JPS6124239A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS6124239A
JPS6124239A JP14445984A JP14445984A JPS6124239A JP S6124239 A JPS6124239 A JP S6124239A JP 14445984 A JP14445984 A JP 14445984A JP 14445984 A JP14445984 A JP 14445984A JP S6124239 A JPS6124239 A JP S6124239A
Authority
JP
Japan
Prior art keywords
thin film
substrate
light
silicon thin
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14445984A
Other languages
Japanese (ja)
Inventor
Shigeto Koda
幸田 成人
Hitoshi Arai
均 新井
Kenji Nakazawa
中沢 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14445984A priority Critical patent/JPS6124239A/en
Publication of JPS6124239A publication Critical patent/JPS6124239A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an excellent oxide film within a short time without heating a substrate at all by a method wherein the substrate coated with a semiconductor thin film is left in the oxidizing gas atmosphere to be irradiated with light including the absorbable wavelength of the semiconductor thin film. CONSTITUTION:A substrate 11 coated with a silicon thin film 10 is placed on a substrate supporter 12 to be contained in a quartz chamber 13 filled with oxidizing gas. As for the oxidizing gas, dry oxygen, wet oxygen, steam in addition to said elements mixed with chlorine gas for getter are applicable in general while as for irradiating light, halogen lamp light or xenon lamp light are applicable. These lamps are provided outside the quartz chamber 13 to prevent them from being exposed to oxidizing atmosphere with the silicon thin film 10 irradiated with the light through quartz material. Most of the irradiating light energy is absorbed into the silicon thin film 10 to be converted into heat energy silicon is provided with high absorption coefficient in the region with wavelength not exceeding 1mum. Resultantly, glass substrate, quartz chamber etc. may not be heated at all with the silicon thin film 10 only heated to forn an excellent oxide film with high dielectric strength and low interfacial level.

Description

【発明の詳細な説明】 (発明の技術分野) 本願発明は、薄膜半導体装置の製造方法に関するもので
あり、特にその製造方法における酸化工程に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a thin film semiconductor device, and particularly to an oxidation step in the manufacturing method.

(従来の技術) 基板上に堆積した半導体薄膜を用いて、薄膜トランジス
タ、太陽電池、フォトセンサ等の半導体装置の開発が進
められている。半導体薄膜には、シリコン、カドミウム
セレン、ガリウムヒ素等多岐如わたる材料が使用されて
いるが、中でもシリコン薄膜は経済性、信頼性等の特徴
により適用性が広い。これらの半導体装置では、半導体
薄膜と上層の配線層間の層間絶縁膜や、薄膜トランジス
タやフォトセンサのゲート絶縁膜として、半導体薄膜を
直接酸化して得られる酸化膜が用いられる。
(Prior Art) Semiconductor devices such as thin film transistors, solar cells, and photosensors are being developed using semiconductor thin films deposited on substrates. A wide variety of materials are used for semiconductor thin films, such as silicon, cadmium selenide, and gallium arsenide. Among them, silicon thin films have a wide range of applicability due to their economic efficiency, reliability, and other characteristics. In these semiconductor devices, an oxide film obtained by directly oxidizing a semiconductor thin film is used as an interlayer insulating film between a semiconductor thin film and an upper wiring layer, and as a gate insulating film of a thin film transistor or photosensor.

酸化法としては熱酸化法、陽極酸化法、プラズマ酸化法
が周知であるが、熱酸化法は工程が少なく安定に良質の
酸化膜が形成できる点で優れている。
As oxidation methods, thermal oxidation, anodic oxidation, and plasma oxidation are well known, but thermal oxidation is superior in that it requires fewer steps and can stably form a high-quality oxide film.

特にシリコン薄膜においては、絶縁耐圧が高く、シリコ
ン薄膜との界面準位の少ない酸化膜が得られるため頻用
されている。以下シリコン薄膜の熱酸化法を例に説明す
る。
Particularly in silicon thin films, it is frequently used because it provides an oxide film with high dielectric strength and few interface states with the silicon thin film. The thermal oxidation method of a silicon thin film will be explained below as an example.

従来シリコン薄膜の熱酸化法としては電気炉法が用いら
れてきた。第1図に典型的な方法を示す。
Conventionally, an electric furnace method has been used as a thermal oxidation method for silicon thin films. Figure 1 shows a typical method.

