JPS59124729A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPS59124729A
JPS59124729A JP58000070A JP7083A JPS59124729A JP S59124729 A JPS59124729 A JP S59124729A JP 58000070 A JP58000070 A JP 58000070A JP 7083 A JP7083 A JP 7083A JP S59124729 A JPS59124729 A JP S59124729A
Authority
JP
Japan
Prior art keywords
insulating film
substrate
monomer
product
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58000070A
Other languages
Japanese (ja)
Inventor
Masayoshi Ono
大野 正善
Takashi Kurokawa
隆志 黒川
Takeshi Okada
岡田 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58000070A priority Critical patent/JPS59124729A/en
Publication of JPS59124729A publication Critical patent/JPS59124729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Abstract

PURPOSE:To enable formation of an even insulating film by forming fluid product on a substrate by plasma polymerization with introducing monomer into a reactor followed by irradiation of radiant ray or heat treatment upon said product. CONSTITUTION:An usual plasma CVD system is available for a reactor and the discharging type and the structure of electrodes thereof are arbitrary. As monomer, proper organic compound can be used, thereby it becomes easy to form fluid product under the condition of low substrate temperature, low applied electrical power, high monomer supply and high pressure. Next, this product is irradiated with radiant rays, for example, one within a region from ultraviolet to far ultraviolet, or is subjected to heat treatment or combination of these treatments so as to form the insulating film 3 being stable and whose surface is even compared with unevenness of the lower substrate 1.

Description

【発明の詳細な説明】 本発明は、半導体素子の製造工程において層間絶縁膜な
どの絶縁膜を形成する絶縁膜形成方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulating film forming method for forming an insulating film such as an interlayer insulating film in a semiconductor device manufacturing process.

従来のこの種の絶縁膜形成方法には、気相成長法として
、CVD法、プラズマCVD法、スパッタリング法など
があるが、いずれの方法にも、良質な無機膜(Sin2
. Si、N4. PSGなど)を形成できる反面、形
成温度が高いことや基板の結晶へ欠陥を生じさせやすい
こと、しかもまた基板表面の配線などによる凹凸上に直
接平坦な膜を形成できないので、膜形成後にり7トオ7
操作などの複雑なプロセス操作を行うことが平坦化のた
めに必要となるというような欠点があった。
Conventional methods for forming this type of insulating film include the CVD method, plasma CVD method, and sputtering method as vapor phase growth methods, but all methods require a high quality inorganic film (Sin2
.. Si, N4. PSG, etc.), however, the formation temperature is high, defects are likely to occur in the crystal of the substrate, and it is not possible to form a flat film directly on the unevenness of the substrate surface due to wiring, etc. Too 7
However, there are drawbacks such as the need to perform complex process operations such as manipulation for planarization.

特に、このようにして得られた膜を層間絶縁膜として用
いる場合、平坦化するために膜形成後に後に膜の表面に
凹凸があると、たとえば配線を形成するために金属を真
空蒸着等の手段で付着させた場合、段差部の側面で金属
膜が薄くなり、断線が生じやすくなり、ひいては歩留り
の低下を招きやすい。
In particular, when the film obtained in this way is used as an interlayer insulating film, if the surface of the film is uneven after being formed for flattening, for example, metal may be deposited by means of vacuum evaporation to form wiring. If the metal film is adhered by the step, the metal film becomes thinner on the side surface of the stepped portion, and wire breakage is likely to occur, which in turn tends to lead to a decrease in yield.

このようなコストや歩留り等の問題を解決するべく、表
面のなだらかあるいは平坦な絶縁膜を容易に形成する方
法として、燐ガラスを1000℃近くの高温処理で塑性
流動させる、いわゆるガラス70−法やポリイミドなど
の有機系物質をスピンコードして熱硬化させる方法が知
られている。
In order to solve these problems such as cost and yield, the so-called Glass 70-method, in which phosphor glass is made to plastically flow through high-temperature treatment at nearly 1000°C, is used to easily form an insulating film with a smooth or flat surface. A known method is to spin-code an organic material such as polyimide and heat cure it.

しかし、ガラスフロー法には、その高温処理のため半導
体内の不純物の分布がぼやけたり、電極に高融点金属を
使う必要があるなど使用1lii′i囲が強く限定され
てしまい、一般的には使用できないという欠点がある。
However, the use of the glass flow method is strongly limited, as the distribution of impurities in the semiconductor becomes blurred due to its high-temperature treatment, and it is necessary to use high-melting point metals for the electrodes. The disadvantage is that it cannot be used.

