JPS61141678A - Manufacture of fiber reinforced ceramic shell structure part - Google Patents

Manufacture of fiber reinforced ceramic shell structure part

Info

Publication number
JPS61141678A
JPS61141678A JP59260482A JP26048284A JPS61141678A JP S61141678 A JPS61141678 A JP S61141678A JP 59260482 A JP59260482 A JP 59260482A JP 26048284 A JP26048284 A JP 26048284A JP S61141678 A JPS61141678 A JP S61141678A
Authority
JP
Japan
Prior art keywords
ceramic
fiber
fibers
reinforced ceramic
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260482A
Other languages
Japanese (ja)
Inventor
肇 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59260482A priority Critical patent/JPS61141678A/en
Publication of JPS61141678A publication Critical patent/JPS61141678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は繊維強化セラミック殻構造部品の製造方法に係
り、特にCVD反応を利用して得らりる繊維強化セラミ
ック殻構造部品の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a fiber-reinforced ceramic shell structural component, and particularly relates to a method for manufacturing a fiber-reinforced ceramic shell structural component obtained using a CVD reaction. .

[従来の技術] 近年高温高強度構造材料として窒化珪素、炭化珪素、サ
イアロン等の非酸化物セラミ7クス、あるいは酸化アル
ミニウム、酸化ジルコニウム等、いわゆるニューセラミ
ックスが急速にクローズアップされ、多くの研究や開発
がなされている。
[Prior art] In recent years, so-called new ceramics such as non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as aluminum oxide and zirconium oxide, have been rapidly focused on as high-temperature, high-strength structural materials, and much research and research has been conducted. development is underway.

これらのセラミックスの用途は、ガスタービンのブレー
ドや燃焼器、ディーゼルエンジンのシリンダやピストン
その他高温用機械部品として数多くある。
These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

しかしながら、周知の如くセラミックは脆性材料であり
、上記のニューセラミックスといえども金属材料に比べ
れば亀裂の伝播が速く、わずかな欠陥で破壊する等、信
頼性に欠けることから、高強度を必要とする構造部品に
は未だ実用化されていない。
However, as is well known, ceramics are brittle materials, and even with the new ceramics mentioned above, cracks propagate faster than metal materials, and they are unreliable, such as being destroyed by the slightest defect, so they require high strength. It has not yet been put to practical use in structural parts.

従来、このような問題点を解決するために、ウィスカと
呼ばれる無機質短繊維をセラミックに混入することによ
り、セラミック製品の強度の向上を図る試みがなされて
いる。
Conventionally, in order to solve these problems, attempts have been made to improve the strength of ceramic products by mixing inorganic short fibers called whiskers into ceramics.

また、従来、セラミック製品は、セラミック粉末原料を
適宜の手法により成形した後、焼結することによって製
造されているが、この焼結に際しては1通常、焼結助剤
を必要とする。この結果。
Furthermore, conventionally, ceramic products have been manufactured by molding ceramic powder raw materials by an appropriate method and then sintering them, but this sintering usually requires a sintering aid. As a result.

この焼結助剤により製品全体の高温強度が低下するよう
になる。即ち、セラミック自体は本来高温でも高強度で
あるにもかかわらず、低融点の焼結助剤成分が結晶粒界
に多く集まり、このために得られる製品の強度は、第2
図に示す如く、高温度域で低下するのである。
This sintering aid reduces the high temperature strength of the entire product. In other words, although the ceramic itself has high strength even at high temperatures, many of the low-melting point sintering aid components gather at the grain boundaries, and as a result, the strength of the resulting product is reduced to a secondary level.
As shown in the figure, it decreases in the high temperature range.

近年、全く新しいセラミック製造法としてCVD法やP
VD法等の気相めっき法が、特に薄膜形成手段として表
面処理の分野で実用されている。
In recent years, completely new ceramic manufacturing methods such as CVD and P
Vapor phase plating methods such as the VD method are in practical use in the field of surface treatment, particularly as a means for forming thin films.

