JPS6021885A - Manufacture of composite material - Google Patents

Manufacture of composite material

Info

Publication number
JPS6021885A
JPS6021885A JP13059883A JP13059883A JPS6021885A JP S6021885 A JPS6021885 A JP S6021885A JP 13059883 A JP13059883 A JP 13059883A JP 13059883 A JP13059883 A JP 13059883A JP S6021885 A JPS6021885 A JP S6021885A
Authority
JP
Japan
Prior art keywords
cvd reaction
metal
composite material
cvd
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13059883A
Other languages
Japanese (ja)
Inventor
出川 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP13059883A priority Critical patent/JPS6021885A/en
Publication of JPS6021885A publication Critical patent/JPS6021885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複合材料の製造方法に係り、特にセラミックス
−金属複合材料又はセラミックス−セラミックス複合材
料を製造するに好適な複合材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a composite material, and particularly to a method for manufacturing a composite material suitable for manufacturing a ceramic-metal composite material or a ceramic-ceramic composite material.

〔従来技術〕[Prior art]

近年高温高強度構造材料として窒化珪素、炭化珪素、サ
イアロン等の非酸化物セラミックス、或は酸化アルミニ
ウム、酸化ジルコニウム等、いわゆるニューセラばツク
スが急速にクローズアップされ、多くの研究や開発がな
されている。これらのセラミックスの用途は、ガスター
ビンのブレードや燃焼器、ディーゼルエンジンのシリン
ダやピストンその他高温用機械部品として数多くある。
In recent years, non-oxide ceramics such as silicon nitride, silicon carbide, and sialon, as well as so-called new ceramic materials such as aluminum oxide and zirconium oxide, have been rapidly attracting attention as high-temperature, high-strength structural materials, and much research and development has been conducted. . These ceramics have many uses as gas turbine blades and combustors, diesel engine cylinders and pistons, and other high-temperature mechanical parts.

しかして周知の如くセラミックは脆性材料であり、上記
のニューセラミックスと言えども金属材料に比べれば亀
裂の伝播が速く破断しやすく、そのままの状態で高強度
及び高靭性を要求される材料としては用いることができ
ないという基本的な欠点を有している。
However, as is well known, ceramics are brittle materials, and even though they are new ceramics, cracks propagate faster and break more easily than metal materials, so they cannot be used as materials that require high strength and toughness in their original state. It has the fundamental drawback that it cannot be used.

このような問題点を解消すべく、セラミック部材と金属
部材とを複合した素材の開発、利用が種々検討されてい
る。
In order to solve these problems, various studies are being conducted on the development and use of composite materials of ceramic members and metal members.

このような複合材料として従来、高融点セラミックス粉
末と高融点金属とを混合成形した後、焼結することによ
り製造されるサーメットが提案されているが、これは金
属の連続体中にセラミック粒子が分散しているのみであ
り、セラミックスと金属との複合による効果が充分発揮
されるものではなかった。
Conventionally, cermets have been proposed as such composite materials, which are manufactured by mixing and molding high-melting point ceramic powder and high-melting point metal and then sintering them. They were only dispersed, and the effect of the composite of ceramics and metal was not fully exhibited.

一方、このようなセラミックスと金属との複合体として
多孔質セラミックスの気孔部に金属溶湯な充填する方法
も考え得るが、多孔質セラミックスの気孔部罠金属の溶
湯な含浸させ該気孔中に金属を均一に充填することは、
技術的には容易ではない。
On the other hand, it is possible to consider a method of filling the pores of porous ceramics with molten metal to create a composite of ceramics and metal, but it is also possible to fill the pores of porous ceramics with molten metal and fill the pores with metal. Filling evenly is
Technically it is not easy.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の問題点を解消し、複合効
果が大きく極めて強度の高い複合体を製造することがで
きる複合材料の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a composite material that eliminates the problems of the prior art described above and can produce a composite material with a large composite effect and extremely high strength.