カンタルヒータ1で包囲された石英チューブ2の中に1
石英ボート3とともに基板4上に堆積したシリコン薄膜
5を設置し、酸化ガス6を導入して雰囲気温度を800
℃〜1300℃にする。酸化ガス6としては酸素、水蒸
気等が用いられる。シリコン薄膜5め表面では、酸素の
拡散及びシリコンとの結合によりシリコン酸化膜(Si
O2)が形成され、その速度は高温なほど、壕だ、水蒸
気分圧が大きいほど大きくなる。このような従来法では
、以下に述べる欠点がちった。
1 in a quartz tube 2 surrounded by a kanthal heater 1
A silicon thin film 5 deposited on a substrate 4 is placed together with a quartz boat 3, and an oxidizing gas 6 is introduced to raise the ambient temperature to 800°C.
℃~1300℃. As the oxidizing gas 6, oxygen, water vapor, etc. are used. On the fifth surface of the silicon thin film, a silicon oxide film (Si
O2) is formed, and its rate increases as the temperature increases, and as the partial pressure of water vapor increases. Such conventional methods have the following drawbacks.

(1)シリコン薄膜5とともに基板4も高温雰囲気にさ
らされるため、耐熱性のある基板材料を用いねばならな
い。例えば、石英やSt 02等を被着したシリコン酸
化膜・等が利用できるが、いずれも高価であり、寸法、
形成上の制限が大きい欠点がある。前述した半導体装置
の形成には低摩で大面積の基板材料として、ガラスの使
用が望ましい。しかし、ガラスの耐熱限界は600℃程
度であるため、電気炉法でガラス基板上のシリコン薄膜
を酸化することは不可能であった。
(1) Since the substrate 4 as well as the silicon thin film 5 is exposed to a high temperature atmosphere, a heat-resistant substrate material must be used. For example, a silicon oxide film coated with quartz or St 02 can be used, but both are expensive and
The drawback is that there are significant restrictions on formation. For forming the semiconductor device described above, it is desirable to use glass as a low-friction, large-area substrate material. However, since the heat resistance limit of glass is about 600° C., it has been impossible to oxidize a silicon thin film on a glass substrate using the electric furnace method.

(2)温度制御に関して、電気炉法はヒータ、石英チュ
ーブ、断熱材石英ボート等熱容量の大きな部分で構成さ
れているため、短時間での昇温と降温か不可能である。
(2) Regarding temperature control, the electric furnace method is composed of parts with large heat capacity such as a heater, a quartz tube, and a quartz boat for insulation, so it is impossible to raise and lower the temperature in a short period of time.

従って、短時間の酸イヒやきめの細い温度制御には不適
当であった。
Therefore, it was unsuitable for short-term acid quenching or fine-grained temperature control.

(3)基板4とともに石英チューブ゛2や石英ボート3
も高温に加熱されるため、それらの材料に含まれる不純
物が酸化膜中に取り込まれ、半導体装置の特性に悪影響
を及ぼす可能性が高75=つた。
(3) Quartz tube 2 and quartz boat 3 along with substrate 4
Since these materials are also heated to high temperatures, there is a high possibility that impurities contained in those materials will be incorporated into the oxide film and adversely affect the characteristics of the semiconductor device.

(発明の目的) 本願発明は、基板上に堆積した半導体薄膜を酸化ガス雰
囲気中に設置し、半導体薄膜の光吸収波長を含む光を一
括照射することによって、基板を加熱せずに短時間で良
質な酸化膜を得ることのできる薄膜半導体装置の製造方
法を提供するものである。
(Purpose of the Invention) The present invention provides a semiconductor thin film deposited on a substrate, which is placed in an oxidizing gas atmosphere, and is irradiated with light containing the light absorption wavelength of the semiconductor thin film in a short time without heating the substrate. The present invention provides a method for manufacturing a thin film semiconductor device that can produce a high quality oxide film.

(発明の構成及び作用) 以下本発明の詳細な説明する。(Structure and operation of the invention) The present invention will be explained in detail below.

第2図は、本願発明に用いる光照射酸化装置の一構成例
である。10は基板11上に堆積された半導体薄膜、1
2は基板支持台、13はチャンバで、12゜13はとも
に石英で形成される。14は半導体薄膜10を一括して
光照射するために配列された光照射用ランプ、15は光
反射板、16は酸化ガス導入口、17は酸化ガス排気口
、18は基板出入口である。
FIG. 2 shows an example of the configuration of a light irradiation oxidation device used in the present invention. 10 is a semiconductor thin film deposited on a substrate 11;
2 is a substrate support stand, 13 is a chamber, and 12 and 13 are both made of quartz. 14 is a light irradiation lamp arranged to irradiate the semiconductor thin film 10 with light all at once; 15 is a light reflection plate; 16 is an oxidizing gas inlet; 17 is an oxidizing gas exhaust port; and 18 is a substrate inlet/outlet.

