JPS62136295A - Method and apparatus for treating waste water - Google Patents

Method and apparatus for treating waste water

Info

Publication number
JPS62136295A
JPS62136295A JP60277359A JP27735985A JPS62136295A JP S62136295 A JPS62136295 A JP S62136295A JP 60277359 A JP60277359 A JP 60277359A JP 27735985 A JP27735985 A JP 27735985A JP S62136295 A JPS62136295 A JP S62136295A
Authority
JP
Japan
Prior art keywords
draft tube
fluidized
solid particles
solid
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60277359A
Other languages
Japanese (ja)
Other versions
JPH0638958B2 (en
Inventor
Chiaki Niwa
千明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP60277359A priority Critical patent/JPH0638958B2/en
Publication of JPS62136295A publication Critical patent/JPS62136295A/en
Publication of JPH0638958B2 publication Critical patent/JPH0638958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To enhance the treatment efficiency of waste water, by a method wherein the cross-sectional area of the upper part of a draft tube is made larger than that of the lower part and both of upper and lower parts are connected and an accumulation bed comprising solid particles is fluidized by the convection passing through an opening part. CONSTITUTION:Waste water is received in a fluidized tank 1 in an amount to be treated and mixed with solid particles. Sedimenting solid particles are pushed up along with a recirculation stream by the rising action of air of an air diffuser 7 blown in from the lower part of a draft tube 3 to be fluidized. The fluidized solid particles are accumulated not only between the draft tube 3 and a solid-liquid separation tower 5 but also the underside of the solid-liquid separation tower 5 and the inclined surface of a solid separation part 8 and collapsed from the lower part thereof by the convection passing through the opening parts 3d... provided to the inclined surface part 3c of the draft tube 3 to be fluidized. By this method, waste water is increased in the contact with solid particles to undergo purifying treatment.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、微生物が付着あるいは包蔵された固体粒子
(微生物担体)を廃水中にF!!Eして廃水を浄化処理
する流動床式の廃水処理方法およびその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" This invention is a method of dissolving solid particles (microbial carriers) to which microorganisms are attached or encapsulated into wastewater using F! ! The present invention relates to a fluidized bed wastewater treatment method and apparatus for purifying wastewater.

「従来の技術J 近時、廃水処理法において活性汚泥法や接触曝気法、回
転円板法などの生物膜法などに比べ高いBOD容積負荷
がとれ、装置のコンパクト化ができる利点のある流動床
法が注目されている。周知のように、この流動床法にお
いては、継続的に固体位子を処理槽内で流動懸局状態で
用いることが必須条件である。
"Conventional technology As is well known, in this fluidized bed method, it is an essential condition that solid molecules are continuously used in a suspended state of fluid in a treatment tank.

このような流動末法に用いられている廃水処理装置とし
て、従来、第3図に示す構造のらのが知られている。こ
の処理装置は、図に示すように、流動槽lと沈澱槽2と
からなる乙のである。流動槽Iは、その中心にドラフト
チューブ3か立設され、上部に越流基4が設けられ、こ
の堰4とデユープ3との間に固液分離用同浴(外筒部管
)5が設けられてなるものである。ドラフトデユープ3
の下部には、電動ブロア6につながる散気装置7が設け
られている。
As a wastewater treatment apparatus used in such a fluidized waste method, a RANO having a structure shown in FIG. 3 is conventionally known. As shown in the figure, this processing apparatus consists of a fluidization tank 1 and a settling tank 2. The fluidization tank I has a draft tube 3 erected in its center, an overflow base 4 at the top, and a solid-liquid separation bath (outer cylinder pipe) 5 between the weir 4 and the duplex 3. It is something that is established. draft dupe 3
An air diffuser 7 connected to the electric blower 6 is provided at the lower part of the air conditioner.