〔発明の楢成〕[Narration of invention]

この目的を達成するために本発明は、CVD反応を利用
して多孔質体の気孔中に析出物を析出させ、これにより
該気孔を密実に充填するようにしたものであって、 連続気孔を有する多孔質部材の一部分なCVD反応の析
出温度域に加熱しておき、前記連続気孔を経由してCV
D反応ガスを該加熱部分に供給してCVD反応させて固
相を析出させる方法であり、上記加熱部分を徐々にシフ
トすることKより連続気孔をCVD反応析出物で充填し
て異種素材を複合させるようにしたことを特徴とする複
合材料の製造方法。
In order to achieve this object, the present invention utilizes a CVD reaction to precipitate a precipitate into the pores of a porous body, thereby densely filling the pores, and forming continuous pores. A part of the porous member having the porous material is heated to a precipitation temperature range of the CVD reaction, and the CVD is heated through the continuous pores.
D is a method in which a reaction gas is supplied to the heated part to cause a CVD reaction to precipitate a solid phase, and the heating part is gradually shifted. A method for manufacturing a composite material, characterized in that:

を要旨とするものである。The main points are as follows.

以下に本発明を図面を参照し℃詳細に説明する。The present invention will be described in detail below with reference to the drawings.

第1図〜第3図は本発明の一実施例に係る多孔質部材の
断面の概略図である。
1 to 3 are schematic cross-sectional views of a porous member according to an embodiment of the present invention.

本発明においては、まず第1図のような連続気孔を有す
る多孔質部材1の一部分をCVD反応の析出温度域に加
熱し、連続気孔にCVD反応ガスを供給する。本発明に
おいては、供給するCVD反応ガスによりcvD反応析
出物を連続気孔中に充填するものであることから、加熱
部に第2図の如く押え部材2等を密着固定させ、CVD
反応ガスが押え部材に直接接触した後、抜けるようにす
るのが好ましい。
In the present invention, first, a part of the porous member 1 having continuous pores as shown in FIG. 1 is heated to a precipitation temperature range for CVD reaction, and a CVD reaction gas is supplied to the continuous pores. In the present invention, since CVD reaction precipitates are filled into continuous pores by the supplied CVD reaction gas, a pressing member 2 etc. is closely fixed to the heating section as shown in FIG.
Preferably, the reaction gas is allowed to escape after coming into direct contact with the holding member.

加熱方法は、多孔質部材の一部分のみが加熱されるよう
な方法であればよく、特に限定されないが、例えば、多
孔質部材が電気的に絶縁体のものである場合には、第2
図に示す如く多孔質部材lの一端面に設置されろ押え部
材2を金属製のものとし、該押え部材2を高周波加熱す
る方法が採用できる。その他、多孔質部材1が黒鉛等の
導電性物質の場合には多孔質部材lを部分的に高周波加
熱する方法或は金属製の押え部材2側から加熱する方法
等も採用できる。
The heating method is not particularly limited as long as it heats only a portion of the porous member, but for example, if the porous member is an electrical insulator, the second
As shown in the figure, a method can be adopted in which the pressing member 2 installed on one end surface of the porous member l is made of metal and the pressing member 2 is heated with high frequency. In addition, when the porous member 1 is made of a conductive material such as graphite, a method of partially high-frequency heating the porous member 1 or a method of heating from the metal pressing member 2 side can also be adopted.

本発明においては、加熱はCVD反応部のみが析出温度
となるように保持し、それ以外の部分は析出温度以下と
し、CVD反応ガスの通路を確保する必要があり、これ
により、第2図に示す如く、CVD反応ガス3が多孔質
部材lの気孔を経由して押え部材2で止まり、CVD反
応の析出温度域に加熱され、CVD反応析出物4を析出
させることとなる。加熱は多孔質部材l又はCVD反応
析出物4が熱伝導率の大きいものであれば、析出反応部
は常圧析出物4のガス接触面であり反応の進行に伴って
おのずとシフトするので加熱部を固定して行うのでも十
分であるが、熱伝導率の小さいものである場合には加熱
部を順次移動させることによりCVD反応析出物を充填
してゆくのが好ましい。
In the present invention, it is necessary to maintain heating so that only the CVD reaction part reaches the deposition temperature, and keep the other parts below the deposition temperature to ensure a passage for the CVD reaction gas. As shown, the CVD reaction gas 3 passes through the pores of the porous member 1 and stops at the pressing member 2, and is heated to the CVD reaction precipitation temperature range, thereby precipitating the CVD reaction precipitate 4. If the porous member 1 or the CVD reaction precipitate 4 has a high thermal conductivity, the heating part is heated because the precipitation reaction part is the gas contact surface of the normal pressure precipitate 4 and shifts naturally as the reaction progresses. It is sufficient to fix the CVD reaction precipitate, but if the heat conductivity is low, it is preferable to fill the CVD reaction precipitate by sequentially moving the heating section.