次に、本願発明の一実施例として、ガラス基板上に堆積
したシリコン薄膜表面にシリコン酸化膜を形成する方法
を説明する。ガラス基板材料としては、比較的耐熱性が
よく熱膨張率の小さいボロシリケートガラスが適してお
り、また、酸化膜の特性安定化を図るため、アルカリ金
属等不純物成分の少ないものが望ましい。シリコン薄膜
は、スパッタ法、CVD法、蒸着法等で1100n〜数
μm厚に堆積する。シリコン薄膜10と堆積した基板1
1は基板支持台12に載せ、石英チャンバ13内に設置
する。チャンバ13内は酸化ガスで充満する。酸化ガス
としては電気炉法で用いるガスと同じでよく、一般的に
は乾燥酸素、加湿酸素、水蒸気及びそれらにゲッタ用塩
素系ガスを混入したものを用いる。
Next, as an embodiment of the present invention, a method of forming a silicon oxide film on the surface of a silicon thin film deposited on a glass substrate will be described. As the glass substrate material, borosilicate glass, which has relatively good heat resistance and a small coefficient of thermal expansion, is suitable, and in order to stabilize the characteristics of the oxide film, it is desirable to use a material that contains few impurity components such as alkali metals. The silicon thin film is deposited to a thickness of 1100 nm to several μm by sputtering, CVD, vapor deposition, or the like. Silicon thin film 10 and deposited substrate 1
1 is placed on a substrate support stand 12 and installed in a quartz chamber 13. The chamber 13 is filled with oxidizing gas. The oxidizing gas may be the same as the gas used in the electric furnace method, and generally dry oxygen, humidified oxygen, water vapor, and a mixture of these and a chlorine-based gas for getter are used.

照射光としてはノ・ログ7ランプ光又はクセノンランプ
光を用いる。これらのランプは、酸イヒ雰囲気にさらさ
れることを避けるため、石英チャンノ(13外に設置し
、光は石英を通して−シリコン薄膜10に一括照射され
る。
As the irradiation light, Norlog 7 lamp light or xenon lamp light is used. These lamps are installed outside the quartz tube (13) to avoid exposure to an acidic atmosphere, and the light is irradiated onto the silicon thin film 10 through the quartz.

次に酸化機構について説明する。)10ゲンランブ光お
よびクセノンランプ光は波長0.3μm〜2μmに亘っ
て広い波長領域のスペクトルをもつ光源である。ガラス
及び石英の光吸収係数はこの帯域で極めて小さく、殆ど
の光エネルギーはガラス基板。
Next, the oxidation mechanism will be explained. ) The 10-gen lamp light and the xenon lamp light are light sources having a spectrum in a wide wavelength range ranging from 0.3 μm to 2 μm. The light absorption coefficients of glass and quartz are extremely small in this band, and most of the light energy is absorbed by the glass substrate.

石英チャンバを透過する。これに対しシリコンは波長1
μm以下の領域で大きな光吸収係数をもつため、照射光
エネルギーの殆んどはシリコン薄膜10に吸収され熱に
変る。すなわちガラス基板2召英チャンバ等は発熱せず
、シリコン薄膜のみ力zカロ熱される。光照射による昇
温速度は数100℃/秒に達し、10秒以下の短時間で
酸化に必要な温度(800℃以上)に加熱される。シリ
コン薄膜中で発生した熱は熱伝導によって基・板11を
暖めるが、熱容量の大きな基板11を耐熱限界まで昇温
するには約10秒から数分の時間を必要とする。従って
、この間に酸化を終了すれば、基板11に損傷を与えず
に熱酸化膜を形成できる。
Transmit through the quartz chamber. On the other hand, silicon has a wavelength of 1
Since it has a large light absorption coefficient in the region of μm or less, most of the irradiated light energy is absorbed by the silicon thin film 10 and converted into heat. That is, the glass substrate 2, the chamber, etc. do not generate heat, and only the silicon thin film is heated. The temperature increase rate due to light irradiation reaches several 100° C./second, and the temperature required for oxidation (800° C. or higher) is reached in a short time of 10 seconds or less. The heat generated in the silicon thin film warms the substrate/substrate 11 by thermal conduction, but it takes about 10 seconds to several minutes to raise the temperature of the substrate 11, which has a large heat capacity, to its heat resistance limit. Therefore, if oxidation is completed during this period, a thermal oxide film can be formed without damaging the substrate 11.