また、有機系物質を用いる場合、膜形成が湿式であるた
め、不純物が混入しやすいことや、ち密な膜が得られず
吸湿性に問題があり、ピンホールが生じやすいことや微
細加工性に問題があるなどの欠点がある。
In addition, when using organic materials, since the film formation is wet, it is easy for impurities to get mixed in, it is difficult to obtain a dense film, there are problems with hygroscopicity, pinholes are likely to occur, and microfabrication is difficult. There are drawbacks such as problems.

本発明の目的は、上述した欠点を解決し、気相成長法で
基板表面の配線などの凹凸の上に直接に表面が平担にな
る良質の膜を、比較的低温で形成することのできる絶縁
膜形成方法を提供することにある。
The purpose of the present invention is to solve the above-mentioned drawbacks, and to form a high-quality film with a flat surface directly over unevenness such as wiring on the surface of a substrate using a vapor phase growth method at a relatively low temperature. An object of the present invention is to provide a method for forming an insulating film.

このような目的を達成するために、本発明では、プラズ
マ重合の反応容器内に基板を配置し、その反応容器にモ
ノマを導入して、プラズマ重合法によって流動性の生成
物を基板上に形成し、その生成物に光照射や電子線照射
などの放射線照射、加熱処理あるいはこれらを組み合わ
せた処理を施すことKより基板上に表面が平坦な絶縁膜
を形成する。
In order to achieve such an objective, in the present invention, a substrate is placed in a reaction vessel for plasma polymerization, a monomer is introduced into the reaction vessel, and a fluid product is formed on the substrate by the plasma polymerization method. Then, by subjecting the resulting product to radiation irradiation such as light irradiation or electron beam irradiation, heat treatment, or a combination thereof, an insulating film with a flat surface is formed on the substrate.

本発明を実施するだめの反応器としては、通常のプラズ
マCVD装置を使用でき、その放電形式。
As a reactor for carrying out the present invention, an ordinary plasma CVD apparatus can be used, and its discharge type.

電極構造等としては任意所望のものを用いることができ
、何ら制限されるものではない。モノマとしては、適当
な有機化合物を用いることができ、それにより、低基板
温度、低印加電力、高モノマ供給量、高圧力の条件で、
流動性の生成物を容易に形成することができる。次に、
この生成物に、放射線として、例えば紫外から真空紫外
領域の光を照射したり、電子線やX線などの放射線を照
射したり、あるいは/!;0−.2!;0℃程度の加熱
処理を施したり、あるいはまた、これらの処理を組み合
わせた処理を施すことによって、安定で下部の基板の凹
凸に比較して、表面がなだらかな絶縁膜・を形成するこ
とができる。
Any desired electrode structure can be used and is not limited in any way. As the monomer, any suitable organic compound can be used, whereby under the conditions of low substrate temperature, low applied power, high monomer supply amount, and high pressure,
A free-flowing product can be easily formed. next,
This product is irradiated with radiation such as light in the ultraviolet to vacuum ultraviolet range, electron beams, X-rays, etc., or /! ;0-. 2! By applying heat treatment at around 0°C or a combination of these treatments, it is possible to form an insulating film that is stable and has a smooth surface compared to the unevenness of the underlying substrate. can.

プラズマ重合にあたっては、モノマとしてほとんどあら
ゆる有機化合物を使用できるが、生成膜の耐熱性が必要
な場合には特にモノマとして有機シリコン化合物を用い
ることによって、耐熱性にすぐれた絶縁膜を形成するこ
とができる。このような有機シリコン化合物としては、
オクタメチルシロキサン、ヘキサメチルシロキサンなど
のシクロメチルシロキサンおよびその誘導体、ヘキサメ
チルジシロキサン、オクタメチルテトラシロキサ(、t
) ンなどのメチルシロキサンおよびその誘導体、テトラメ
トキシシラン、テトラエトキシシランなどのアルコキシ
シランおよびその誘導体、ヘキサメチルシクロテトラシ
ラザン、ヘキサメチルジシラザンなどの環状および鎖状
のシラザンおよびその誘導体等を好適に用いることがで
きる。
In plasma polymerization, almost any organic compound can be used as a monomer, but if heat resistance of the resulting film is required, an insulating film with excellent heat resistance can be formed by using an organic silicon compound as a monomer. can. As such organic silicon compounds,
Cyclomethylsiloxane and its derivatives such as octamethylsiloxane, hexamethylsiloxane, hexamethyldisiloxane, octamethyltetrasiloxane (,t
), alkoxysilanes and their derivatives such as tetramethoxysilane and tetraethoxysilane, cyclic and chain silazane and their derivatives such as hexamethylcyclotetrasilazane and hexamethyldisilazane, etc. Can be used.

