JPS62262794A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS62262794A
JPS62262794A JP61105173A JP10517386A JPS62262794A JP S62262794 A JPS62262794 A JP S62262794A JP 61105173 A JP61105173 A JP 61105173A JP 10517386 A JP10517386 A JP 10517386A JP S62262794 A JPS62262794 A JP S62262794A
Authority
JP
Japan
Prior art keywords
particles
flow
cylinder
tank
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61105173A
Other languages
Japanese (ja)
Inventor
Chiaki Niwa
千明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP61105173A priority Critical patent/JPS62262794A/en
Publication of JPS62262794A publication Critical patent/JPS62262794A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To uniformly circulate even the particles having the specific gravity smaller than 1 in a treatment tank consisting of an inside cylinder and outside cylinder by adjusting the flow rate of the circulating flow in the above-mentioned treatment tank, particularly the flow rate of the part where the flow changes from upward flow to downward flow to the rate substantially higher than the floating rate of the particles. CONSTITUTION:The treatment tank 11 consists of the outside cylinder 1 and the inside cylinder 2 provided to the inside of the outside cylinder 1 as well as an aerating member 3 provided below the inside cylinder 2. The particles which carry microorganisms and have the specific gravity smaller than 1 are dispersed and fluidized in said tank 11. The spacing from the top end of the inside cylinder 2 up to the static water surface is maintained at <=5% of the effective water depth of the tank 11. The flow rate of the circulating flow A flowing in the upper part in the vertical direction between the inside and outside cylinders is adjusted to >=3 times the terminal floating rate of the particles and the flow rate of the circulating flow flowing in the intermediate part in the vertical direction between the inside and outside cylinders is maintained higher than the terminal floating rate of the particles. The above- mentioned particles are circulatively fluidized to accompany the upward flow in the inside cylinder and the downward flow between the inside and outside cylinders so that the waste water in the tank 11 is treated by the microorganisms of the particles. The treatment efficiency is thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、有機性廃水の処理、特に粒子流動法による
廃水処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the treatment of organic wastewater, particularly to a wastewater treatment method using a particle flow method.

〔従来技術とその問題点〕[Prior art and its problems]

従来より微生物を担持した比重が1より大きな粒子を処
理槽内に循環流動させつつ曝気し、廃水処理を行う処理
法:粒子流動法が知られている。
BACKGROUND ART Conventionally, a particle flow method has been known as a treatment method for treating wastewater by circulating and aerating particles carrying microorganisms and having a specific gravity of more than 1 in a treatment tank.

しかしながら、この処理法にあっては、比重が1より大
きな粒子を使用しているため、粒子の流動化のために大
きなエネルギー(動力)が必要であり、また処理槽内に
添加、保持できる粒子量に限界があり、微生物量が限ら
れると云う問題がある。
However, since this treatment method uses particles with a specific gravity greater than 1, a large amount of energy (power) is required to fluidize the particles, and the particles that can be added and retained in the treatment tank are There is a problem that there is a limit to the amount of microorganisms.

このため、近時比重が1よりも小さい軒昂な粒子を用い
る方法が提案されている(実53−69171号公報等
参照)。しかし、これらの方法はいずれも軽量粒子を用
いているため、槽内で粒子を循環させることを意図して
おらず、ネット等を用いて一定の領域に粒子を保持し、
この領域に下向流を生ぜしめて処理する方式を採用して
いる。
For this reason, a method using bulky particles with a specific gravity of less than 1 has recently been proposed (see Japanese Utility Model No. 53-69171, etc.). However, since these methods all use lightweight particles, they are not intended to circulate the particles in the tank, but instead use a net etc. to hold the particles in a certain area.
A method is used to generate a downward flow in this area.

このため、曝気領域に微生物を担持した粒子が存在Iず
、酸素吸収率が悪り、゛散気猪当りの粒子・液間接触が
少なく、したがって除去反応速度が低いなどの理由によ
り、処理効率が悪いと云う問題点があった。
For this reason, there are no microorganism-carrying particles in the aeration area, resulting in poor oxygen absorption rate, low contact between particles and liquid per aeration area, and therefore a low removal reaction rate, resulting in lower treatment efficiency. There was a problem that it was bad.