このような廃水処理装置において流動槽I内の廃水は、
散気装置7から槽内底部に吹き込まれた空気の上昇作用
によって図中矢印方向に流動循環させられ、この廃水の
循環流動に伴って固体粒子も循環流動されて廃水と接触
し、それによって廃水の浄化が行なわれる。ここで、固
体粒子としては、砂、アンスラサイト、活性炭、微生物
包括体など比重が1より大きい担体が用いられ、この固
体粒子の表面には、微生物が付着あるいは包蔵されてい
る。
In such a wastewater treatment device, the wastewater in the fluidized tank I is
The rising action of the air blown into the bottom of the tank from the air diffuser 7 causes it to flow and circulate in the direction of the arrow in the figure, and as the wastewater circulates and flows, solid particles are also circulated and come into contact with the wastewater, thereby causing the wastewater to flow and circulate. Purification will be carried out. Here, as the solid particles, a carrier having a specific gravity of more than 1 is used, such as sand, anthracite, activated carbon, microbial enclosing body, etc., and microorganisms are attached to or encapsulated on the surface of the solid particles.

次いで、浄化処理された廃水は、越流基4と固液分離用
同浴5の間の固形物分離部8で固体粒子を除去された後
、越流基4を越えて流出水となって沈澱槽2に送られる
ようになっている。
Next, the purified wastewater has solid particles removed in a solid separation section 8 between the overflow base 4 and the same bath 5 for solid-liquid separation, and then flows over the overflow base 4 to become effluent water. It is designed to be sent to settling tank 2.

この廃水処理装置を用いた廃水処理方法では、流動槽l
内部に充填する粒子量を増やせば、それだけ粒子の総表
面積が増加し、あるいは包蔵されている微生物量が増加
し、槽内の保有微生物量が増えるため、汚物の除去反応
速度を増大さけることができる利点がある。
In the wastewater treatment method using this wastewater treatment equipment, a fluidized tank l
If you increase the amount of particles filled inside, the total surface area of the particles will increase, or the amount of microorganisms contained will increase, and the amount of microorganisms retained in the tank will increase, so it is possible to avoid increasing the reaction rate of waste removal. There are advantages that can be achieved.

「発明が解決しようとする問題点」 ところが、このような廃水処理装置を用いた廃水処理方
法にあっては、上記のような111点がある反面、次の
ような問題点がある。
"Problems to be Solved by the Invention" However, in addition to the 111 points mentioned above, the wastewater treatment method using such a wastewater treatment device also has the following problems.

すなわち、処理効率の点からは、上述のように粒子量を
増加すれば良いことになるが、粒子量が多ずぎると、固
体粒子の完全な流動が困難となり、その一部が流動槽I
の底部に堆積する傾向が生じ、さらに増加させると全く
流動しなくなる。また、粒子量が多いと、吹き込み空気
圧の変動等の運転条件のわずかな変動などから固体粒子
が槽内に沈積し易くなり、粒子の流動、さらには液の循
環そのものが停止し易くなる。このように粒子が沈積す
ると、第4図に示すようにドラフトチューブ3の下部外
周部分(図中、A部分)は勿論、ドラフトチューブ3内
にも上記外周部分の堆積粒子面より高い位置にまで固体
粒子が堆積(図中、8部分)するようになる。この状態
において、散気装置7がら気体を吹き込んでも、気体は
ドラフトチューブ3内の8部分の堆積粒子に妨害されて
ドラフトチューブ3外周へ逃げてしまうため、再び固体
粒子を流動化させることができなくなるなど致命的な事
態になる欠点があった。
In other words, from the point of view of processing efficiency, it is sufficient to increase the amount of particles as described above, but if the amount of particles is too large, it will be difficult to completely fluidize the solid particles, and some of them will flow into the fluidized tank I.
It tends to accumulate at the bottom of the tank, and if it is increased further, it will not flow at all. Furthermore, when the amount of particles is large, solid particles tend to settle in the tank due to slight fluctuations in operating conditions such as fluctuations in blowing air pressure, and the flow of particles and furthermore, the circulation of the liquid itself tends to stop. When the particles are deposited in this way, as shown in Fig. 4, not only the lower outer peripheral part of the draft tube 3 (section A in the figure) but also the inside of the draft tube 3 reach a position higher than the surface of the deposited particles in the outer peripheral part. Solid particles begin to accumulate (part 8 in the figure). In this state, even if gas is blown into the air diffuser 7, the gas will be blocked by the accumulated particles in the 8 parts of the draft tube 3 and will escape to the outer periphery of the draft tube 3, making it impossible to fluidize the solid particles again. There was a drawback that it could lead to a fatal situation such as running out.

このような理由から、流動槽1内に添加できる固体粒子
の添加量には、限界があり、槽の容積に対する添加量は
、多くて15〜18%程度であり、通常の処理時で5〜
12%程度であった。この程度の固体粒子添加量では、
廃水処理効率が悪く、その効率を向上させるためには流
動槽の容積を大きくしなければならず、設備の膨大化に
伴う費用かがさむなどの問題もあった。
For these reasons, there is a limit to the amount of solid particles that can be added into the fluidized fluidized tank 1, and the amount added to the tank volume is about 15-18% at most, and 5-18% during normal processing.
It was about 12%. With this amount of solid particles added,
Wastewater treatment efficiency was poor, and in order to improve the efficiency, the volume of the fluidized tank had to be increased, which led to problems such as increased costs due to the expansion of equipment.

「問題点を解決するための手段」 そこで、この発明の廃水処理方法によれば、ドラフトチ
ューブの上部の横断面積を下部より犬とし、かつ上部と
下部とを連結部により連設すると共に、上部、連結部の
いずれか一方もしくは両方に開口部を形成し、このドラ
フトチューブと外筒部管との間に堆積する固体粒子から
なる堆積層を上記開口部を通過する対流によって崩壊さ
せ流動化させるようにしたことにより、上記の問題点を
解消するようにした。
"Means for Solving the Problem" Therefore, according to the wastewater treatment method of the present invention, the cross-sectional area of the upper part of the draft tube is made smaller than the lower part, and the upper part and the lower part are connected by a connecting part, and the upper part An opening is formed in either or both of the connecting parts, and the deposited layer of solid particles deposited between the draft tube and the outer tube is collapsed and fluidized by convection passing through the opening. By doing this, the above problem was solved.

また、この発明の廃水処理装置は、底部に散気装置を有
する流動槽と、この流動槽内に立設されたドラフトチュ
ーブと外筒部管とがらなり、このドラフトデユープの上
部の横断面積を下部より大とし、かつ上部と下部とを連
結部により連設すると共に、上部、連結部のいずれか一
方もしくは両方に開口部を形成したことにより、上記の
問題点を解消するようにした。
Furthermore, the wastewater treatment device of the present invention includes a fluidized tank having an aeration device at the bottom, a draft tube and an outer cylindrical pipe installed vertically in the fluidized tank, and the cross-sectional area of the upper part of the draft duplex is made smaller than that of the lower part. The above problems are solved by increasing the size, connecting the upper and lower parts by a connecting part, and forming an opening in either or both of the upper part and the connecting part.

「実施例」 以下、この発明の廃水処理方法を図面を参照して説明す
る。
"Example" Hereinafter, the wastewater treatment method of the present invention will be described with reference to the drawings.

第1図は、この発明の廃水処理装置の一例を示すもので
あって、図中、第3図に示した従来の装置と共通ずる部
分には同一符号を付して説明を簡略化する。
FIG. 1 shows an example of a wastewater treatment apparatus of the present invention, and in the figure, parts common to those of the conventional apparatus shown in FIG. 3 are given the same reference numerals to simplify the explanation.

第1図に示す廃水処理装置の構成が従来の廃水処理装置
の構成と異なる点は、ドラフトチューブ3の上部3aの
横断面積が下部3bの横断面積より大きく設定され、か
つこのドラフトチューブ3の上部3aと下部3bとが傾
斜面部(連結部)3cによって連設されると共に、この
傾斜面部3Cに円形状の開口部3d・・・が形成されて
いる点である。
The structure of the wastewater treatment device shown in FIG. 3a and the lower part 3b are connected by an inclined surface part (connection part) 3c, and a circular opening part 3d is formed in this inclined surface part 3C.

上記ドラフトチューブ3の上部3aの横断面積は、第1
図中、イ位置における流動層1の横断面積の30%以上
であることが望ましく、処理運転中においては、流動層
1内の固体粒子および廃水からなる@副液の性状などに
より異なるが、実質的に50%以上であることが好まし
い。そして、固液分離用円径(外筒部管)5の外径に対
するドラフトデユープ3の外径の比は、60〜85%程
度とされ、好ましくは70〜82%程度とされる。
The cross-sectional area of the upper part 3a of the draft tube 3 is the first
In the figure, it is desirable that the cross-sectional area of the fluidized bed 1 at position A is 30% or more. Generally, it is preferably 50% or more. The ratio of the outer diameter of the draft duplex 3 to the outer diameter of the solid-liquid separation circle (outer cylindrical tube) 5 is about 60 to 85%, preferably about 70 to 82%.