CVD法によれば、極めて緻密な組織のセラミックを製
造でき、かつ、そもそも焼結プロセスを経ないので焼結
助剤を混入させる必要もない、そのため、第2図に示す
如く、得られる製品の強度は高温度域でも低下しないと
いう利点を有する。
According to the CVD method, it is possible to produce ceramics with an extremely dense structure, and since there is no sintering process in the first place, there is no need to mix sintering aids.Therefore, as shown in Figure 2, the resulting product is It has the advantage that strength does not decrease even in a high temperature range.

[発明が解決しようとする問題点] セラミックにウィスカを混入する方法により、セラミッ
クの脆性は改善されるものの、この方法は、セラミック
にウィスカを一様に混入することが難しいこと、また、
ウィスカの混入率に限度があるため脆性の改善効果にも
上限がある等のために、実用的ではない。
[Problems to be Solved by the Invention] Although the brittleness of the ceramic can be improved by mixing whiskers into the ceramic, this method has the disadvantage that it is difficult to uniformly mix the whiskers into the ceramic.
It is not practical because there is a limit to the mixing rate of whiskers and there is also an upper limit to the brittleness improvement effect.

CVD法によれば、焼結助剤が不要なことから、セラミ
ック本来の高温強度を有する製品が得られるものの、C
VD法はセラミックの生成速度が極めて遅く、20〜3
0gm/hr程度の膜形成速度であるため1通常の構造
物を形成するには長時間を要し、工業的に有利ではない
という欠点を有する。しかもCVD法によって得られる
セラミック製品は高強度ではあるが、脆性を有するとい
う問題点を残している。
According to the CVD method, since no sintering aid is required, products with the high-temperature strength inherent to ceramics can be obtained;
The VD method has an extremely slow ceramic production rate, with a rate of 20 to 3
Since the film formation rate is about 0 gm/hr, it takes a long time to form a normal structure, which is disadvantageous in that it is not industrially advantageous. Moreover, although ceramic products obtained by the CVD method have high strength, they still have the problem of being brittle.

[問題点を解決するための手段] 本発明は上記従来の問題点を解決するべくなされたもの
であり、繊維によるセラミックの強化法とCVD法の利
点を兼備するものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned conventional problems, and combines the advantages of the method of reinforcing ceramics with fibers and the CVD method.

即ち1本発明は、 SiC及び/又は炭素の長繊維を網目状に組み合せて所
定形状の長繊維構造体とし、CVD反応ガスを前記長繊
維構造体の繊維の表面に供給してCVD反応させ、該繊
維の表面にセラミック層を析出させることを特徴とする
繊維強化セラミック蓋構造部品の製造方法、 を要旨とするものである。
That is, one aspect of the present invention is to combine long fibers of SiC and/or carbon in a network to form a long fiber structure of a predetermined shape, supply a CVD reaction gas to the surface of the fibers of the long fiber structure to cause a CVD reaction, The gist of the present invention is a method for manufacturing a fiber-reinforced ceramic lid structure component, characterized in that a ceramic layer is deposited on the surface of the fiber.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、まず、SiC及び/又は炭素の長繊
維を用いて所定形状の構造体とする。この際、目的とす
る部品よりいくぶん小さい相似形でかつ中空空洞の構造
体とすれば、後述のように、軽量な繊維強化セラミ−2
り殻構造部品が容易に製造される。
In the present invention, first, SiC and/or carbon long fibers are used to form a structure into a predetermined shape. In this case, if the structure is similar in shape and hollow to the target part, lightweight fiber-reinforced ceramic 2.
shell structural parts are easily manufactured.

網目状の長繊維構造体の作製方法は、特に制限はなく、
長繊維を手作業又は機械的に編み込む方法、あるいは耐
熱性のバインダーを用いて形成する方法等が挙げられる
There are no particular restrictions on the method for producing the mesh-like long fiber structure.
Examples include a method of manually or mechanically knitting long fibers, and a method of forming using a heat-resistant binder.