また、比重1以下の粒子を用いてネット等を用いない処
理法ら提案されているが、やはり下向流領域のみで粒子
を流動させることを意図しており、前記と同様の問題点
を右している。
In addition, a treatment method using particles with a specific gravity of 1 or less without using a net has been proposed, but the intention is to flow the particles only in the downward flow region, and the same problem as above is encountered. are doing.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明にあっては、内筒および外筒を有する
処理槽を用い、内筒および内外筒間に粒子の終末浮上速
度よりも流速の大きな上向流および下向流を生じせしめ
、比重が1より小さい軽量粒子を用いるにもかかわらず
、粒子をこの上向流および下向流に強制的に乗せて、循
環流動させることにより、これらの問題点を解決するよ
うにした。
Therefore, in this invention, a processing tank having an inner cylinder and an outer cylinder is used, and an upward flow and a downward flow are generated between the inner cylinder and the outer cylinder with a flow velocity higher than the final floating velocity of the particles, and the specific gravity These problems were solved by forcing the particles to flow in the upward and downward flows and making them circulate, even though lightweight particles having a value of less than 1 were used.

(実施例〕 第1図は、この発明の廃水処理法を実施するに好適な処
理装置の例を示すもので、図中符号1は外筒である。外
筒1は有底円筒体であって、その底部は捕鉢状になって
いる。この外筒1の内方には内筒2が同軸的に設けられ
ている。この内筒2は機略円筒状であって、下部はその
径が小ざく、中間部は径が下部よりも徐々に拡げられて
テーパー状に太くなっており、上部は中間部で拡げられ
たままの径となって下部よりも大きな径を有するように
なっている。また、内筒2上部の直径が外筒1上部の直
径の0.7以上となるようにその寸法が決められている
。また、内筒2の下方には、好気性気体あるいは嫌気性
気体を曝気する曝気部材3が設けられ、ブロア4で加圧
された気体が曝気されるようになっている。さらに、外
筒1の外側には、分離筒5が設けられている。この分離
筒5は、上下方向に良い細径の筒体であって、その下端
部において内外筒間の空間に連通されている。
(Example) Fig. 1 shows an example of a treatment apparatus suitable for carrying out the wastewater treatment method of the present invention, and reference numeral 1 in the figure is an outer cylinder.The outer cylinder 1 is a cylindrical body with a bottom. The bottom part is shaped like a pot.An inner cylinder 2 is provided coaxially inside the outer cylinder 1.The inner cylinder 2 is roughly cylindrical in shape, and the lower part is shaped like a pot. The diameter is small, and the diameter in the middle part gradually widens compared to the bottom part, becoming thicker in a tapered shape, and the diameter in the upper part remains widened at the middle part, and has a larger diameter than the bottom part. In addition, the dimensions of the upper part of the inner cylinder 2 are determined so that the diameter of the upper part of the outer cylinder 1 is 0.7 or more. An aeration member 3 for aerating the gas is provided, and the gas pressurized by the blower 4 is aerated.Furthermore, a separation cylinder 5 is provided on the outside of the outer cylinder 1. The separation cylinder 5 is a cylinder with a fine diameter in the vertical direction, and its lower end communicates with the space between the inner and outer cylinders.

また、分離n5のtよは中間位置には、潜り堰6が設け
られ、この潜り堰6から処理水が沈殿槽7に送られるよ
うになっている。さらに、外筒1の側壁にはスクリーン
8が設【ノられ、粒子を)戸別して処理水のみが分離筒
5内に流入するようになっている。またさらに、スクリ
ーン8の外方には、スクリーン8の目詰りを防止する逆
洗部材9が設けられている。
Further, a submerged weir 6 is provided at an intermediate position t of the separation n5, and the treated water is sent to the settling tank 7 from this submerged weir 6. Furthermore, a screen 8 is provided on the side wall of the outer cylinder 1 to separate the particles and allow only the treated water to flow into the separation cylinder 5. Furthermore, a backwashing member 9 is provided outside the screen 8 to prevent the screen 8 from clogging.

次に、この処理装置を用いた処理法について説明する。Next, a processing method using this processing device will be explained.

