑制さ
れ、これによつてもセラミツクスの面内方向の強
度が増大される。しかも耐熱性繊維の体積分だけ
気相蒸着量が減らされるため、製造時間が短縮さ
れる。
[Function] According to the present invention, a ceramic cylindrical member reinforced by heat-resistant fibers attached to a base is provided. Furthermore, the growth of columnar crystals in the vapor-deposited layer is suppressed, and this also increases the strength of the ceramic in the in-plane direction. Moreover, since the amount of vapor phase deposition is reduced by the volume of the heat-resistant fiber, the manufacturing time is shortened.

従つて、極めて高強度なセラミツクスの厚膜層
よりなる筒状部材を、気相蒸着法により効率的に
製造することが可能となる。
Therefore, it is possible to efficiently manufacture a cylindrical member made of a thick film layer of extremely high-strength ceramics by the vapor phase deposition method.

[実施例] 以下に本発明の実施例について図面を参照して
詳細に説明する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図a〜dは本発明の一実施例に係るセラミ
ツクス筒状部材の製造方法を説明する概略的な断
面図である。この第1図a〜dでは、基体11の
下半分側は上半分側と対称であるため、図示を省
略してある。
1A to 1D are schematic cross-sectional views illustrating a method of manufacturing a ceramic cylindrical member according to an embodiment of the present invention. In FIGS. 1A to 1D, the lower half of the base 11 is not shown because it is symmetrical to the upper half.

本発明においては、第1図aに示す如く、基体
11に耐熱性繊維12を巻回して持着させ、次い
で基体11の繊維持着面11aにCVD法等の気
相蒸着法によりセラミツクスの蒸着を行なう。
In the present invention, as shown in FIG. 1a, heat-resistant fibers 12 are wound around and attached to a base 11, and then ceramics are deposited on the fiber attachment surface 11a of the base 11 by a vapor deposition method such as a CVD method. Do the following.

基体11の繊維接着面11aに、CVD法によ
りセラミツクスの蒸着を行なう場合には、まず基
体11の少なくともその表面11aをCVD反応
の析出温度域に加熱する。
When depositing ceramics on the fiber bonding surface 11a of the substrate 11 by the CVD method, first, at least the surface 11a of the substrate 11 is heated to a deposition temperature range for CVD reaction.

加熱方法は、特に限定されないが、基体11の
形状が簡単であつたり、導電性である場合は、装
置構成の簡単な高周波誘導加熱等が有利である。
加熱方法としては、その他、反応容器の外側から
加熱する外部加熱法等も採用可能である。
The heating method is not particularly limited, but if the base 11 has a simple shape or is conductive, high-frequency induction heating or the like with a simple device configuration is advantageous.
As the heating method, an external heating method of heating from the outside of the reaction container can also be adopted.

このようにして加熱された基体11の繊維持着
面11aに、第1図aの如く、CVD反応ガスを
供給してCVD反応させ、表面にCVD反応析出物
13を析出させる(第1図b参照)。このCVD反
応析出物13の析出量は、CVD反応ガスの供給
量又は加熱時間を調節することにより容易に調整
し得る。
A CVD reaction gas is supplied to the fiber adhering surface 11a of the substrate 11 heated in this manner, as shown in FIG. reference). The amount of deposited CVD reaction precipitate 13 can be easily adjusted by adjusting the supply amount or heating time of the CVD reaction gas.

CVD反応析出物13を所望厚さに析出させた
後、所望によりその表面を研磨し、第1図cの如
く、基体11にCVD反応析出物13の層を形成
した部材を得る。
After the CVD reaction precipitate 13 has been deposited to a desired thickness, the surface is polished if desired to obtain a member in which a layer of the CVD reaction precipitate 13 is formed on the substrate 11 as shown in FIG. 1c.

その後、第1図dの如く基体11を分離・除去
して製品とする。
Thereafter, as shown in FIG. 1d, the substrate 11 is separated and removed to produce a product.

このようは本発明の方法において、基体11の
材質としては特に制限はなく、金属あるいはセラ
ミツク等が採用可能であるが、CVD反応後に基
体11とCVD反応析出物とを容易に分離するた
めには、基体11としては、CVD反応析出物と
実質的に反応ぜず、かつCVD反応析出物と異な
る熱膨張率を有する材質からなるものとするのが
好ましい。このような材質のものを選定すること
により、基体11とCVD反応析出物13とは、
軽い機械的衝撃を析出物13と基体11との界面
近傍に与えるか、あるいは、該界面近傍を加熱も
しくは冷却することにより、剥離させるようにし
て容易に取りはずすことが可能となる。
In this way, in the method of the present invention, there is no particular restriction on the material of the substrate 11, and metals, ceramics, etc. can be used, but in order to easily separate the substrate 11 and the CVD reaction precipitate after the CVD reaction. The substrate 11 is preferably made of a material that does not substantially react with the CVD reaction precipitates and has a coefficient of thermal expansion different from that of the CVD reaction precipitates. By selecting such materials, the base 11 and the CVD reaction precipitate 13 can be
By applying a light mechanical shock to the vicinity of the interface between the precipitate 13 and the substrate 11, or by heating or cooling the vicinity of the interface, it becomes possible to easily remove the precipitate by peeling it off.

なお、基体11を可燃性のものとしておけば、
この基体11を酸化消失せしめることが可能であ
る。また、鋳造における砂鋳型の様に、崩して除
去しうる材質のものも用い得るし、機械的な加工
により除去してもよい。
Note that if the base 11 is made of flammable material,
It is possible to eliminate this substrate 11 by oxidation. Furthermore, a material that can be broken and removed, such as a sand mold in casting, may be used, or it may be removed by mechanical processing.

耐熱性繊維としては、CVD反応温度や得られ
る製品部材の使用温度に十分耐え得るようなもの
であれば良く、具体的にはSiCやW、M0等の繊維
が挙げられる。
The heat-resistant fibers may be of any kind as long as they can sufficiently withstand the CVD reaction temperature and the usage temperature of the obtained product member, and specific examples include fibers such as SiC, W, and M 0 .

また析出させるセラミツクスとしては、MgO、
SiC、Si3N4、Al2O3、サイアロン等が挙げられ
る。
Ceramics to be precipitated include MgO,
Examples include SiC, Si 3 N 4 , Al 2 O 3 and Sialon.

本発明においては、第3図〜第5図に示す如
く、基体11の形状を目的とする部材の形状にあ
わせて加工することにより、様々な形状の筒状部
材をも製造し得る。
In the present invention, as shown in FIGS. 3 to 5, cylindrical members of various shapes can be manufactured by processing the shape of the base body 11 according to the shape of the intended member.

即ち、第3図の例においては、第3図aの如
く、長方体の基体11の周囲に耐熱性繊維12を
巻回し、これにCVD反応ガスを図中の矢印の如
く、外側から送給し、第3図bに示す如く基体1
1の周囲にCVD反応析出物13を析出させたも
のである。このものは、基体11を取りのぞくこ
とにより、第3図cの如き中空の繊維強化セラミ
ツクス部材とすることができる。
That is, in the example shown in FIG. 3, heat-resistant fibers 12 are wound around a rectangular base 11 as shown in FIG. and the substrate 1 as shown in FIG. 3b.
CVD reaction precipitate 13 is deposited around 1. By removing the base 11, this can be made into a hollow fiber-reinforced ceramic member as shown in FIG. 3c.

第4図の例においては、第4図aの如く、円筒
形の基体11の側面周囲に耐熱性繊維12を巻回
し、これにCVD反応ガスを送給し、第4図bの
如く基体11の周囲にCVD反応析出物13を析
出させたものである。このものも、基体11を取
りのぞくことにより、第4図cの如き中空の繊維
強化セラミツクス部材とすることができる。
In the example shown in FIG. 4, a heat-resistant fiber 12 is wound around the side surface of a cylindrical base 11 as shown in FIG. CVD reaction precipitate 13 is deposited around the . By removing the base body 11, this material can also be made into a hollow fiber-reinforced ceramic member as shown in FIG. 4c.

第5図は本発明の方法によりガスタービンのブ
レードを製造する場合を説明するものであり、第
5図aの如く、目的とするブレード形状よりもい
くぶん小さい相似形の基体11に耐熱性繊維12
を巻回し、CVD反応ガスを送給して、第5図b
の如く、CVD反応析出物13を析出させ、次い
で基体11を除去して目的とする形状のブレード
を製造するものである。
FIG. 5 explains the case of manufacturing gas turbine blades by the method of the present invention. As shown in FIG.
Figure 5b
As shown in the figure, a CVD reaction precipitate 13 is deposited, and then the base body 11 is removed to produce a blade having the desired shape.