このようにして、CVD反応析出物4が第3図に示す如
く、多孔質部材1の気孔中に充填され複合材料が製造さ
れた後、押え部材2を複合材料から切り離す。
In this way, as shown in FIG. 3, the CVD reaction precipitates 4 are filled into the pores of the porous member 1 to produce a composite material, and then the presser member 2 is separated from the composite material.

本発明において、多孔質部材としては連続気孔を有する
ものであればよく、その材質や気孔径分布も任意のもの
でよい。具体的には、ジルコニア、アルミナ、シリカ、
炭化珪素等のセラミックス等1が挙げられるが、本発明
はこれらのセラミックスに限られず、多孔質状に形成さ
れた金属又はその他の物質でもよい。又CVD反応で多
孔質部材の連続気孔内に析出充填される析出物の材質に
も特に限定はなく種々のCVD反応による析出物質が採
用できる。例えばW、 MQ、 Ta等の耐火金属、そ
の他超合金系物質又は炭化珪素等のセラミックス等が挙
げられる。又従って、本発明によればアルミナ−Ta等
のセラミックス−金属複合体に限らず、セラミックス−
セラミックス複合材料、金属−金属複合材料等、種々の
特性を有する異種素材を複合させた複合材料を製造する
ことができる。
In the present invention, the porous member may be any material as long as it has continuous pores, and its material and pore size distribution may be arbitrary. Specifically, zirconia, alumina, silica,
Examples include ceramics such as silicon carbide, but the present invention is not limited to these ceramics, and may also be porous metals or other materials. Further, there is no particular limitation on the material of the precipitate that is deposited and filled into the continuous pores of the porous member by the CVD reaction, and various precipitated substances obtained by the CVD reaction can be used. Examples include refractory metals such as W, MQ, and Ta, other superalloy materials, and ceramics such as silicon carbide. Accordingly, according to the present invention, not only ceramic-metal composites such as alumina-Ta but also ceramics-metal composites such as alumina-Ta can be used.
Composite materials, such as ceramic composite materials and metal-metal composite materials, can be manufactured by combining different materials having various characteristics.

しかして、製造する複合材料の用途に応じて、各種の特
性の多孔質部材及びCVD反応ガスを選択することがで
きる。例えば、高温部材として用いるセラミックス−金
属複合材料を製造する場合には、金属とL℃、耐熱性の
他にセラミックスに近い熱膨張特性を有するものをCV
D反応により析出させるようにすればよい。又高強度か
つ高靭性を要求される超高温用構造材として用いるセラ
ミックス−金属複合材料を製造する場合には、耐火金属
を析出させるのが好ましい。
Therefore, porous members and CVD reaction gases with various characteristics can be selected depending on the use of the composite material to be manufactured. For example, when manufacturing a ceramic-metal composite material to be used as a high-temperature member, in addition to heat resistance and heat resistance, CV
It may be precipitated by reaction D. Furthermore, when producing a ceramic-metal composite material used as a structural material for ultra-high temperatures that requires high strength and high toughness, it is preferable to precipitate a refractory metal.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例により更に具体的に説明するが本
発明はその要旨を超えない限り、以下の実施例に限定さ
れるものではない。
EXAMPLES The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 連続気孔(平均気孔径620μm1気孔率72%)を有
するアルミナ系多孔質セラミック板状体(40X40X
10mm)を用いて金属との複合体を水沫を用いて作成
した。
Example 1 Alumina-based porous ceramic plate (40×40×
A composite body with metal was created using water droplets.