原廃水を管10から処理槽11内に流入させて、処理槽
11の静止水位が内筒2上端部よりも上に来るように、
すなわち内筒2上端部が完全に水没するまで満す。静止
水位から内筒2上端縁までの間隔と槽11の有効水深と
の比(以下、上部間隔率と呼ぶ。)が5%以F、好まし
くは3.5%以下となるようにすることが必要である。
Raw wastewater is caused to flow into the treatment tank 11 from the pipe 10, so that the static water level in the treatment tank 11 is above the upper end of the inner cylinder 2.
That is, fill the inner cylinder 2 until the upper end is completely submerged in water. The ratio between the distance from the static water level to the upper edge of the inner cylinder 2 and the effective water depth of the tank 11 (hereinafter referred to as the upper distance ratio) should be 5% or more, preferably 3.5% or less. is necessary.

この上部間隔率が5%を越えると、粒子が循環流動する
割合が急激に減少し、実用に供せなくなる。
If the upper spacing ratio exceeds 5%, the rate at which the particles circulate and flow decreases rapidly, making it impossible to put it to practical use.

微生物処理に用いられる粒子としては、熱膨張処理を施
した無機性粒子、その他の無機性粒子、プラスチック粒
子、プラスチック発泡粒子、微生物を高温度に包括した
高分子粒子、前記粒子を複合成形した粒子などが甲独使
用されるかあるいは数種組み合されて使用される。この
粒子の比重は、微生物を担持した状態で1より小さいこ
とが必要であり、好ましくは0.7〜1、さらにこのま
しは0.9〜1の範囲のものを選択することが、効率的
な粒子の循環流動が行えて好ましい。
Particles used for microbial treatment include inorganic particles subjected to thermal expansion treatment, other inorganic particles, plastic particles, plastic foam particles, polymer particles containing microorganisms at high temperature, and composite molded particles of the above particles. These are used in Japan and Germany, or in combination. The specific gravity of these particles needs to be less than 1 in a state in which microorganisms are supported, preferably in the range of 0.7 to 1, and more preferably in the range of 0.9 to 1. This is preferable because it allows for a circular flow of particles.

ブロア4から曝気部材3を経て気体が散気され、廃水は
これにより内筒2内を1胃し、内外筒間を下降して循環
する。この際、内外筒間の上下方向の上部部分を流れる
循環流(第1図中、八で表示した位置の循環流)の流速
が粒子の終末浮上速度の3倍以上とされ、内外筒間の中
間部分を流れる循環流(第1図中、Bで表示した位置の
循環流)の流速が粒子の終末浮上速度以上とされ、かつ
内筒2上端部付近において運転時循環流ff1Z内筒2
上部断面積が粒子の終末浮上速度の4倍よりも大ぎくな
るように、その循環流の流速が定められている。ここで
、粒子の終末浮上速度とは、静止水中で粒子が浮上する
最終的な一定速度であり、粒子の比重、粒径、水の粘度
等によって定められる。
Gas is diffused from the blower 4 through the aeration member 3, and the waste water is thereby blown into the inner cylinder 2 and circulated downward between the inner and outer cylinders. At this time, the flow velocity of the circulating flow flowing in the upper part of the vertical direction between the inner and outer cylinders (the circulating flow at the position indicated by 8 in Figure 1) is set to be more than three times the final floating speed of the particles, and The flow velocity of the circulating flow flowing through the intermediate portion (the circulating flow at the position indicated by B in FIG. 1) is set to be higher than the final floating velocity of the particles, and the circulating flow ff1Z during operation is generated near the upper end of the inner cylinder 2.
The flow rate of the circulating flow is determined so that the upper cross-sectional area is greater than four times the final floating velocity of the particles. Here, the final floating speed of particles is the final constant speed at which particles float in still water, and is determined by the specific gravity of particles, particle size, viscosity of water, etc.

このような粒子の終末浮上速度よりも高流速の循環流内
におかれた粒子は、内筒2内の上向流に乗って上界して
ゆき、内筒2上部に至るが、内筒2上部の水面上に浮上
することなく、内筒2から外筒1への放(ト)状の横流
、さらには内外筒間の^速の下向流にただちに巻き込ま
れて下方に流下し、内外筒間では常に粒子の浮上速度よ
りも高速の下向流で下方に押し流され、結果的に比重が
1よりも小さいにもかかわらず、処理槽11内を循環す
ることになる。
Particles placed in a circulating flow with a flow velocity higher than the final floating velocity of such particles ride the upward flow in the inner cylinder 2 and reach the upper part of the inner cylinder 2, but 2. Without floating above the water surface above the water surface, it is immediately caught up in the radial cross flow from the inner cylinder 2 to the outer cylinder 1, and furthermore, in the fast downward flow between the inner and outer cylinders, and flows downward. Between the inner and outer cylinders, the particles are always swept downward by a downward flow faster than the floating speed of the particles, and as a result, they circulate within the processing tank 11 even though their specific gravity is less than 1.