次に、通常は、この網目状の長繊維構造体を構成する繊
維の表面部をCVD反応の析出温度域に加熱する。
Next, the surface portion of the fibers constituting this network-like long fiber structure is usually heated to a precipitation temperature range for CVD reaction.

加熱方法は、特に限定されないが、炭素繊維の場合は装
置構成の簡易な高周波誘導加熱等が有利である。高周波
誘導加熱を採用する場合、炭素繊維の網目状構造物は炭
素からなる導電性であるので、そのままの状態でこれを
反応器中に挿入し、高周波コイルにより交番磁界を印加
する等して、表面を高周波誘導加熱する。
The heating method is not particularly limited, but in the case of carbon fibers, high frequency induction heating or the like with a simple device configuration is advantageous. When using high-frequency induction heating, the carbon fiber network structure is made of carbon and is conductive, so it is inserted into the reactor as it is, and an alternating magnetic field is applied using a high-frequency coil. The surface is heated by high frequency induction.

加熱方法としては、その他、繊維材料によって反応容器
の外側から加熱する外部加熱法、レーザー加熱法等も採
用可能である。
As the heating method, an external heating method in which the reaction vessel is heated from the outside using a fiber material, a laser heating method, etc. can also be adopted.

このようにして加熱された網目状の長繊維構造体の繊維
の表面にCVD反応ガスを供給してCVD反応させ、表
面にセラミック層を析出させる。
A CVD reaction gas is supplied to the surface of the fibers of the mesh-like long fiber structure heated in this way to cause a CVD reaction, and a ceramic layer is deposited on the surface.

析出させるセラミックとしては、窒化珪素、炭化珪素、
サイアロン等が好適である。また、形成するセラミック
層の厚さはCVD反応ガスの供給量又は加熱時間を調節
することKより適宜調整することができる。
The ceramics to be deposited include silicon nitride, silicon carbide,
Sialon etc. are suitable. Further, the thickness of the ceramic layer to be formed can be adjusted as appropriate by adjusting the supply amount or heating time of the CVD reaction gas.

このように1本発明は、SiC及び/又は炭素の長繊維
の網目状構造体を作製し、次にCVD法によりセラミッ
クをこの構造体の繊維表面に析出させ、長繊維をセラミ
ックで被覆するのであるが、セラミック被覆量を増大さ
せれば、セラミックの内部に繊維が埋設された構成とな
り、繊維強化セラミック殻構造体が得られる。
In this way, the present invention prepares a network structure of long fibers of SiC and/or carbon, and then deposits ceramic on the fiber surface of this structure by CVD to coat the long fibers with ceramic. However, if the amount of ceramic coating is increased, a structure in which fibers are embedded inside the ceramic is obtained, and a fiber-reinforced ceramic shell structure can be obtained.

[作用] 本発明方法によれば、SIC及び/又は炭素の長繊維と
セラミックとを複合させた部材を製造でき、セラミック
の脆性が大幅に改善される。しかもCVD法を採用する
ことによりセラミック層の高温強度は高強度に維持され
る。
[Function] According to the method of the present invention, it is possible to manufacture a member in which SIC and/or carbon long fibers are composited with ceramic, and the brittleness of the ceramic is significantly improved. Furthermore, by employing the CVD method, the high temperature strength of the ceramic layer is maintained at a high level.

また、目的とする部品の外形形状よりもわずかに小さな
相似形状の殻状の長繊維構造体を作製し、これを用いる
ようにすれば、得られる部品は、その内部が空洞の殻構
造体となるため、軽量でしかも高温強度の優れたものと
なる。なお、このような目的とする部品の外形形状より
もわずかに小さな相似形状の長繊維構造体を用いてCV
D反応処理を行なう場合には、殻状の長繊維構造体の表
裏両面側でCVD反応を進行させ得るので、セラミック
層の成長速度を倍加し、製造時間の短縮が図れる。更に
、長繊維構造体の網目を細かくとっておけば、セラミッ
クを少量析出させるだけで網目が埋まるようになるので
製造が一層容易になる。
In addition, if a shell-like long fiber structure with a similar shape that is slightly smaller than the external shape of the target part is produced and used, the resulting part will be a shell structure with a hollow interior. Therefore, it is lightweight and has excellent high-temperature strength. In addition, CV
When performing the D reaction treatment, the CVD reaction can proceed on both the front and back sides of the shell-like long fiber structure, thereby doubling the growth rate of the ceramic layer and shortening the manufacturing time. Furthermore, if the long fiber structure has a fine mesh, the mesh can be filled with just a small amount of precipitated ceramic, making production easier.

[実施例] 以下に本発明を実施例により更に具体的に説明する。[Example] The present invention will be explained in more detail below using Examples.

実施例1 本発明の製造方法に従って、第1図に示すガスタービン
の動翼3を製造した。
Example 1 A rotor blade 3 for a gas turbine shown in FIG. 1 was manufactured according to the manufacturing method of the present invention.

第1図(&)は本発明の方法により製造された繊維強化
セラミック殻構造部品の一例を示すガスタービンの動翼
の一部断面図、同(b)は同(a)のB−B線断面の拡
大図である。第1図において、動翼lはカーボンファイ
バーの長繊維構造体2にCVD法によりセラミラグコー
ティング3を設けて形成されている。
Fig. 1 (&) is a partial sectional view of a gas turbine rotor blade showing an example of a fiber-reinforced ceramic shell structural component manufactured by the method of the present invention, and Fig. 1 (b) is a line BB in Fig. 1 (a). It is an enlarged view of a cross section. In FIG. 1, a rotor blade 1 is formed by providing a ceramic rag coating 3 on a long fiber structure 2 of carbon fibers using the CVD method.

まず、カーボンファイバー(平均直径0.1m m 、
平均繊維長さ30mm)を用いてガスタービンの動翼よ
りわずかに小さく、かつこれと相似形の網目状の長繊維
構造体2を形成した。この長繊維構造体2を、雰囲気コ
ントロール可能な容器に入れ、500KHzの高周波電
流を流した高周波コイルにより加熱した。網目状構造体
の近傍にセットされた熱電対により温度を検出し、加熱
部の温度を1300〜1400℃に保持した。
First, carbon fiber (average diameter 0.1 mm,
A mesh-like long fiber structure 2 having an average fiber length of 30 mm and having a shape slightly smaller than and similar to the rotor blade of a gas turbine was formed. This long fiber structure 2 was placed in a container whose atmosphere could be controlled, and heated by a high frequency coil through which a high frequency current of 500 KHz was passed. The temperature was detected by a thermocouple set near the mesh structure, and the temperature of the heating section was maintained at 1300 to 1400°C.

一方、容器内を不活性ガスにて置換した後、CHaSi
C見3ガスを容器内に導入し、網目状構造体の加熱表面
部にCH35iCJL3ガスを供給した。CH3S i
 C1zガスは表面加熱部にて分解され、SiCが析出
した。析出反応を継続させた後、ガスの供給及び加熱を
停止し、次いで徐冷した。
On the other hand, after replacing the inside of the container with inert gas, CHaSi
CH35iCJL3 gas was introduced into the container, and CH35iCJL3 gas was supplied to the heating surface of the network structure. CH3S i
The C1z gas was decomposed in the surface heating section, and SiC was precipitated. After continuing the precipitation reaction, gas supply and heating were stopped, and then the mixture was gradually cooled.

このような本発明の方法によれば短時間でセラミック製
動翼を製造することができ、しかも得られた動翼は軽量
かつ極めて高強度であった。
According to the method of the present invention, ceramic rotor blades can be manufactured in a short time, and the resulting rotor blades are lightweight and have extremely high strength.