さらに、形成した絶縁膜表面の凹凸をより小さくして平
坦にするためには、膜形成の際に1基板温度を(モノマ
の融点)+10℃なる温度より低くするのが好適であり
、そのような条件では表面の平坦な絶縁膜を本発明によ
って容易に形成することができる。
Furthermore, in order to reduce the unevenness of the surface of the formed insulating film and make it flat, it is preferable to lower the temperature of one substrate during film formation to a temperature lower than (the melting point of the monomer) +10°C. Under such conditions, an insulating film with a flat surface can be easily formed according to the present invention.

以下に本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) ′ プラズマ重合は通常のプラズマ(3VD装置を用いて行
い、その上下の平行平板電極に/3.!;A MHzの
高周波を印加して放電を行った。モノマをキャリアガス
(窒素)とともにプラズマCVD装置内に供給する。基
板は下部電極上に配置し、その基板温(6) 度は下部電極内に冷水あるいは熱水を通すことによって
制御した。
(Example 1) ' Plasma polymerization was carried out using a normal plasma (3VD device, and a high frequency of /3.!A MHz was applied to the upper and lower parallel plate electrodes to generate a discharge. The substrate was placed on the lower electrode, and the substrate temperature (6°C) was controlled by passing cold or hot water through the lower electrode.

本例ではモノマとしては、オクタメチルシクロテトラシ
ロキサンを用いた。このモノマの融点は16〜77℃で
あるが、基板温度はモノマの融点/6〜/7℃に十/θ
℃を加えた26〜1℃より低温の70〜9℃に定める。
In this example, octamethylcyclotetrasiloxane was used as the monomer. The melting point of this monomer is 16 to 77°C, but the substrate temperature is 10/θ to the melting point of the monomer /6 to /7°C.
The temperature should be set at 70-9°C, which is lower than 26-1°C plus 100°C.

モノマ供給計をおよそ/3■/分、キ 。Set the monomer supply meter to about 3cm/min.

ヤリアガス(窒素)流計を3θCCZ分、全圧力を2T
orr %印加電力をSWとした条件でシリコン基板上
に5分間にわたって膜を形成したところ、流動性の大き
な液体状の生成物が得られた。この生成物に低圧水銀灯
で、およそl×/θ−2W/σ2の照射光量で700分
間以上にわたって光啜射することによって、膜厚へ3μ
mの安定でかつ基板への密着性のよい絶縁膜が得られた
。その嘆の体積抵抗率はlθ16Ωα以上の良好な絶縁
性を示した。
Yaria gas (nitrogen) flow meter 3θCCZ, total pressure 2T
When a film was formed on a silicon substrate for 5 minutes under the condition that the applied power was set to SW, a highly fluid liquid product was obtained. By irradiating this product with light using a low-pressure mercury lamp at an irradiation intensity of approximately lx/θ-2W/σ2 for over 700 minutes, the film thickness is increased by 3μ.
An insulating film was obtained which was stable in m and had good adhesion to the substrate. The volume resistivity was lθ16Ωα or more, indicating good insulation.

また、窒素中においてpoo℃、30分間の加熱処理を
施しても、重量減少やクラックは観測されず、良好な耐
熱性を示した。なお、窒素中での熱重量分析の結果を第
1図に示す。ここで、曲線工は本発明により得られた光
硬化性膜の場合を示し、曲線■は比較のために通常の熱
重合物ポリジメチルシロキサンの場合を示す。両回線I
と■とを比較すると、本発明により形成された膜の良好
な耐熱性が示唆される。
Further, even when heat treated in nitrogen at poo° C. for 30 minutes, no weight loss or cracks were observed, indicating good heat resistance. The results of thermogravimetric analysis in nitrogen are shown in FIG. Here, the curve line indicates the case of the photocurable film obtained according to the present invention, and the curve (2) indicates the case of the usual thermally polymerized polydimethylsiloxane for comparison. Both lines I
Comparison of ① and ① suggests that the film formed according to the present invention has good heat resistance.

また、基板として、多結晶シリコンで高さ005μmの
凹凸があらかじめ形成されているシリコン基板を用いて
、上述の条件で絶縁膜を形成して被覆性を調べたところ
、第2図に示すように表面が平坦となって良好な被覆を
形成していることがわかった。第2図において、/は基
板、コは基板l上にあらかじめ形成した凹凸状の表面配
線、3は本実施例によって形成した絶縁膜である。
In addition, we used a silicon substrate with polycrystalline silicon on which unevenness of 005 μm in height had been formed in advance to form an insulating film under the above conditions to examine the coverage. As shown in Figure 2. It was found that the surface was flat and a good coating was formed. In FIG. 2, / is a substrate, C is an uneven surface wiring formed in advance on the substrate l, and 3 is an insulating film formed according to this embodiment.

なお上述のように流動性の大きい膜を形成する場合、基
板温度を(モノマ融点)+/θ℃の温度より低温に冷却
することによって、その形成が容易になることが明らか
にされた。
It has been found that when forming a highly fluid film as described above, the formation is facilitated by cooling the substrate temperature to a temperature lower than (monomer melting point) +/θ°C.

(実施例2) 実施例1で述べたプラズマ0VD装置を用い、モノマと
してヘキサメチルシクロトリシラザン(融点−70℃)
を用い、そのキャリアガスとして窒素を用いた。モノマ
流量を3θ〜/分、キャリアガス流量を30cc/分、
全圧力を八、t T Orr %印加電力をjW1基板
温度を0℃として、シリコン基板上に5分間にわたって
膜を形成したところ、流動性の大きな生成物が得られた
。この生成物に低圧水銀灯で約/X/θ−2W/cm2
の照射光量で200分間以上にわたって光照射すること
によって、膜厚へjμmの安定な絶縁膜が得られた。こ
の膜の体積抵抗率はlθ16Ω湿以上であり、窒素中に
おいてaOO℃、30分間の加熱処理を施してもクラッ
クは観測されず、良好な耐熱特性を示した。また、高さ
O,Sμmの凹凸状の表面配線があらかじめ形成されて
いるシリコン基板を用いた場合、第2図に示すように表
面が平坦であって良好な被覆性を示した。
(Example 2) Using the plasma 0VD apparatus described in Example 1, hexamethylcyclotrisilazane (melting point -70°C) was used as a monomer.
was used, and nitrogen was used as the carrier gas. Monomer flow rate 3θ~/min, carrier gas flow rate 30cc/min,
When a film was formed on a silicon substrate for 5 minutes at a total pressure of 8, t T Orr % applied power, jW1 and a substrate temperature of 0° C., a highly fluid product was obtained. Approximately /X/θ-2W/cm2 was applied to this product using a low-pressure mercury lamp.
A stable insulating film with a film thickness of j μm was obtained by irradiating with light for 200 minutes or more at an irradiation light amount of . The volume resistivity of this film was lθ16Ω or higher, and no cracks were observed even after heat treatment at aOO°C for 30 minutes in nitrogen, showing good heat resistance. Furthermore, when a silicon substrate on which uneven surface wiring with a height of O.S.mu.m was previously formed was used, the surface was flat as shown in FIG. 2, and good coverage was exhibited.

以上説明したように、本発明によれば、気相成長で直接
に表面の平坦性が良好で、かつ耐熱性にすぐれた薄膜を
低温のプロセスで容易に形成でき。
As explained above, according to the present invention, a thin film with good surface flatness and excellent heat resistance can be easily formed directly by vapor phase growth using a low-temperature process.

従って、多層配線が必要とされる超LSIにおける(9
) 層間絶縁膜の製造にあたって本発明を有効に用いること
ができる。
Therefore, (9
) The present invention can be effectively used in manufacturing an interlayer insulating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって形成した平坦膜の射熱性試験結
果を示す温度−重量残存率特性曲線図、第2図は本発明
により形成した絶縁膜の表面被覆性を示す断面図である
。 l・・・絶縁膜、 コ・・・表面配線、 3・・・下部基板。 特許出願人 日本電信電話公社 (10) ■ (光4史化膜 ) 温 魔  (C) 第2図 Hm
FIG. 1 is a temperature-weight residual ratio characteristic curve showing the results of a heat radiation test of a flat film formed according to the present invention, and FIG. 2 is a cross-sectional view showing the surface coverage of an insulating film formed according to the present invention. l...insulating film, c...surface wiring, 3...lower substrate. Patent applicant Nippon Telegraph and Telephone Public Corporation (10) ■ (Light 4 history film) Onma (C) Figure 2 Hm

Claims (1)