本願発明によって形成できる酸化膜厚は、最も酸化速度
の速い水蒸気雰囲気中でシリコン薄膜を1200℃に加
熱した場合、約30秒で50 nm以上に達する。この
値はゲート絶縁膜又は層間絶縁膜として実用的な厚さで
ある。このような方法で形成された酸化膜は、電気炉法
と同じ熱酸化を原理としていると考えられるため、絶縁
耐圧が高く界面準位の少ない良質な膜である。特に多結
晶/リコン薄膜の酸化に際しては、1100℃以上の高
温酸化ができることから、結晶粒内と結晶粒界との酸化
速度差が小さくなめらかな表面形態(モルフォロジー)
を実現することができる。
The thickness of the oxide film that can be formed by the present invention reaches 50 nm or more in about 30 seconds when a silicon thin film is heated to 1200° C. in a water vapor atmosphere where the oxidation rate is the highest. This value is a practical thickness for a gate insulating film or an interlayer insulating film. The oxide film formed by such a method is considered to be based on the same principle of thermal oxidation as the electric furnace method, and is therefore a high-quality film with high dielectric strength and few interface states. In particular, when oxidizing polycrystalline/recon thin films, high-temperature oxidation of over 1100°C is possible, resulting in a smooth surface morphology (morphology) with a small oxidation rate difference between the inside of the crystal grain and the grain boundary.
can be realized.

以上本願発明はシリコン薄膜の酸化を例として説明した
が、本願発明はインジウムリン等シリコン以外の半導体
薄膜の酸化にも有効であることは言うまでもない。また
、光照射光源についても、半導体薄膜の種類や、基板材
料の種類に対応して、基板を加熱せずに半導体薄膜のみ
を加熱するような波長をもつものを選択できる。また、
光源と試料との間に光フィルターを設け、所望の波長だ
けを照射することも可能である。1だ、照射は一括で行
われるため、レーザ光の走査による他の光照射加熱法に
比べ、均一性、生産効率に優れる特徴をもつ。
Although the present invention has been described above using the oxidation of a silicon thin film as an example, it goes without saying that the present invention is also effective in oxidizing semiconductor thin films other than silicon, such as indium phosphide. Further, as for the light irradiation source, one having a wavelength that heats only the semiconductor thin film without heating the substrate can be selected depending on the type of semiconductor thin film and the type of substrate material. Also,
It is also possible to provide an optical filter between the light source and the sample to irradiate only the desired wavelength. 1. Because the irradiation is carried out all at once, it has the advantage of superior uniformity and production efficiency compared to other light irradiation heating methods that use scanning laser light.

(発明の効果) 以上説明したように、本願発明によれば、基板を加熱せ
ずに基板上の半導体薄膜のみを加熱でき、耐熱性の低い
ガラス基板を用いても良質な酸化膜を形成することが可
能である。寸た、昇温、降温は熱容量の小さな半導体薄
膜のみで行えばよいので、高速な温度制御が可能である
。従って、短時間な酸化時間の制御を精度よ(行うこと
ができ、膜厚の再現性を向上することができる。さらに
、電気炉法で必要な基板導入時の温度回復時間が不要と
なり、生産効率が向上する利点がある。また、石英チュ
ーブや基板支持台は殆んど加熱されないため、それらに
含まれる不純物が酸化膜中に取シ込まれることがなく、
優れた特性の半導体装置を形成することができる。
(Effects of the Invention) As explained above, according to the present invention, only the semiconductor thin film on the substrate can be heated without heating the substrate, and a high-quality oxide film can be formed even if a glass substrate with low heat resistance is used. Is possible. In fact, since the temperature needs to be raised and lowered only by a semiconductor thin film with a small heat capacity, high-speed temperature control is possible. Therefore, the short oxidation time can be precisely controlled and the reproducibility of the film thickness can be improved.Furthermore, the temperature recovery time when introducing the substrate, which is required in the electric furnace method, is no longer required, and production This has the advantage of improving efficiency.Also, since the quartz tube and substrate support are hardly heated, impurities contained in them are not incorporated into the oxide film.
A semiconductor device with excellent characteristics can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の酸化法である電気炉法の装置模式図、第
2図は本願発明の光照射酸化装置の一構成例を示す縦断
面略図である。 1・・・カンタルヒータ、  2・・・石英チューブ、
3・・・石英g−)、4.11・・・基板、5.10・
・・半導体薄膜、  6・・・酸化ガス、12・・・基
板支持台、13・・・石英チャンバ、14・・・光照射
用ランプ、15・・・光反射板、16・・・酸化ガス導
入口、17・・・酸化ガス排出口、18・・・基板出入
口。
FIG. 1 is a schematic diagram of an apparatus for the electric furnace method, which is a conventional oxidation method, and FIG. 2 is a schematic vertical cross-sectional view showing an example of the configuration of the light irradiation oxidation apparatus of the present invention. 1... Kanthal heater, 2... Quartz tube,
3... Quartz g-), 4.11... Substrate, 5.10.
... Semiconductor thin film, 6... Oxidizing gas, 12... Substrate support stand, 13... Quartz chamber, 14... Light irradiation lamp, 15... Light reflecting plate, 16... Oxidizing gas Inlet, 17... Oxidizing gas outlet, 18... Board entrance/exit.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に堆積した半導体薄膜を酸化ガス雰囲気中
に設置し、前記半導体薄膜の光吸収波長を含む光を前記
半導体薄膜に一括照射することによつて、前記半導体薄
膜表面に酸化膜を形成する工程を含むことを特徴とする
薄膜半導体装置の製造方法。
(1) A semiconductor thin film deposited on a substrate is placed in an oxidizing gas atmosphere, and an oxide film is formed on the surface of the semiconductor thin film by irradiating the semiconductor thin film with light that includes the light absorption wavelength of the semiconductor thin film. 1. A method of manufacturing a thin film semiconductor device, the method comprising the step of forming a thin film semiconductor device.
(2)基板としてガラス基板を用い、半導体薄膜として
シリコン薄膜を用い、酸化ガスとして水蒸気を主成分と
したガスを用いることを特徴とする特許請求の範囲第1
項記載の薄膜半導体装置の製造方法。
(2) Claim 1, characterized in that a glass substrate is used as the substrate, a silicon thin film is used as the semiconductor thin film, and a gas containing water vapor as the main component is used as the oxidizing gas.
A method for manufacturing a thin film semiconductor device according to section 1.
JP14445984A 1984-07-13 1984-07-13 Manufacture of thin film semiconductor device Pending JPS6124239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14445984A JPS6124239A (en) 1984-07-13 1984-07-13 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14445984A JPS6124239A (en) 1984-07-13 1984-07-13 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS6124239A true JPS6124239A (en) 1986-02-01

Family

ID=15362746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14445984A Pending JPS6124239A (en) 1984-07-13 1984-07-13 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS6124239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206230A (en) * 1985-03-08 1986-09-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206230A (en) * 1985-03-08 1986-09-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device and apparatus therefor

Similar Documents

Publication Publication Date Title
US6239044B1 (en) Apparatus for forming silicon oxide film and method of forming silicon oxide film
KR970077340A (en) Method and apparatus for stabilizing a halogen-doped layer deposited on a substrate
US9050623B1 (en) Progressive UV cure
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
JPH0263294B2 (en)
KR20020093993A (en) A method and apparatus for selectively oxidizing a silicon/metal composite film stack
JP2001023916A (en) Method for treating material with electromagnetic wave and apparatus
JPS6124239A (en) Manufacture of thin film semiconductor device
Fukuda et al. Kinetics of rapid thermal oxidation of silicon
JPS61116820A (en) Annealing method for semiconductor
Yamada Ultradry oxidation system equipped with a newly designed gas preheating unit for growing ultrathin silicon oxide films
JPS5994829A (en) Manufacture of semiconductor device
JPS60225434A (en) Formation of multi-element composite oxide film with high dielectric constant
US6458713B1 (en) Method for manufacturing semiconductor device
JP3089669B2 (en) Method for manufacturing semiconductor device
JPS60249334A (en) Formation of thin film
JPS59124729A (en) Formation of insulating film
JPH05152288A (en) Manufacture of semiconductor device and manufacturing device of semiconductor device
JPH0353530A (en) Manufacture of semiconductor device
US20020118942A1 (en) Method for producing an optical waveguide substrate and an optical waveguide substrate
JP2880993B1 (en) Method of forming semiconductor oxide film
JP2613555B2 (en) Low temperature impurity diffusion method and low temperature impurity diffusion device
JP2000114253A (en) Semiconductor oxide film formation
JPH038331A (en) Method and apparatus for forming silicon oxide
JPH11195613A (en) Device and method for ultraviolet annealing