また、上記の開口部3d・・・の形状は、円形状の他に
矩形状、スリット状などいかなるものであってら良い。
Further, the shape of the openings 3d may be any shape other than a circle, such as a rectangular shape or a slit shape.

そして、開口部3d・・・の分布は、ドラフトチューブ
3の傾斜面部3cに等間隔に形成されていることが望ま
しく、その数と一個当たりの断面積は、傾斜面部3cの
外側に形成された堆積粒子層を開口部3d・・・を通過
する対流によって崩壊可能であることなどを勘案して決
められるが、開口部3d・・・の総断面積かドラフトチ
ューブ3の上部3bの横断面積の50〜120%である
ことが好ましい。
It is desirable that the openings 3d are formed at equal intervals on the sloped surface 3c of the draft tube 3, and the number and cross-sectional area of each opening 3d is determined by the distribution of the openings 3d... formed on the outside of the sloped surface 3c. It is determined by taking into account that the deposited particle layer can be collapsed by convection passing through the openings 3d..., but it is determined that the total cross-sectional area of the openings 3d... It is preferably 50 to 120%.

次に、このような構成からなる廃水処理装置を用いた廃
水処理方法を説明する。まず、廃水は、流動槽!内に所
定の処理量収容され、珪藻土などの固体粒子と適宜の混
合割合で混合される。固体粒子はその比重が1より大き
いものであるから、廃水中で自然沈降するが、この沈降
する固体粒子は、ドラフトチューブ3の下部から吹き込
まれる散気装置7の気体の上昇作用によって循環流と共
に押し上げられて流動化される。このように流動化され
た固体粒子は、一部が開口部3d・・・を経由して流動
槽lの壁部に沿って循環下降し、一部がドラフトチュー
ブ3の上部3aを上昇しドラフトデユープ3の上端を越
えてドラフトデユープ3と固液分離用円径5との間を下
降し、ドラフトチューブ3と固液分離用円径5との間お
よび固液分離用同浴5の下側と固形物分離部8の傾斜面
との間に上部から堆積し、ここに略ドーナツ状の堆積粒
子層が形成される。ここで、上記の開口部3d・・・を
通過する対流は、出入りする双方の流れとなっており、
概して開口部3d・・・の上部でドラフトチューブ3内
に入り、開口部3d・・・の下部でドラフトチューブ3
外に流出している。そして、上記の堆積粒子層は、ドラ
フトチューブ3の傾斜面部3cに設けられた開口部3d
・・・を通過する対流によって下部より漸次崩壊させら
れ、再び流動化させられる。このような流動によって廃
水は、固体粒子との接触を増し、それによって浄化処理
される。
Next, a wastewater treatment method using the wastewater treatment apparatus having such a configuration will be explained. First of all, the wastewater is a fluidized tank! A predetermined processing amount is accommodated in the chamber, and mixed with solid particles such as diatomaceous earth at an appropriate mixing ratio. Since the solid particles have a specific gravity greater than 1, they naturally settle in the wastewater, but the settling solid particles are caused by the upward action of the gas from the diffuser 7 blown from the lower part of the draft tube 3 together with the circulating flow. It is pushed up and fluidized. A part of the solid particles fluidized in this way circulates down along the wall of the fluidization tank l via the openings 3d, and a part rises up the upper part 3a of the draft tube 3 and enters the draft duplex. 3 and descends between the draft tube 3 and the solid-liquid separation circle diameter 5, and between the draft tube 3 and the solid-liquid separation circle diameter 5 and between the lower side of the solid-liquid separation bath 5 and the solid. The particles are deposited from above between the inclined surface of the material separating section 8, and a substantially doughnut-shaped deposited particle layer is formed here. Here, the convection that passes through the openings 3d... is a flow both in and out.
In general, the upper part of the opening 3d... enters the draft tube 3, and the lower part of the opening 3d...
It's leaking outside. The above deposited particle layer is formed in the opening 3d provided in the inclined surface portion 3c of the draft tube 3.
It is gradually collapsed from the bottom by the convection current passing through it, and is fluidized again. Such flow increases the contact of the wastewater with solid particles and thereby purifies it.

そして、浄化処理された廃水は、越流堰4と固液分離用
円径5との間の固形物分離部8で固体粒子を除去された
後、越流堰4を越えて流出水となって沈澱槽2に送られ
る。
After the purified wastewater has solid particles removed in the solid separation section 8 between the overflow weir 4 and the solid-liquid separation diameter 5, it crosses the overflow weir 4 and becomes runoff water. and sent to settling tank 2.

上記の廃水処理方法は、好気的な廃水処理の場合であっ
たが、嫌気的廃水処理を行なう場合には、第1図におい
て流動槽Iの上部を密閉し、この流動槽1の上部と電動
ブロワ−6とを連結するパイプ9を配設して散気装置7
を経由して流動槽1内に送られた電動ブロワ−6の気体
を流動IIIの上部で回収し、再び電動ブロワ−6に循
環供給するようにする。このようにして、この廃水処理
装置を用いて嫌気的廃水処理を行なうことが可能である
The above wastewater treatment method was for aerobic wastewater treatment, but when performing anaerobic wastewater treatment, the upper part of fluidized tank I is sealed in Fig. 1. The air diffuser 7 is equipped with a pipe 9 that connects it to the electric blower 6.
The gas from the electric blower 6 sent into the fluidized tank 1 via the fluidizer is recovered at the upper part of the fluidizer III, and is circulated and supplied to the electric blower 6 again. In this way, it is possible to perform anaerobic wastewater treatment using this wastewater treatment device.

また、上記の実施例では、ドラフトデユープ3の開口部
3(1・・・を傾斜面部3cに形成しているが、開口部
3d・・・の形成可能な部位は、傾斜面部3cに限定さ
れず、第2図に示すように上部3aに開口部3d・・・
を形成した購成であっても良い。
Further, in the above embodiment, the openings 3 (1...) of the draft duplex 3 are formed in the inclined surface part 3c, but the portion where the openings 3d... can be formed is not limited to the inclined surface part 3c. , as shown in FIG. 2, there is an opening 3d in the upper part 3a...
It may also be a purchase that has been formed.

さらに、上記の実施例では、廃水処理装置のドラフトチ
ューブ3の上部3aと下部3bとを連設する連結部を傾
斜角を有する傾斜面部3Cとしたが、連結部を傾斜角を
持たせ−ない水平面とすることも可能である。
Furthermore, in the above embodiment, the connection part that connects the upper part 3a and the lower part 3b of the draft tube 3 of the wastewater treatment apparatus is formed into an inclined surface part 3C having an inclination angle, but the connection part does not have an inclination angle. A horizontal plane is also possible.

以下、実験例を示してこの発明の作用効果を明確にする
Hereinafter, the effects of this invention will be clarified by showing experimental examples.

〔実験例!〕[Experiment example! ]

第1図に示した廃水処理装置の流動槽内に充填し得る固
体粒子量と従来の流動槽内に充填し得る固体粒子量とを
比較した。流動槽の容積としては、両者とも同じであり
、この流動槽内に流入さ什る廃水量も同量である。そし
て、比較検討時にあっては、流動槽内部に充填した固体
粒子が流動可能か否かをもって判断基準とした。また、
使用した流動槽の主な仕様は、次に示す通りである。
The amount of solid particles that can be filled into the fluidized tank of the wastewater treatment apparatus shown in FIG. 1 was compared with the amount of solid particles that can be filled into a conventional fluidized tank. The volume of the fluidized tank is the same in both cases, and the amount of wastewater flowing into the fluidized tank is also the same. In the comparative study, the criterion was whether or not the solid particles filled inside the fluidized tank could flow. Also,
The main specifications of the fluidized tank used are as follows.