【特許請求の範囲】 1)プラズマ重合の反応容器内に基板を配置し、前記反
応容器にモノマを導入し、 プラズマ重合によって流動性の生成物を前記基板上に形
成し、 該生成物に放射線照射および加熱処理のいずれか一方あ
るいは放射線照射および加熱処理を組み合わせた処理を
施して、前記基板上に表面が平坦な絶縁膜を形成するこ
とを特徴とする絶縁膜形成方法。 2)前記モノマは有機シリコン化合物であることを特徴
とする特許請求の範囲第1項記載の絶縁膜形成方法。 3)前記基板の温度を、前記モノマの融点に+70℃を
加えた温度よりも低湿度とすることを特徴とする特許請
求の範囲第1項捷たは第2項に記載の絶縁膜形成方法。 4)前記放射線照射は、光照射、電子線照射、あるいは
X線放射であることを特徴とする特許請求の範囲第1項
ないし第3項のいずれかの項に記載の絶縁膜形成方法。
[Claims] 1) A substrate is placed in a reaction vessel for plasma polymerization, a monomer is introduced into the reaction vessel, a fluid product is formed on the substrate by plasma polymerization, and the product is exposed to radiation. An insulating film forming method comprising forming an insulating film with a flat surface on the substrate by performing one of irradiation and heat treatment or a combination of radiation irradiation and heat treatment. 2) The method for forming an insulating film according to claim 1, wherein the monomer is an organic silicon compound. 3) The method for forming an insulating film according to claim 1 or 2, characterized in that the temperature of the substrate is set at a humidity lower than the temperature obtained by adding +70° C. to the melting point of the monomer. . 4) The insulating film forming method according to any one of claims 1 to 3, wherein the radiation irradiation is light irradiation, electron beam irradiation, or X-ray radiation.
JP58000070A 1983-01-05 1983-01-05 Formation of insulating film Pending JPS59124729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58000070A JPS59124729A (en) 1983-01-05 1983-01-05 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58000070A JPS59124729A (en) 1983-01-05 1983-01-05 Formation of insulating film

Publications (1)

Publication Number Publication Date
JPS59124729A true JPS59124729A (en) 1984-07-18

Family

ID=11463916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000070A Pending JPS59124729A (en) 1983-01-05 1983-01-05 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPS59124729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138529A (en) * 1985-12-10 1987-06-22 Mitsubishi Electric Corp Formation of organic silicone thin film
EP1457583A2 (en) 2003-03-04 2004-09-15 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
JP2009010400A (en) * 2003-03-04 2009-01-15 Air Products & Chemicals Inc Mechanical enhancement of high-density porous organosilicate material by uv exposure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138529A (en) * 1985-12-10 1987-06-22 Mitsubishi Electric Corp Formation of organic silicone thin film
EP1457583A2 (en) 2003-03-04 2004-09-15 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
JP2004274052A (en) * 2003-03-04 2004-09-30 Air Products & Chemicals Inc Mechanical enhancement of high-density porous organic silicate material by uv irradiation
JP2009010400A (en) * 2003-03-04 2009-01-15 Air Products & Chemicals Inc Mechanical enhancement of high-density porous organosilicate material by uv exposure
US7932188B2 (en) 2003-03-04 2011-04-26 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure

Similar Documents

Publication Publication Date Title
JP3262334B2 (en) Method for processing semiconductor wafers
JP2989063B2 (en) Thin film forming apparatus and thin film forming method
US6284050B1 (en) UV exposure for improving properties and adhesion of dielectric polymer films formed by chemical vapor deposition
JPS60254614A (en) Method of chemically depositing conductive titanium silicidefilm by light induction
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
JPH09237785A (en) Semiconductor device and its manufacture
JPH0772351B2 (en) Metal thin film selective growth method
TWI411042B (en) Method for processing polysilazane film
JPH0329297B2 (en)
JPS59124729A (en) Formation of insulating film
US6914011B2 (en) Film deposition system and method of fabricating semiconductor device employing the film deposition system
JPS6223450B2 (en)
JPS61136220A (en) Formation of microlite si film
JPH03139824A (en) Depositing method for semiconductor device
JPS62166529A (en) Formation of thin film
JP4094127B2 (en) Amorphous silicon production equipment
JPH05140747A (en) Film forming apparatus and formation of film using this apparatus
RU1396862C (en) Process of manufacture of structure of semiconductor devices
JPS6126773A (en) Formation of accumulated film
JPH0310079A (en) Deposited film forming device
JPS6124239A (en) Manufacture of thin film semiconductor device
JPS5982715A (en) Forming method of recrystallized silicon film
JPH02229430A (en) Manufacture of semiconductor device
JPS5916337A (en) Formation of semiconductor protection film
JPS62278269A (en) Formation of functional thin tin oxide film