JPS6124078B2 - - Google Patents

Info

Publication number
JPS6124078B2
JPS6124078B2 JP15809681A JP15809681A JPS6124078B2 JP S6124078 B2 JPS6124078 B2 JP S6124078B2 JP 15809681 A JP15809681 A JP 15809681A JP 15809681 A JP15809681 A JP 15809681A JP S6124078 B2 JPS6124078 B2 JP S6124078B2
Authority
JP
Japan
Prior art keywords
wastewater
fluidized bed
tank
treatment
treatment tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15809681A
Other languages
Japanese (ja)
Other versions
JPS5861888A (en
Inventor
Yoshihisa Narukami
Tetsuo Kimura
Taketoshi Madokoro
Tadaaki Kawasugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP56158096A priority Critical patent/JPS5861888A/en
Publication of JPS5861888A publication Critical patent/JPS5861888A/en
Publication of JPS6124078B2 publication Critical patent/JPS6124078B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 本発明は、流動床処理槽によつて廃水の微生物
処理をする方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for microbial treatment of wastewater using a fluidized bed treatment tank.

従来より、微生物を付着した担体粒子の充填さ
れた処理槽に廃水を上向きに流通させ流動床を形
成させる廃水処理方法は知られている。かかる流
動床処理では、槽内の微生物濃度を高く保持で
き、高速処理が可能であるという利点が認められ
ている。一方、微生物に嫌気・好気雰囲気を繰返
し受けさせて、嫌気雰囲気でリンを放出させ好気
雰囲気で放出した以上のリンを摂取させ、水中の
リンを除去する方法が知られている。しかし、従
来の流動床槽では、好気雰囲気を採用すると槽全
体が好気状態となり、嫌気雰囲気を採用すると槽
全体が嫌気性状態となり、微生物に嫌気、好気雰
囲気を繰返し受けさせることができず、廃水中の
リン除去ができなかつた。
Conventionally, wastewater treatment methods have been known in which wastewater is passed upward through a treatment tank filled with carrier particles to which microorganisms are attached to form a fluidized bed. Such fluidized bed treatment has been recognized to have the advantage of being able to maintain a high concentration of microorganisms in the tank and allowing high-speed treatment. On the other hand, there is a known method of removing phosphorus from water by repeatedly subjecting microorganisms to anaerobic and aerobic atmospheres, causing them to release phosphorus in the anaerobic atmosphere and ingest more phosphorus than they released in the aerobic atmosphere. However, in conventional fluidized bed tanks, when an aerobic atmosphere is used, the entire tank becomes an aerobic state, and when an anaerobic atmosphere is used, the entire tank becomes an anaerobic state, making it impossible for microorganisms to be repeatedly exposed to anaerobic and aerobic atmospheres. However, it was not possible to remove phosphorus from wastewater.

本発明者は、流動床槽による廃水処理方法につ
いて検討を重ねた結果、次の如き知見を得るに至
つた。即ち、流動床槽で循環ポンプを用いた循環
経路中に酸素溶解装置を設けて、循環液に酸素を
溶解させ、槽下部に循環導入し、更に処理原水を
槽の途中から導入して上方への液流通を行なう
と、下部流動床を好気雰囲気に且つ上部流動床を
嫌気雰囲気に保持できることを見出した。そし
て、かかる方法によると、担体粒子に付着した微
生物が槽内で流動化される間に嫌気と好気の状態
を交互に受けるようになる。そして、リン含有廃
水を嫌気部に流入させると担体粒子上微生物中の
リンの放出が促進され、好気部では放出されたリ
ンに加えて原廃水中のリンをも担体粒子上の微生
物により摂取される。処理水を好気部から流出さ
せ、微生物作用によつて生成した余剰汚泥も好気
部より担体粒子と共に取出し、汚泥と担体を分離
の後、担体を流動床へ返送する。これによつて、
原廃水中のリンが高効率で除去される。
As a result of repeated studies on wastewater treatment methods using fluidized bed tanks, the inventors have come to the following knowledge. That is, in a fluidized bed tank, an oxygen dissolving device is installed in the circulation path using a circulation pump to dissolve oxygen in the circulating fluid and circulate it to the bottom of the tank, and then introduce treated raw water from the middle of the tank and move it upward. It has been found that the lower fluidized bed can be kept in an aerobic atmosphere and the upper fluidized bed can be kept in an anaerobic atmosphere by performing the liquid flow. According to this method, the microorganisms attached to the carrier particles are alternately exposed to anaerobic and aerobic conditions while being fluidized in the tank. When the phosphorus-containing wastewater flows into the anaerobic part, the release of phosphorus in the microorganisms on the carrier particles is promoted, and in the aerobic part, in addition to the released phosphorus, the phosphorus in the raw wastewater is also taken up by the microorganisms on the carrier particles. be done. The treated water is discharged from the aerobic section, excess sludge produced by microbial action is also taken out from the aerobic section along with carrier particles, and after separating the sludge and the carrier, the carrier is returned to the fluidized bed. By this,
Phosphorus in raw wastewater is removed with high efficiency.

かくして、本発明は、前記知見に基いて完成さ
れたものであり、微生物を付着した担体粒子の流
動床が形成され且つ上方への液流通が形成されて
いる処理槽に廃水を流入させて微生物処理し、該
処理水を前記槽より流出させることからなる方法
において、前記槽の下部流動床を好気雰囲気に且
つ上部流動床を嫌気雰囲気に保持し、廃水を嫌気
雰囲気下部に流入させ、処理水を好気雰囲気上部
から流出させることを特徴とする新規な廃水処理
方法を提供するものである。
Thus, the present invention has been completed based on the above findings, and consists of draining wastewater into a treatment tank in which a fluidized bed of carrier particles to which microorganisms are attached and an upward liquid flow is formed to remove microorganisms. A method comprising treating the water and draining the treated water from the tank, wherein the lower fluidized bed of the tank is maintained in an aerobic atmosphere and the upper fluidized bed in an anaerobic atmosphere, the wastewater is allowed to flow into the lower part of the anaerobic atmosphere, and the treated water is discharged from the tank. The present invention provides a novel wastewater treatment method characterized by draining water from the upper part of an aerobic atmosphere.

本発明方法によるリン含有廃水の処理では、流
動床を構成する担体粒子上の微生物は、槽内で流
動する間に嫌気と好気の状態にさらされて、嫌気
状態でリンを放出し好気状態でリンを過剰摂取す
る。そして、流動床の特徴である槽内に微生物濃
度を高く保持できることから、大きな負荷でリン
の除去が可能となる。
In the treatment of phosphorus-containing wastewater according to the method of the present invention, the microorganisms on the carrier particles constituting the fluidized bed are exposed to anaerobic and aerobic conditions while flowing in the tank, releasing phosphorus in the anaerobic state and becoming aerobic. overdosing on phosphorus. Furthermore, since a fluidized bed is capable of maintaining a high concentration of microorganisms in the tank, it is possible to remove phosphorus with a large load.

本発明において、処理槽の下部流動床を好気雰
囲気に保持する手段としては、種々の手段がある
が、通常は次の方法が好適である。即ち、図示の
ように、処理槽1の上部と下部とを連絡する循環
経路を設け、処理槽内の液を上部の流出管2から
排出させ、循環経路途中に設けられた酸素溶解装
置3に導入して酸素を吹込み溶解させ、次いで下
部から処理槽内に流入4させる方法である。そし
て、下部流動床は全流動床の50〜80%程度、通常
は下部約70%前後を占めるように運転されるのが
好ましい。この場合、好気雰囲気の溶存酸素は
1ppm以上、好ましくは5ppm以上の濃度に維持
される。
In the present invention, there are various means for maintaining the lower fluidized bed of the treatment tank in an aerobic atmosphere, but the following method is usually suitable. That is, as shown in the figure, a circulation path is provided that connects the upper and lower parts of the processing tank 1, and the liquid in the processing tank is discharged from the upper outflow pipe 2, and is sent to the oxygen dissolving device 3 provided in the middle of the circulation path. In this method, oxygen is introduced into the tank to dissolve it, and then it flows into the processing tank from the bottom. It is preferable to operate the lower fluidized bed so that it occupies about 50 to 80% of the total fluidized bed, usually about 70% of the lower part. In this case, the dissolved oxygen in the aerobic atmosphere is
The concentration is maintained at 1 ppm or higher, preferably 5 ppm or higher.

そして原廃水は嫌気雰囲気bの下部に流入5さ
せ、処理水は好気雰囲気aの上部から流出6する
ように構成される。また、処理槽内の液流通は上
向きに構成される。さらに、原廃水が処理水に短
絡して流れないように、原廃水流入口は処理水流
出口よりも上に設置される。かゝる構成により、
廃水は処理槽1の上部流動床に導入され嫌気処理
を受け、槽1の上から流出して酸素が溶解され
て、処理槽1の下部から下部流動床に導入4され
好気処理を受け、次いで下部流動床の上部から処
理水として流出6されることになる。なお、上部
流動床の嫌気雰囲気bの溶存酸素は0.7ppm以
下、好ましくは0.5ppm以下の濃度に維持され
る。
The raw wastewater is configured to flow in 5 into the lower part of the anaerobic atmosphere b, and the treated water flows out 6 from the upper part of the aerobic atmosphere a. Moreover, the liquid flow within the processing tank is configured to be directed upward. Furthermore, the raw wastewater inlet is installed above the treated water outlet so that the raw wastewater does not short-circuit and flow into the treated water. With such a configuration,
Wastewater is introduced into the upper fluidized bed of the treatment tank 1 and subjected to anaerobic treatment, flows out from the top of the treatment tank 1 to dissolve oxygen, is introduced into the lower fluidized bed from the lower part of the treatment tank 1 and subjected to aerobic treatment, The treated water is then discharged 6 from the upper part of the lower fluidized bed. Note that the dissolved oxygen in the anaerobic atmosphere b in the upper fluidized bed is maintained at a concentration of 0.7 ppm or less, preferably 0.5 ppm or less.

本発明において、流動床を形成する担体粒子と
しては、従来より流動床微生物処理で使用されて
いるものが、特に限定されることなく各種採用さ
れ得る、通常は砂が好適に使用されるが、石炭、
炭素、アルミナ、ガラス、セラミツクス、プラス
チツクス粒子なども使用され得る。担体粒子の比
重は水の比重よりも大きいものであればよく、ま
た、粒子径は0.1〜10mm程度の平均粒径から選定
される。そして、担体粒子には微生物が付着して
いるが、多くの場合、かゝる微生物は廃水中に存
在しているのでこれらを適宜使用できる。処理槽
内の通水速度は、担体粒子層を流動化するに充分
な速度が採用され、通常は最小流動化速度よりも
速い速度、例えば1.1〜3倍が好適である。
In the present invention, as the carrier particles forming the fluidized bed, various carrier particles conventionally used in fluidized bed microbial treatment can be used without particular limitation, and sand is usually suitably used. coal,
Carbon, alumina, glass, ceramics, plastic particles, etc. may also be used. The specific gravity of the carrier particles may be greater than that of water, and the particle diameter is selected from an average particle diameter of about 0.1 to 10 mm. Microorganisms are attached to the carrier particles, and in many cases, such microorganisms are present in wastewater, so they can be used as appropriate. The water flow rate in the treatment tank is set at a rate sufficient to fluidize the carrier particle layer, and is usually preferably higher than the minimum fluidization rate, for example 1.1 to 3 times.

処理槽内で、廃水中のBODなどが分解され余
剰汚泥として生長するが、これらは好気部から担
体粒子とともに取出し、汚泥と担体に分離され、
汚泥は濃縮脱水などの処理装置へ送られ、担体は
流動床へ返送される。本発明方法は、種々の廃水
の微生物処理に適用され、特にリン含有廃水から
リンを除去する方法として有効である。
In the treatment tank, BOD and other substances in the wastewater are decomposed and grow as surplus sludge, which is extracted from the aerobic section along with carrier particles and separated into sludge and carrier.
The sludge is sent to a processing device such as concentration and dehydration, and the carrier is returned to the fluidized bed. The method of the present invention is applicable to microbial treatment of various wastewaters, and is particularly effective as a method for removing phosphorus from phosphorus-containing wastewater.

次に、本発明の実施例についてさらに具体的に
説明するが、かゝる説明によつて本発明が何ら限
定されるものでないことは勿論である。
Next, examples of the present invention will be described in more detail, but it goes without saying that the present invention is not limited by such explanations.

実施例 BOD約150mg/とPO4 3-−P5mg/を含む人工
下水について、直径200mm高さ6mの反応槽を用
いた本発明を適用したところ反応槽滞留時間約90
分でBODおよびPO4 3-−Pをおのおの20mg/お
よび1mg/未満に減少させ得た。担体として代
表径0.6mmの砂を静止充填高さ2mになるように
充填し微生物が担体に付着するまで馴養した、循
環流量は最小流動化速度の1.2倍とし循環水の流
動床入口DOは8〜16mg/、嫌気部のDOは0.5
mg/以下となるように制御した。
Example When the present invention was applied to artificial sewage containing approximately 150 mg of BOD and 5 mg of PO 4 3- -P using a reaction tank with a diameter of 200 mm and a height of 6 m, the residence time in the reaction tank was approximately 90.
It was possible to reduce BOD and PO 4 3- -P to less than 20 mg/ and 1 mg/, respectively, in minutes. As a carrier, sand with a typical diameter of 0.6 mm was packed to a stationary filling height of 2 m, and the microorganisms were acclimatized until they attached to the carrier.The circulating flow rate was 1.2 times the minimum fluidization speed, and the DO of the circulating water at the inlet of the fluidized bed was 8. ~16mg/, anaerobic DO is 0.5
The amount was controlled to be less than mg/mg.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様を示した概略説明図で
ある。 1……処理槽、3……酸素溶解装置、a……好
気性雰囲気、b……嫌気性雰囲気。
The drawings are schematic illustrations showing embodiments of the present invention. 1... Processing tank, 3... Oxygen dissolving device, a... Aerobic atmosphere, b... Anaerobic atmosphere.

Claims (1)

【特許請求の範囲】 1 微生物を付着した担体粒子の流動床が形成さ
れ且つ上方への液流通が形成されている処理槽に
廃水を流入させて微生物処理し、該処理水を前記
槽より流出させることからなる方法において、処
理槽の上部と下部とを連絡する循環経路を設ける
と共に、該経路中に酸素溶解装置を設け、処理槽
内の液を上部より流出させ、その循環液に酸素を
溶解させて処理槽の下部に循環導入すると共に、
処理槽の下部流動床を好気雰囲気に且つ上部流動
床を嫌気雰囲気に保持し、原廃水を処理槽の途中
から流入させ、処理水を好気雰囲気上部から流出
させることを特徴とする廃水処理方法。 2 廃水がリン含有廃水である特許請求の範囲第
1項記載の廃水処理方法。
[Scope of Claims] 1 Wastewater is treated with microorganisms by flowing into a treatment tank in which a fluidized bed of carrier particles to which microorganisms are attached and an upward liquid flow is formed, and the treated water is discharged from the tank. In this method, a circulation path is provided that connects the upper and lower parts of the treatment tank, and an oxygen dissolving device is installed in the path, so that the liquid in the treatment tank flows out from the upper part, and oxygen is added to the circulating liquid. In addition to dissolving it and circulating it into the lower part of the treatment tank,
A wastewater treatment characterized by maintaining the lower fluidized bed of the treatment tank in an aerobic atmosphere and the upper fluidized bed in an anaerobic atmosphere, allowing raw wastewater to flow into the treatment tank from the middle, and allowing treated water to flow out from the upper part of the aerobic atmosphere. Method. 2. The wastewater treatment method according to claim 1, wherein the wastewater is phosphorus-containing wastewater.
JP56158096A 1981-10-06 1981-10-06 Treatment for waste water Granted JPS5861888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56158096A JPS5861888A (en) 1981-10-06 1981-10-06 Treatment for waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56158096A JPS5861888A (en) 1981-10-06 1981-10-06 Treatment for waste water

Publications (2)

Publication Number Publication Date
JPS5861888A JPS5861888A (en) 1983-04-13
JPS6124078B2 true JPS6124078B2 (en) 1986-06-09

Family

ID=15664210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56158096A Granted JPS5861888A (en) 1981-10-06 1981-10-06 Treatment for waste water

Country Status (1)

Country Link
JP (1) JPS5861888A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124768A (en) * 1976-04-12 1977-10-20 Air Prod & Chem Method of inhibiting breeding of fiborous biomass
JPS5335256A (en) * 1976-09-14 1978-04-01 Hitachi Kiden Kogyo Ltd Waste water treating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124768A (en) * 1976-04-12 1977-10-20 Air Prod & Chem Method of inhibiting breeding of fiborous biomass
JPS5335256A (en) * 1976-09-14 1978-04-01 Hitachi Kiden Kogyo Ltd Waste water treating method

Also Published As

Publication number Publication date
JPS5861888A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
PL182535B1 (en) Method of treating sewages with oxygen
JP2001500060A (en) Liquid effluent treatment plant and process
JPH06182393A (en) Fluidized bed type denitrification treating device
JPS61136490A (en) Aeration type waste water treatment apparatus
JPS644835B2 (en)
JPS6124078B2 (en)
JP3629727B2 (en) Organic wastewater treatment method and apparatus
JP2709357B2 (en) Aerobic wastewater treatment equipment
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
JPH0636918B2 (en) Wastewater treatment method
JPS62262794A (en) Treatment of waste water
KR100502957B1 (en) Reactor Comprising PBAC Carrier and Water Treatment Method Using the Same
JP2590474B2 (en) Wastewater treatment method
JPS6124079B2 (en)
JP3155457B2 (en) Wastewater treatment equipment
JPH02184398A (en) Moving bed-type denitrification device
JP3131658B2 (en) Wastewater biological treatment method
JP2509375B2 (en) Organic wastewater treatment method and organic wastewater treatment equipment
JPS62244489A (en) Method for purifying low concentration organic sewage by utilizing humus substance
JPS63158195A (en) Treatment of sewage
JPS56147688A (en) Method and device for fluidized-bed type biological treatment of waste water
RU2081577C1 (en) Method for keeping fish in fish reservoir
JPS6094194A (en) Treating apparatus for organic waste water
JPH0133238B2 (en)
JPS6261698A (en) Fluidized bed type waste water treatment apparatus