[効果] 以上詳述した通り、本発明の繊維強化セラミック殻構造
部品の製造方法によれば、StC及び/又は炭素の長繊
維による強度向上効果により、製品の強度及び成形性は
大幅に向上され、耐久性及び信頼性が高められる。また
、長繊維の殻状構造体の採用により、製品を薄肉殻構造
とすることができるので、これを軽量化することができ
る。更に長繊維上に形成されるセラミック層はCVD反
応により得られるものであるため、高温度域においても
極めて高強度なものとなる。しかも長繊維の殻状構造体
を用いた場合には、CVD反応を長繊維構造体の表裏2
面において行なうことが可能であるので、セラミック層
を短時間で形成することができ、生産効率が高い。
[Effects] As detailed above, according to the method for manufacturing fiber-reinforced ceramic shell structural parts of the present invention, the strength and formability of the product are significantly improved due to the strength-improving effect of the long fibers of StC and/or carbon. , durability and reliability are enhanced. Furthermore, by employing a shell-like structure made of long fibers, the product can be made into a thin shell structure, thereby making it possible to reduce the weight of the product. Furthermore, since the ceramic layer formed on the long fibers is obtained by CVD reaction, it has extremely high strength even in a high temperature range. Moreover, when using a shell-like structure of long fibers, the CVD reaction can be carried out on both the front and back sides of the long fiber structure.
Since it can be performed on a surface, the ceramic layer can be formed in a short time and production efficiency is high.

従って、本発明によれば、極めて高強度で耐久性に富む
セラミック構造部品を効率的に製造することができ、し
かも得られるセラミック構造部品を軽量なものとするこ
とが可能であり、タービン翼等の高速回転部品の製造等
、様々な構造部品の製造に適用することができる。
Therefore, according to the present invention, it is possible to efficiently manufacture ceramic structural parts with extremely high strength and durability, and the resulting ceramic structural parts can be made lightweight, and can be used for turbine blades, etc. It can be applied to the manufacture of various structural parts, such as the manufacture of high-speed rotating parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(11)は本発明の方法により製造された繊維強
化セラミック殻構造部品の一例を示すガスタービンの動
翼の一部断面図、第1図(b)は第1図(a)のB−B
線断面の拡大図、第2図はCVD法及び焼結法により得
られるセラミック製品の高温域における温度と強度との
関係を示すグラフである。 l・・・動翼。 2・拳・長繊維構造体、 3・・・セラミックコーティング。 代理人  弁理士  重 野  剛 (a) I崖(C)
FIG. 1 (11) is a partial cross-sectional view of a gas turbine rotor blade showing an example of a fiber-reinforced ceramic shell structural component manufactured by the method of the present invention, and FIG. B-B
FIG. 2, an enlarged view of a line cross section, is a graph showing the relationship between temperature and strength in a high temperature range of ceramic products obtained by the CVD method and the sintering method. l... Moving blade. 2. Fist/long fiber structure, 3. Ceramic coating. Agent Patent attorney Tsuyoshi Shigeno (a) Igai (C)

Claims (2)

【特許請求の範囲】[Claims] (1)SiC及び/又は炭素の長繊維を網目状に組み合
せて所定形状の長繊維構造体とし、CVD反応ガスを前
記長繊維構造体の繊維の表面に供給してCVD反応させ
、該繊維の表面にセラミック層を析出させることを特徴
とする繊維強化セラミック殻構造部品の製造方法。
(1) SiC and/or carbon long fibers are combined in a network to form a long fiber structure of a predetermined shape, and a CVD reaction gas is supplied to the surface of the fibers of the long fiber structure to cause a CVD reaction. A method for manufacturing a fiber-reinforced ceramic shell structure component, characterized by depositing a ceramic layer on the surface.
(2)長繊維構造体は、目的とする構造部品の外形より
もわずかに小さい、該外形の相似形状のものであること
を特徴とする特許請求の範囲第1項に記載の繊維強化セ
ラミック殻構造部品の製造方法。
(2) The fiber-reinforced ceramic shell according to claim 1, wherein the long fiber structure is slightly smaller than the outer shape of the target structural component and has a similar shape to the outer shape of the target structural component. Method of manufacturing structural parts.
JP59260482A 1984-12-10 1984-12-10 Manufacture of fiber reinforced ceramic shell structure part Pending JPS61141678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260482A JPS61141678A (en) 1984-12-10 1984-12-10 Manufacture of fiber reinforced ceramic shell structure part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260482A JPS61141678A (en) 1984-12-10 1984-12-10 Manufacture of fiber reinforced ceramic shell structure part