この粒子の循環流動により、粒子に担持された微生物の
作用で廃水が浄化される。曝気に空気などの酸素を含む
好気性気体を用いれば好気性処理が、また酸素を含まな
い嫌気性気体を用いて、槽11上部を蓋体12で封止す
れば、嫌気性処理が行える。嫌気性処理では、第1図に
示すように、W111上部空間の嫌気性気体を曝気する
ことによっても行うことができる。
Due to this circulating flow of particles, the wastewater is purified by the action of microorganisms supported on the particles. Aerobic treatment can be performed by using an aerobic gas containing oxygen such as air for aeration, and anaerobic treatment can be performed by using an anaerobic gas not containing oxygen and sealing the upper part of tank 11 with lid 12. The anaerobic treatment can also be carried out by aerating the anaerobic gas in the space above the W111, as shown in FIG.

このようにして処理槽11内で生物処理された廃水は、
スクリーン8を通り分11を筒5に流入するが、廃水中
の粒子はスクリーン8でi濾過される。
The wastewater that has been biologically treated in the treatment tank 11 in this way is
A portion 11 flows into cylinder 5 through screen 8, and particles in the wastewater are filtered by screen 8.

分離筒5に流入した廃水中の汚泥は、ここで沈降分離し
、外筒1底部にたまり、一部は曝気部材3のエアリフト
効果で内r:J2内へ循環流動する。分離ft15の処
理水は潜り堰6を経て管13から沈殿槽7に送られ、最
終処理水となる。
The sludge in the wastewater that has flowed into the separation cylinder 5 is sedimented and separated here, and accumulates at the bottom of the outer cylinder 1, and a part of it circulates and flows into the inner part J2 due to the air lift effect of the aeration member 3. The treated water from the separation ft15 is sent to the settling tank 7 from the pipe 13 through the submerged weir 6, and becomes the final treated water.

なお、スクリーン8の粒子による目詰りは、時時逆洗部
材9から気体または液体を噴射することにより、防止さ
れる。
Note that clogging of the screen 8 due to particles can be prevented by jetting gas or liquid from the backwashing member 9 from time to time.

〔作 用〕[For production]

このような廃水処理法によれば、円筒2から内外筒間に
かけて、粒子終末浮上速度よりも高流速の循環流が生じ
、比重が1よりも小さい軽量粒子を用いているにもかか
わらず、この4’1(fi粉粒子処理槽11内で」分、
均一に循環流動させることができる。
According to such a wastewater treatment method, a circulating flow occurs from the cylinder 2 between the inner and outer cylinders at a flow rate higher than the final floating velocity of the particles, and even though lightweight particles with a specific gravity of less than 1 are used, this 4'1 (in the fi powder particle processing tank 11) minutes,
Can be circulated and flowed uniformly.

このため、 (イ)高いBOD容積負荷をとることができる。For this reason, (b) A high BOD volume load can be taken.

(ロ)比重が1より大きい粒子を用いた場合、粒子が微
かの外乱で処理槽11底部にwfIt、、流動が停止し
てしまい、処理不能になることが多々あるが、この処理
法ではこのような事故は生じない。
(b) When using particles with a specific gravity greater than 1, the flow of the particles often stops at the bottom of the processing tank 11 due to a slight disturbance, making it impossible to process. Such accidents do not occur.

(ハ)同体積の粒子を流動化させるに必要なエネルギー
は比重1.5〜2.7の粒子を用いる一般の粒子流fh
法に比べて172〜1/15に削減できる。
(c) The energy required to fluidize the same volume of particles is the general particle flow fh using particles with a specific gravity of 1.5 to 2.7.
It can be reduced to 172 to 1/15 compared to the method.