流動槽の高さ・・・・・・・・・・・・・・・・・・・
・・・・・3300mm固液分離用円塔の外径・・・・
・・・・・・・・500mmドラフトチューブの上部外
径・・・400mm〃   の下部外径・・・200m
m なお、使用した固体粒子には、0.3〜0.6mm径の
珪藻上(第1表)と平均0.6mm径の活性炭(第2表
)とを用いた。そして、第1表、第2表中の数値は、流
動槽の容積に対する固体粒子の添加量である。
Height of fluidized tank・・・・・・・・・・・・・・・・・・
...3300mm outer diameter of solid-liquid separation column...
・・・・・・500mm Upper outer diameter of draft tube...400mm Lower outer diameter...200m
m Note that the solid particles used were diatoms with a diameter of 0.3 to 0.6 mm (Table 1) and activated carbon with an average diameter of 0.6 mm (Table 2). The numerical values in Tables 1 and 2 are the amounts of solid particles added to the volume of the fluidized tank.

第1表 第2表 これらの結果から明らかなように、いずれの場合でもこ
の発明の要件を満たす装置は、従来のらのに比べて流動
可能な粒子を約2〜3,5倍添加することができ、よっ
てその粒子増加量分だけ廃水処理効率の向上を図れるこ
とがわかる。
Table 1 Table 2 As is clear from these results, in any case, the device that satisfies the requirements of this invention can add about 2 to 3.5 times more flowable particles than the conventional radish. Therefore, it can be seen that the wastewater treatment efficiency can be improved by the amount of increased particles.

〔実験例2〕 第1図に示した廃水処理装置の流動槽内に固体粒子を流
動槽の容積に対する添加率を変え、流動時のドラフトチ
ューブの上部内側とドラフトチューブの下部外側とのそ
れぞれの位置における固体粒子の密度を測定した。その
測定結果を第3表に示した。なお、固体粒子には、0.
3〜0.6mm径の珪藻土を使用した。
[Experiment Example 2] Solid particles were added to the fluidized tank of the wastewater treatment equipment shown in Figure 1 at different rates relative to the volume of the fluidized tank, and the inside of the upper part of the draft tube and the outer part of the lower part of the draft tube during fluidization were The density of solid particles at the location was measured. The measurement results are shown in Table 3. Note that the solid particles contain 0.
Diatomaceous earth with a diameter of 3 to 0.6 mm was used.

第3表 粒子密度の単位・・・静止沈降させたときの体積%。Table 3 Unit of particle density: Volume % when allowed to settle still.

この結果から明らかなように、口の位置の粒子密度は、
粒子添加率に比例して増大しており、しかもハの位置の
粒子密度に比べて常に高くなってことから、口の位置、
すなわちドラフトチューブの上部内部において流動槽の
底部を経由しない固体粒子の循環流動が生じていること
がわかる。比重が1より大きい粒子を用いた流動床では
、粒子を増加していくと、流動槽底部で詰まって流動で
きないのが一般的であるが、こうした流動槽の上部で保
持する粒子量を増すことによりこれを防止している。す
なわち、ドラフトチューブの内部で対流している固体粒
子が多く、これら固体粒子の一部は、自重によりドラフ
トチューブ内部に沈降し開口部を経由して流動槽の壁部
に沿って循環下降し、固体粒子の残りは、ドラフトチュ
ーブの上部を上昇しドラフトチューブの上端を越えてド
ラフトデユープと固液分離用円径との間を下降し上部か
ら堆積粒子層を形成する。この堆積粒子層は、ドラフト
デユープの傾斜面部に設けられた開口部を通過する対流
によって下部より漸次崩壊させられ、再び流動化させら
れる。
As is clear from this result, the particle density at the mouth position is
The particle density increases in proportion to the particle addition rate, and it is always higher than the particle density at the position C.
That is, it can be seen that a circulating flow of solid particles occurs inside the upper part of the draft tube without passing through the bottom of the fluidization tank. In a fluidized bed using particles with a specific gravity greater than 1, as the number of particles is increased, the bottom of the fluidized bed is generally clogged and cannot flow, but it is possible to increase the amount of particles retained at the top of the fluidized bed. This is prevented by. That is, there are many solid particles that are convecting inside the draft tube, and some of these solid particles settle inside the draft tube due to their own weight and circulate down along the wall of the fluidization tank via the opening. The remainder of the solid particles rises over the top of the draft tube, passes over the top end of the draft tube, and descends between the draft duplex and the solid-liquid separation circle to form a layer of deposited particles from above. This deposited particle layer is gradually collapsed from the bottom by convection passing through the opening provided in the inclined surface of the draft dupe, and is again fluidized.

「発明の効果」 以上説明したように、この発明によれば、吹き込み空気
圧の変動に際し、流動槽の上部に保持させる固体粒子量
を増大させることができるので、固体粒子が詰まりにく
くなる優れた効果を得ることができる。また、この発明
によれば、流動槽内において固体粒子をその添加量が多
くても詰まらせることなく、十分に流動させることがで
きるので、固体粒子を多く添加することができるととも
に、廃水処理に使用できる微生物量を著しく増大させる
ことができ、かつ廃水処理の効率化を図ることができる
"Effects of the Invention" As explained above, according to the present invention, it is possible to increase the amount of solid particles held in the upper part of the fluidized fluidization tank when the blowing air pressure fluctuates, thereby providing an excellent effect of preventing solid particles from clogging. can be obtained. Further, according to the present invention, solid particles can be sufficiently fluidized in the fluidized tank without causing clogging even if the amount of solid particles added is large. The amount of microorganisms that can be used can be significantly increased, and the efficiency of wastewater treatment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の廃水処理装置の一例を示す概略構
成図、第2図は、この発明の廃水処理装置内に設けられ
ているドラフトデユープの開口部の分布例を示す概略構
成図、第3図は、従来の流動床型廃水処理装置の構成図
、第4図は従来の流動床型廃水処理装置において流動槽
内の固体粒子の流動が停止し、粒子が堆積したときの状
態図である。 ■・・・・・・流動槽 3・・・・・・ドラフトチューブ 5・・・・・・固液分離用円径(外筒部管)7・・・・
・・散気装置。
FIG. 1 is a schematic configuration diagram showing an example of the wastewater treatment apparatus of the present invention, and FIG. Figure 3 is a configuration diagram of a conventional fluidized bed wastewater treatment equipment, and Figure 4 is a state diagram when the flow of solid particles in the fluidized tank stops and particles accumulate in a conventional fluidized bed wastewater treatment equipment. be. ■...Fluidization tank 3...Draft tube 5...Circle diameter for solid-liquid separation (outer cylinder tube) 7...
...Air diffuser.

Claims (2)

【特許請求の範囲】[Claims] (1)底部に散気装置を有する流動槽とこの流動槽内に
立設されたドラフトチューブと外筒部管とからなる廃水
処理装置内に廃水を流入させ、この廃水中に微生物が付
着あるいは包蔵されかつ比重が1より大きい固体粒子を
上記散気装置によって流動させて廃水を浄化処理する廃
水処理方法において、 上記ドラフトチューブの上部の横断面積を下部より大と
し、かつ上部と下部とを連結部により連設すると共に、
上部、連結部のいずれか一方もしくは両方に開口部を形
成し、このドラフトチューブの上部および連結部でドラ
フトチューブと外筒部管との間に堆積する固体粒子から
なる堆積層を上記開口部を通過する対流によって崩壊さ
せ流動化させることを特徴とする廃水処理方法。
(1) Wastewater is introduced into a wastewater treatment device consisting of a fluidized tank with an aeration device at the bottom, a draft tube and an outer cylindrical pipe installed vertically in the fluidized tank, and microorganisms are attached or In the wastewater treatment method of purifying wastewater by flowing solid particles that are contained and have a specific gravity larger than 1 through the aeration device, the cross-sectional area of the upper part of the draft tube is larger than that of the lower part, and the upper part and the lower part are connected. In addition to being installed in a row depending on the department,
An opening is formed in either or both of the upper part and the connecting part, and the deposited layer consisting of solid particles deposited between the draft tube and the outer tube at the upper part of the draft tube and the connecting part is formed through the opening. A wastewater treatment method characterized by disintegration and fluidization by passing convection.
(2)底部に散気装置を有する流動槽と、この流動槽内
に立設されたドラフトチューブと外筒部管とからなり、 上記ドラフトチューブの上部の横断面積が下部より大と
され、かつ上部と下部とが連結部により連設されると共
に、上部、連結部のいずれか一方もしくは両方に開口部
が形成されたことを特徴とする廃水処理装置。
(2) Consisting of a fluidized tank having an air diffuser at the bottom, a draft tube and an outer cylindrical tube installed upright within this fluidized tank, the cross-sectional area of the upper part of the draft tube being larger than that of the lower part, and A wastewater treatment device characterized in that an upper part and a lower part are connected to each other by a connecting part, and an opening is formed in either or both of the upper part and the connecting part.
JP60277359A 1985-12-10 1985-12-10 Wastewater treatment method and apparatus Expired - Lifetime JPH0638958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277359A JPH0638958B2 (en) 1985-12-10 1985-12-10 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277359A JPH0638958B2 (en) 1985-12-10 1985-12-10 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPS62136295A true JPS62136295A (en) 1987-06-19
JPH0638958B2 JPH0638958B2 (en) 1994-05-25

Family

ID=17582422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277359A Expired - Lifetime JPH0638958B2 (en) 1985-12-10 1985-12-10 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JPH0638958B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008119692A (en) * 2007-12-28 2008-05-29 Ngk Insulators Ltd Water purifier
JP2008264710A (en) * 2007-04-23 2008-11-06 Ihi Corp High-pressure fluidized bed aerobic wastewater treatment equipment
JP2008264664A (en) * 2007-04-19 2008-11-06 Ihi Corp Fluidized bed aerobic wastewater treatment equipment
US7748891B2 (en) * 2007-02-27 2010-07-06 Chicago Bridge & Iron Company Liquid storage tank with draft tube mixing system
CN109351310A (en) * 2018-12-10 2019-02-19 山东精工电子科技有限公司 A kind of recyclable reaction kettle for continuously preparing ternary material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799790U (en) * 1980-12-12 1982-06-19
JPS5848393U (en) * 1981-09-25 1983-04-01 荏原インフイルコ株式会社 biological treatment equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5799790U (en) * 1980-12-12 1982-06-19
JPS5848393U (en) * 1981-09-25 1983-04-01 荏原インフイルコ株式会社 biological treatment equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7748891B2 (en) * 2007-02-27 2010-07-06 Chicago Bridge & Iron Company Liquid storage tank with draft tube mixing system
US8157432B2 (en) * 2007-02-27 2012-04-17 Chicago Bridge & Iron Company Method of mixing a fluid in a tank with a draft tube mixing system
JP2008264664A (en) * 2007-04-19 2008-11-06 Ihi Corp Fluidized bed aerobic wastewater treatment equipment
JP2008264710A (en) * 2007-04-23 2008-11-06 Ihi Corp High-pressure fluidized bed aerobic wastewater treatment equipment
JP2008119692A (en) * 2007-12-28 2008-05-29 Ngk Insulators Ltd Water purifier
CN109351310A (en) * 2018-12-10 2019-02-19 山东精工电子科技有限公司 A kind of recyclable reaction kettle for continuously preparing ternary material

Also Published As

Publication number Publication date
JPH0638958B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
CA2542918C (en) Apparatus and method for controlling biomass growth in suspended carrier bioreactor
JPS62136295A (en) Method and apparatus for treating waste water
JPS58174289A (en) Biologically treating device of unit type using fluidized carrier
JPS6349297A (en) Waste water treatment device
JPS63248499A (en) Treatment of waste water
JP2579295B2 (en) Wastewater treatment equipment
JP2544712B2 (en) Wastewater treatment facility
JPS62262794A (en) Treatment of waste water
JP2544713B2 (en) Wastewater treatment equipment
JPH0127916Y2 (en)
JPS63158195A (en) Treatment of sewage
JPS6143599Y2 (en)
JPS6321555B2 (en)
JP2564228B2 (en) Biological sewage treatment equipment
JPH0127915Y2 (en)
JPH0127917Y2 (en)
JP3648700B2 (en) Fluidized bed biofilm treatment equipment
JPS586555Y2 (en) Biological treatment equipment for wastewater
CN2387099Y (en) Improved double air-float water purifier
JPH022472Y2 (en)
JPS5938833B2 (en) Biological treatment equipment for high concentration wastewater
JPH0128867Y2 (en)
JPS5929318B2 (en) Waste liquid treatment equipment
JPH0128868Y2 (en)
JPH0135274Y2 (en)