Publications (1)

Publication Number Publication Date
JPS61141678A true JPS61141678A (en) 1986-06-28

Family

ID=17348567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260482A Pending JPS61141678A (en) 1984-12-10 1984-12-10 Manufacture of fiber reinforced ceramic shell structure part

Country Status (1)

Country Link
JP (1) JPS61141678A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222702A (en) * 1985-03-28 1986-10-03 工業技術院長 Manufacture of raw material for composite material
US4855262A (en) * 1986-11-25 1989-08-08 Battelle Memorial Institute Method of manufacturing silicon nitride composition reinforced with silicon carbide whiskers having silicon oxide coating
CN110372408A (en) * 2019-07-23 2019-10-25 中南大学 A kind of ceramic fibre toughening CVD silicon carbide composite material and preparation method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462340A (en) * 1965-07-28 1969-08-19 Us Air Force Fiber-containing pyrolytic composite material
JPS5551769A (en) * 1972-03-28 1980-04-15 Ducommun Inc Manufacture of high strength fiberrreinforced compounded product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222702A (en) * 1985-03-28 1986-10-03 工業技術院長 Manufacture of raw material for composite material
US4855262A (en) * 1986-11-25 1989-08-08 Battelle Memorial Institute Method of manufacturing silicon nitride composition reinforced with silicon carbide whiskers having silicon oxide coating
US4888310A (en) * 1986-11-25 1989-12-19 Battelle Memorial Institute Pulverulent silicon nitride composition including oxidized silicon carbide whiskers
CN110372408A (en) * 2019-07-23 2019-10-25 中南大学 A kind of ceramic fibre toughening CVD silicon carbide composite material and preparation method and application

Similar Documents

Publication Publication Date Title
US3419404A (en) Partially nitrided aluminum refractory material
RU2320772C2 (en) Method for forming of ceramic coat, target for performing the same, and method for manufacturing the target
US5077243A (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
KR20120076341A (en) Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
CA1313749C (en) Method for producing self-supporting ceramic bodies with graded properties
JPS61141678A (en) Manufacture of fiber reinforced ceramic shell structure part
JPS59137366A (en) Manufacture of ceramics
USH1682H (en) Method for producing ceramic coatings on fibers
EP0419151A2 (en) Sintered ceramic composite body and method of manufacturing same
JPS5851913B2 (en) Manufacturing method for fiber-reinforced ceramics
EP0351113B1 (en) Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
JPH10182256A (en) Fiber reinforced ceramic base composite material and its production
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JP3370800B2 (en) Manufacturing method of composite material
JPS6021885A (en) Manufacture of composite material
JPS5957964A (en) Manufacture of fiber reinforced silicon nitride sintered bo-dy
CN113896553B (en) Fiber monolithic structure ultrahigh-temperature ceramic composite material and preparation method thereof
JP3046143B2 (en) Manufacturing method of fiber reinforced ceramics
JPH0582344B2 (en)
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS63277566A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JPH058147B2 (en)
JPS6024372A (en) Method for making surface of porous member dense
JPS61222975A (en) Surface fining method for porous body
JPH07106943B2 (en) Manufacturing method of toughness sintered body