また、内筒2の上部を下部に比べて拡径することにより
、 (ニ)酸素吸収効率が約25%改善される。これは、微
細気泡曝気の場合、気泡滞留時間が増し、内筒上部で内
筒断面積が増加しているので気泡の会合の機会が減少し
、気液接触表面積が太き(なり、かつ破泡までの時間が
長くなることさらには外筒1へ流れた気泡が比較的早い
下向流とともに一部内外筒間を途中まで下降することな
どのためである。
Furthermore, by increasing the diameter of the upper part of the inner cylinder 2 compared to the lower part, (d) oxygen absorption efficiency is improved by about 25%. This is because, in the case of micro-bubble aeration, the bubble residence time increases and the cross-sectional area of the inner cylinder increases at the top of the inner cylinder, which reduces the chance of bubble association and increases the gas-liquid contact surface area (and ruptures). This is because the time required for the bubbles to reach the outer cylinder 1 is longer, and furthermore, the bubbles flowing into the outer cylinder 1 partially descend halfway between the inner and outer cylinders with a relatively fast downward flow.

(ホ)内筒上部での水面の撮動がなくなり、越流部水面
の影響が出なくなる。
(E) The water surface is no longer photographed at the top of the inner cylinder, and the influence of the overflow water surface is eliminated.

〔他の実施例〕[Other Examples]

第2図は、この発明の処理法に用いられる処理槽の伯の
例の要部を示すもので、この例では、外n1の静止水面
付近の内周壁面に傾斜板14を取り付けて、内n2から
外筒1側に流れる循環流を円滑に導くようにしたもので
ある。
FIG. 2 shows the main parts of an example of a treatment tank used in the treatment method of the present invention. The circulating flow flowing from n2 to the outer cylinder 1 side is smoothly guided.

第3図は、この発明の処理法に用いられる処理槽の内筒
2の変形例を示すものである。このものは、内筒2の上
部に複数の角状の欠損部15・−・を形成したものであ
る。この欠損部15・・・は、これらの切欠部分の総面
積が、内筒2の欠n部が存在する円筒状部分の面積の1
0〜40%となるようにその寸法、個数が決められてい
る。
FIG. 3 shows a modification of the inner cylinder 2 of the processing tank used in the processing method of the present invention. This has a plurality of angular cutouts 15 formed in the upper part of the inner cylinder 2. The total area of these cutout portions is 1 of the area of the cylindrical portion of the inner cylinder 2 where the cutout n portion exists.
Its size and number are determined to be 0 to 40%.

このような欠損部15・・・を多数形成することにより
、ここを流れる循環流の流速が一層速くなり、さらには
渦流を生じるようになって粒子が内外筒間の下向流によ
り容易に巻き込まれるようになり、使用しうる粒子の比
重範囲を拡げることができる。
By forming a large number of such defective parts 15, the flow velocity of the circulating flow flowing through these parts becomes faster, and furthermore, a vortex is generated, and particles are easily caught in the downward flow between the inner and outer cylinders. This makes it possible to expand the specific gravity range of particles that can be used.

また、同じ比重の粒子を用いた場合には、粒径の大きな
粒子を使用することができ、使用する粒子の制限が少な
くなる。
Further, when particles having the same specific gravity are used, particles with a larger particle size can be used, and there are fewer restrictions on the particles to be used.

(実験例) 直径10 cta s容13181の外筒内に、上部直
径8ctx、下部直径4 ctttの内筒を外筒底部か
ら7CJIの間隔を置いて設けた処理槽を用・い、有効
水深80cIRとして比重0.92〜0.96、平均粒
径2#ll11の微生物担持粒子を用いて、曝気量を0
.25ノ/分から4.f/分まで変化させ、上部間隔率
と内外筒中間部(第1図中のB位置)の循環流との関係
を求めた。
(Experiment example) A treatment tank was used in which an inner cylinder with an upper diameter of 8 ctx and a lower diameter of 4 ctt was placed in an outer cylinder with a diameter of 10 ctas and a capacity of 13181, spaced 7 CJI from the bottom of the outer cylinder, and the effective water depth was 80 cIR. Using microorganism-supported particles with a specific gravity of 0.92 to 0.96 and an average particle size of 2#ll11, the amount of aeration was reduced to 0.
.. 25 rpm to 4. The relationship between the upper spacing ratio and the circulating flow at the intermediate portions of the inner and outer cylinders (position B in FIG. 1) was determined by varying the ratio up to f/min.

結果を第4図のグラフに示す。このグラフから、円筒上
端が水面より下部にくることが、■循環量、■ひいては
好気性反応では酸素吸収率を増すために非常に重要であ
ることがわかる。
The results are shown in the graph of FIG. From this graph, it can be seen that it is very important for the top of the cylinder to be below the water surface in order to increase (1) the amount of circulation and (2) the oxygen absorption rate in aerobic reactions.

なお、第4図グラフ中の破線で囲まれた領域では、流速
が1.5α/ SeC以下′C−測定不能であった。
In addition, in the area surrounded by the broken line in the graph of FIG. 4, it was impossible to measure 'C-' when the flow rate was less than 1.5α/SeC.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の廃水処理法は、処理槽
内の循環流の流速、特に流れが上向流から下向流に変わ
る部分の流速を、粒子の浮上速度よりも十分に大きくす
ることにより、比重が1よりも小さい粒子を用いるにも
かかわらず、粒子を処理槽内に均一に循環させることが
できる。
As explained above, in the wastewater treatment method of the present invention, the flow velocity of the circulating flow in the treatment tank, especially the flow velocity at the part where the flow changes from upward flow to downward flow, is made sufficiently larger than the floating velocity of particles. As a result, even though particles having a specific gravity of less than 1 are used, the particles can be uniformly circulated within the processing tank.

このため、高いBOD負荷がとれ、運転が微かな外乱に
より停止するようなことがなく、粒子流動化エネルギー
を大きく削減することができるなどの利点を有するもの
となる。
Therefore, it has the advantage that a high BOD load can be taken, the operation does not stop due to a slight disturbance, and the particle fluidization energy can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の廃水処理法に好適に用いられる処
理装との一例を示す概略構成図、第2図は、この発明に
用いられる処理槽の変形例を示ず要部の概略構成図、 第3図は、この発明に用いられる処理槽の内筒の変形例
を示す要部の正面図、 第4図は、実験例の結果を示すグラフである。 1・・・・・・外筒、2・・・・・・内筒、3・・・・
・・曝気部材、11・・・・・・処理槽。
FIG. 1 is a schematic configuration diagram showing an example of a treatment device suitably used in the wastewater treatment method of the present invention, and FIG. 2 is a schematic configuration diagram of the main parts without showing a modification of the treatment tank used in the present invention. 3 is a front view of a main part showing a modification of the inner cylinder of the processing tank used in the present invention, and FIG. 4 is a graph showing the results of an experimental example. 1... Outer cylinder, 2... Inner cylinder, 3...
... Aeration member, 11... Processing tank.

Claims (2)

【特許請求の範囲】[Claims] (1)外筒と、この外筒の内方に設けられた内筒と、こ
の内筒の下方に設けられた曝気部材を有する処理槽を用
い、 微生物を担持した比重が1より小さい粒子を無数槽内に
分散、流動し、 内筒上端から静止水面までの間隔を処理槽の有効水深の
5%以下とし、 内外筒間の上下方向の上部を流れる循環流の流速を粒子
の終末浮上速度の3倍以上とし、 内外筒間の上下方向の中間部分を流れる循環流の流速を
粒子の終末浮上速度よりも大きくし、上記粒子を内筒内
の上向流と、内外筒間の下向流とに伴って循環流動させ
、 槽内廃水を上記粒子の微生物によって処理することを特
徴とする廃水処理法。
(1) Using a treatment tank that has an outer cylinder, an inner cylinder installed inside the outer cylinder, and an aeration member installed below the inner cylinder, particles carrying microorganisms and having a specific gravity of less than 1 are removed. The particles are dispersed and flowing in the countless tanks, the distance from the top of the inner cylinder to the static water surface is 5% or less of the effective water depth of the treatment tank, and the velocity of the circulation flow flowing in the upper part of the vertical direction between the inner and outer cylinders is the final floating velocity of the particles. 3 times or more, and the flow velocity of the circulation flow flowing in the vertical intermediate part between the inner and outer cylinders is made higher than the final floating velocity of the particles, and the particles are transferred into the upward flow in the inner cylinder and the downward flow between the inner and outer cylinders. A wastewater treatment method characterized in that the wastewater in the tank is treated by the microorganisms of the particles by circulating the water along with the flow.
(2)内筒上端部に欠損部が設けられていることを特徴
とする特許請求の範囲第1項記載の廃水処理法。
(2) The wastewater treatment method according to claim 1, wherein a cutout is provided at the upper end of the inner cylinder.
JP61105173A 1986-05-08 1986-05-08 Treatment of waste water Pending JPS62262794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61105173A JPS62262794A (en) 1986-05-08 1986-05-08 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61105173A JPS62262794A (en) 1986-05-08 1986-05-08 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS62262794A true JPS62262794A (en) 1987-11-14

Family

ID=14400287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61105173A Pending JPS62262794A (en) 1986-05-08 1986-05-08 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS62262794A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014313A1 (en) * 1989-05-26 1990-11-29 Isamu Iwai Method and apparatus of filtering medium circulation type for purifying contaminated water
US5308479A (en) * 1989-05-26 1994-05-03 Isamu Iwai Sewage disposal apparatus employing circulating filter media
FR2707183A1 (en) * 1993-07-06 1995-01-13 Dumez Lyonnaise Eaux Process for setting in motion microorganism-carrying particles in a liquid to be treated by a biological route and plant for making use of the process
WO1997013727A1 (en) * 1995-10-13 1997-04-17 Lyonnaise Des Eaux Method and device for biologically treating liquids in the presence of particles forming a floating bed
JP2004526561A (en) * 2001-03-09 2004-09-02 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Process and backflow loop reactor for sewage purification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681189A (en) * 1979-12-07 1981-07-02 Hitachi Plant Eng & Constr Co Ltd Sewage decontamination apparatus
JPS5826997B2 (en) * 1979-04-23 1983-06-06 日本水工 株式会社 Human waste processing method and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826997B2 (en) * 1979-04-23 1983-06-06 日本水工 株式会社 Human waste processing method and device
JPS5681189A (en) * 1979-12-07 1981-07-02 Hitachi Plant Eng & Constr Co Ltd Sewage decontamination apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014313A1 (en) * 1989-05-26 1990-11-29 Isamu Iwai Method and apparatus of filtering medium circulation type for purifying contaminated water
AU631895B2 (en) * 1989-05-26 1992-12-10 Isamu Iwai Method and apparatus of filtering medium circulation type for purifying contaminated water
US5308479A (en) * 1989-05-26 1994-05-03 Isamu Iwai Sewage disposal apparatus employing circulating filter media
FR2707183A1 (en) * 1993-07-06 1995-01-13 Dumez Lyonnaise Eaux Process for setting in motion microorganism-carrying particles in a liquid to be treated by a biological route and plant for making use of the process
WO1997013727A1 (en) * 1995-10-13 1997-04-17 Lyonnaise Des Eaux Method and device for biologically treating liquids in the presence of particles forming a floating bed
JP2004526561A (en) * 2001-03-09 2004-09-02 カウンシル・オブ・サイエンティフィック・アンド・インダストリアル・リサーチ Process and backflow loop reactor for sewage purification

Similar Documents

Publication Publication Date Title
JPS5884093A (en) Solid-liquid separation apparatus
US5599450A (en) Anaerobic upflow batch reactor
KR890011784A (en) Second stage wastewater treatment
US4282102A (en) Activated sludge wastewater treatment having suspended inert media for biota growth
US7270750B2 (en) Clarifier recycle system design for use in wastewater treatment system
JPS62262794A (en) Treatment of waste water
JP2606690B2 (en) Vertical loop type reaction tank with air release delay characteristics
JPH0233438B2 (en)
JPH0123194B2 (en)
JP2709357B2 (en) Aerobic wastewater treatment equipment
JP3776763B2 (en) Waste water treatment equipment
JPH02111497A (en) Waste water treating equipment
JPH0630780B2 (en) Anaerobic treatment equipment for wastewater
JP2564228B2 (en) Biological sewage treatment equipment
JPS62136295A (en) Method and apparatus for treating waste water
JPS586555Y2 (en) Biological treatment equipment for wastewater
JPS6340597B2 (en)
JPH03267197A (en) Waste water treatment vessel
JPH0135274Y2 (en)
JPH02102792A (en) Waste water treatment apparatus
JP2666280B2 (en) Wastewater treatment method
JPS63158195A (en) Treatment of sewage
JPH0576886A (en) Waste water treatment apparatus
JPS63252594A (en) Aerobic biological treatment method
JPH01236995A (en) Deep structure waste water treating method