上記アルミナ板と炭素鋼板(40X40X101111
)とを重ね合わせた後雰囲気コントロール出来る容器内
に挿入し冶具によって拘束し密着した。その後、不活性
ガス(Ar )中で炭素鋼板を1000℃に誘導加熱し
た。次いでアルミナ板の表面側から反応ガスとしてTa
C71,及び水素の混合ガス(容積比1: 2.5 )
 tx流しCVD反応を起こさせアルミナ−Ta系の複
合材料とした。尚この時の混合ガスの流量は1000 
Cり偏で加熱時間は5時間であった。
The above alumina plate and carbon steel plate (40X40X101111
) were placed on top of each other, and then inserted into a container where the atmosphere can be controlled, and held tightly with a jig. Thereafter, the carbon steel plate was induction heated to 1000°C in an inert gas (Ar). Next, Ta is introduced as a reaction gas from the surface side of the alumina plate.
Mixed gas of C71 and hydrogen (volume ratio 1:2.5)
A tx flow CVD reaction was caused to produce an alumina-Ta composite material. The flow rate of the mixed gas at this time is 1000
The heating time was 5 hours due to the C bias.

AJ、0.とT8−は緻密に複合化して(・ること力1
認められた。
A.J., 0. and T8- are elaborately compounded (Kotoriki 1
Admitted.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明は、連続気孔を有する多孔質部材の気
孔内にCVD反応によって異種素材を析出させるように
したものであり、CVD反応析出物によって気孔内は密
実に充填されるようになるため複合効果が大きい。しか
もこの析出物(ま投錨効果により、気孔壁面と強固に接
合さitてオ6す、極め1強固な複合材料を製造するこ
とカーできる。
As described above, in the present invention, a different material is deposited in the pores of a porous member having continuous pores by a CVD reaction, and the pores are densely filled with the CVD reaction precipitates. The combined effect is large. Furthermore, due to the anchoring effect of this precipitate, it is strongly bonded to the pore walls, making it possible to produce an extremely strong composite material.

しかも、本発明方法においてはセラミックス−金属複合
材料に限らず種々の異種素材を複合することができるこ
とから用途に応じて各種の特性の素材を〜その特性が複
合機能を有効に発揮し得るように選択することができる
という利点力1ある。又、本発明方法をセラミックス−
金属複合材料の製造に適用するならば、特に脆性、強度
及び靭性の大幅に改善されたセラミックス−金属複合材
料を容易に製造することができ、工業的に極めて有利で
ある。
Moreover, in the method of the present invention, not only ceramic-metal composite materials but also various different materials can be composited, so materials with various characteristics can be used depending on the application. One advantage is that you can choose. The method of the present invention can also be applied to ceramics.
If applied to the production of metal composite materials, ceramic-metal composite materials with significantly improved brittleness, strength, and toughness can be easily produced, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示す概略図であり
、第1図は多孔質部材の断面図、fiT、2図はCVD
反応析出物を充填している状態を示す断面図、第3図は
CVD反応析出物の充填後の状態を示す断面図である。 1・・・多孔質部材、 2・・・押え部材、3・・・C
VD反応ガス、4・・・CVD反応析出物。 代理人 弁理士 重 野 剛
1 to 3 are schematic diagrams showing one embodiment of the present invention, in which FIG. 1 is a sectional view of a porous member, fiT, and FIG. 2 is a CVD
FIG. 3 is a cross-sectional view showing a state in which reaction precipitates are filled, and FIG. 3 is a cross-sectional view showing a state after filling with CVD reaction precipitates. 1... Porous member, 2... Pressing member, 3... C
VD reaction gas, 4...CVD reaction deposit. Agent Patent Attorney Tsuyoshi Shigeno

Claims (2)