なお、耐熱性繊維12は高強度を必要とする所
には密に、特に高強度を必要としない所には粗に
設けるようにしても良く、また、基体に2層以上
重ねて巻回させるようにしても良い。この場合に
は、例えば第6図aに示す如く隣り合う耐熱性繊
維の巻回層の巻き方向をクロスさせることによ
り、より高強度なセラミツクス部材(第6図b)
を製造することができる。
The heat-resistant fibers 12 may be provided densely in areas where high strength is required, and loosely in areas where particularly high strength is not required, or may be wound around the base in two or more layers. You can do it like this. In this case, for example, as shown in Figure 6a, by crossing the winding directions of adjacent heat-resistant fiber layers, a ceramic member with higher strength can be created (Figure 6b).
can be manufactured.

また基体への繊維の巻回及びCVD反応を数回
繰り返して、即ち、例えば第1図c又はdのセラ
ミツクス部材のCVD反応析出物13の表面13
aに、更に耐熱性繊維を設けてCVD反応ガスを
供給し、CVD反応析出物を積層させるようにす
ることもできる。
In addition, the winding of the fiber around the substrate and the CVD reaction are repeated several times.
It is also possible to further provide heat-resistant fibers in a, supply CVD reaction gas, and stack CVD reaction precipitates.

上記の説明ではCVD法が採用されているが、
本発明では、PVD法等その他の気相蒸着法をも
用い得る。
Although the CVD method is adopted in the above explanation,
Other vapor phase deposition methods such as PVD may also be used in the present invention.

[作用] 基体に持着させた耐熱性繊維により、補強され
ると共に気相蒸着層の柱状晶の発達が抑制され
た、極めて高強度なセラミツク層が得られる。し
かも耐熱性繊維の体積分だけ気相蒸着部が減らさ
れるため、製造時間が短縮される。
[Function] An extremely high-strength ceramic layer is obtained, which is reinforced by the heat-resistant fibers attached to the substrate and suppresses the development of columnar crystals in the vapor-deposited layer. Moreover, since the vapor deposition area is reduced by the volume of the heat-resistant fiber, the manufacturing time is shortened.

従つて、極めて高強度なセラミツクの厚膜層よ
りなる筒状部材を気相蒸着法により効率的に製造
することが可能となる。
Therefore, it is possible to efficiently manufacture a cylindrical member made of a thick layer of extremely high-strength ceramic by vapor phase deposition.

[実施例] 以下に本発明を実施例により更に具体的に説明
する。
[Examples] The present invention will be explained in more detail below using Examples.

実施例 1 本発明の製造方法に従つて、第4図cに示すセ
ラミツクス筒状部材を製造した。
Example 1 A ceramic cylindrical member shown in FIG. 4c was manufactured according to the manufacturing method of the present invention.

まず基体11として黒鉛棒(φ30mm×120mm)
を用い、これに第4図aの如くW繊維(平均直径
0.02mm)を巻回した。このものを外部加熱法によ
り加熱し、基体の端部にセツトされた熱電対によ
り温度を検出し、加熱部の温度を1300〜1400℃に
保持した。
First, as the base 11, a graphite rod (φ30mm x 120mm)
As shown in Figure 4a, W fibers (average diameter
0.02mm). This material was heated by an external heating method, the temperature was detected by a thermocouple set at the end of the substrate, and the temperature of the heating part was maintained at 1300 to 1400°C.

次いで基体11にCVDガスとしてSiCl4
CH4/H2を供給し、CVD反応析出物(SiC)1
3を析出させた後、ガス供給を停止した。
Next, SiCl 4 /
Supplying CH4 / H2 , CVD reaction precipitate (SiC)1
After depositing 3, the gas supply was stopped.

しかる後、基体11を機械加工により取りはず
した。
Thereafter, the base body 11 was removed by machining.

得られたSiC部材は基体11の形状の中空部分
を有する円筒部材であつたが、本発明の方法によ
り極めて短時間で製造され、しかも極めて高強度
なものであつた。
The obtained SiC member was a cylindrical member having a hollow portion in the shape of the base body 11, but it was manufactured in an extremely short time by the method of the present invention and had extremely high strength.

[効果] 以上詳述した通り、本発明のセラミツクス筒状
部材の製造方法によれば、耐熱繊維の強度向上効
果と、柱状晶抑制効果により、得られるセラミツ
クス筒状部材は極めて高強度で耐久性及び信頼性
の高いものとなる。しかも製造されるセラミツク
ス筒状部材の外表面は極めて緻密なものとなる。
[Effects] As detailed above, according to the method for manufacturing a ceramic cylindrical member of the present invention, the obtained ceramic cylindrical member has extremely high strength and durability due to the strength improvement effect of the heat-resistant fiber and the columnar crystal suppression effect. and high reliability. Moreover, the outer surface of the produced ceramic cylindrical member becomes extremely dense.

また、基体の形状を選定することにより任意の
形状のセラミツクス筒状部材を製造することがで
きる。さらに、高耐熱性繊維の存在によりセラミ
ツクス蒸着量が低減され、生産効果も極めて高
い。
Further, by selecting the shape of the base body, a ceramic cylindrical member of any shape can be manufactured. Furthermore, the presence of highly heat-resistant fibers reduces the amount of ceramics deposited, resulting in extremely high production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは本発明の一実施例に係るセラミ
ツクス筒状部材の製造過程を説明する概略的な断
面図、第2図はCVD法により厚膜を形成した場
合に得られる柱状晶を示す断面図、第3図a〜
c、第4図a〜c、第5図a,bは、各々、本発
明の他の実施例に係るセラミツクス筒状部材の製
造過程を説明する斜視図、第6図a,bは本発明
の別の実施例を説明する断面図である。 11……基体、12……高耐熱性繊維、13…
…CVD析出物。
Figures 1a to d are schematic cross-sectional views illustrating the manufacturing process of a ceramic cylindrical member according to an embodiment of the present invention, and Figure 2 shows columnar crystals obtained when a thick film is formed by the CVD method. Cross-sectional view shown in Figure 3 a~
c, FIGS. 4a to 4c, and 5a, b are perspective views illustrating the manufacturing process of a ceramic cylindrical member according to another embodiment of the present invention, and FIGS. FIG. 3 is a sectional view illustrating another embodiment of the present invention. 11...Base body, 12...High heat resistant fiber, 13...
...CVD deposits.

Claims (1)

【特許請求の範囲】[Claims] 1 基体の表面に耐熱性繊維を巻回して持着さ
せ、次いで基体の繊維持着面にセラミツクスを気
相蒸着させ、繊維間の間〓を埋め、その後、基体
を除去することを特徴とするセラミツクス筒状部
材の製造方法。
1. Heat-resistant fibers are wound around and attached to the surface of the substrate, then ceramics are vapor-deposited on the fiber attachment surface of the substrate to fill the gaps between the fibers, and then the substrate is removed. A method for manufacturing a ceramic cylindrical member.
JP8312285A 1985-04-18 1985-04-18 Ceramic member and manufacture Granted JPS61242963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8312285A JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8312285A JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Publications (2)

Publication Number Publication Date
JPS61242963A JPS61242963A (en) 1986-10-29
JPH058147B2 true JPH058147B2 (en) 1993-02-01

Family

ID=13793399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8312285A Granted JPS61242963A (en) 1985-04-18 1985-04-18 Ceramic member and manufacture

Country Status (1)

Country Link
JP (1) JPS61242963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538449A (en) * 2012-01-09 2012-07-04 宁波市鄞州圣安电气设备有限公司 Heating furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538449A (en) * 2012-01-09 2012-07-04 宁波市鄞州圣安电气设备有限公司 Heating furnace

Also Published As

Publication number Publication date
JPS61242963A (en) 1986-10-29

Similar Documents

Publication Publication Date Title
US5154862A (en) Method of forming composite articles from CVD gas streams and solid particles of fibers
KR100775819B1 (en) Ceramic with zircon coating
JP2009270199A (en) Article having protective film and method for providing the same
US5427823A (en) Laser densification of glass ceramic coatings on carbon-carbon composite materials
JP2006189029A (en) Sic/sic composite material with coat-free fiber built in to improve interlaminar strength
JPS6051421B2 (en) Method of manufacturing composite parts
JPS63303674A (en) Manufacture of metallic structure member coated with ceramic
US4717693A (en) Process for producing beta silicon nitride fibers
IE71921B1 (en) Carbon-containing composite material part protected against oxidation and its production process
US6004671A (en) Reinforcement for composite material and composite material using the same
JPS641551B2 (en)
JPH058147B2 (en)
US20160160374A1 (en) Methods of forming an article using electrophoretic deposition, and related article
JP3770404B2 (en) Directionally solidified eutectic reinforced fiber
WO2022118962A1 (en) Method for filling open pores in ceramic-based composite material, and ceramic-based composite material
CN208167094U (en) A kind of multilayer crucible
US5389321A (en) Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JPS61141678A (en) Manufacture of fiber reinforced ceramic shell structure part
JP3057670B2 (en) Multilayer ceramic heater
Pakala et al. Microhardness of Sputter‐Deposited Zirconia Films on Silicon Wafers
JPH0361617B2 (en)
JPH044748B2 (en)
CN108411280A (en) A kind of multilayer crucible and its manufacturing method
JP3769065B2 (en) Zirconia-coated member, manufacturing method thereof, manufacturing apparatus thereof, and turbine member