【特許請求の範囲】[Claims] (1) 連続気孔を有する多孔質部材の一部分をCVD
反応の析出温度域に加熱しておき、前記連続気孔を経由
してCVD反応ガスを該加熱部分に供給してCVD反応
させて固相を析出させる方法であり、上記加熱部分を徐
々にシフトすることにより連続気孔をCVD反応析出物
で充填して異種素材を複合させるようにしたことを特徴
とする複合材料の製造方法。
(1) CVD a part of a porous member with continuous pores
It is a method of heating to a reaction precipitation temperature range, and supplying CVD reaction gas to the heated part via the continuous pores to cause a CVD reaction and precipitate a solid phase, and the heating part is gradually shifted. A method for manufacturing a composite material, characterized in that continuous pores are filled with CVD reaction precipitates to composite different materials.
(2) 多孔質部材が多孔質セラミックス部材であるこ
とを特徴とする特許請求の範囲第1項記載の製造方法。 13)CVD反応析出物が金属であることを特徴とする
特許請求の範囲第1項又は第2項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the porous member is a porous ceramic member. 13) The manufacturing method according to claim 1 or 2, wherein the CVD reaction precipitate is a metal.
JP13059883A 1983-07-18 1983-07-18 Manufacture of composite material Pending JPS6021885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13059883A JPS6021885A (en) 1983-07-18 1983-07-18 Manufacture of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13059883A JPS6021885A (en) 1983-07-18 1983-07-18 Manufacture of composite material

Publications (1)

Publication Number Publication Date
JPS6021885A true JPS6021885A (en) 1985-02-04

Family

ID=15038035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13059883A Pending JPS6021885A (en) 1983-07-18 1983-07-18 Manufacture of composite material

Country Status (1)

Country Link
JP (1) JPS6021885A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487571A (en) * 1987-09-29 1989-03-31 Kyocera Corp Production of silicon nitride-based composite sintered body
EP0452275A1 (en) * 1990-04-12 1991-10-16 Battelle Memorial Institute Method for manufacturing articles of functionally gradient material
JPH04108680A (en) * 1990-08-29 1992-04-09 Kyocera Corp Method and device for vapor-phase impregnation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487571A (en) * 1987-09-29 1989-03-31 Kyocera Corp Production of silicon nitride-based composite sintered body
EP0452275A1 (en) * 1990-04-12 1991-10-16 Battelle Memorial Institute Method for manufacturing articles of functionally gradient material
JPH04108680A (en) * 1990-08-29 1992-04-09 Kyocera Corp Method and device for vapor-phase impregnation

Similar Documents

Publication Publication Date Title
US5735332A (en) Method for making a ceramic metal composite
EP0277085A1 (en) Production of metal carbide articles
US5334562A (en) Composite ceramic articles
EP0417292B1 (en) Carbonaceous ceramic composite for use in contact whth molten nonferrous metal
WO2022222778A1 (en) Fine ceramic material formed by means of ceramic precursor framework and preparation method therefor and use thereof
JPH02243572A (en) Ceramic composite
CA2145161A1 (en) Method for making a ceramic metal composite
HUT63131A (en) Process for producing self-carrying ceramic body of composite material and ceramic body of composite material
JPS6021885A (en) Manufacture of composite material
CN115477545B (en) Continuous carbon fiber reinforced high-entropy ceramic composite material and preparation method thereof
JP2987094B2 (en) High heat resistant inorganic fiber molded body
US5928583A (en) Process for making ceramic bodies having a graded porosity
JPH0157075B2 (en)
DePoorter et al. Structural ceramics
US4985378A (en) Carbon-containing refractory and a manufacturing method therefor
CN111704465A (en) In-situ generated aluminum nitride-silicon carbide solid solution composite ceramic and preparation method thereof
JP2849606B2 (en) Gas phase impregnation method and its apparatus
JP2614061B2 (en) Nitride composite ceramics
JPH0881275A (en) Production of fiber composite material having silicon carbide group
JP3108362B2 (en) High-strength inorganic fiber molded body
JPS63277563A (en) Fiber-reinforced silicon carbide ceramics and production thereof
JP2002513731A (en) Ceramic composite
JP2508511B2 (en) Alumina composite
Jack Nitrogen ceramics
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber