JPS6321555B2 - - Google Patents

Info

Publication number
JPS6321555B2
JPS6321555B2 JP56106217A JP10621781A JPS6321555B2 JP S6321555 B2 JPS6321555 B2 JP S6321555B2 JP 56106217 A JP56106217 A JP 56106217A JP 10621781 A JP10621781 A JP 10621781A JP S6321555 B2 JPS6321555 B2 JP S6321555B2
Authority
JP
Japan
Prior art keywords
draft tube
flow path
tube
fluidized bed
sewage treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56106217A
Other languages
Japanese (ja)
Other versions
JPS588585A (en
Inventor
Shigeki Sawada
Atsushi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP56106217A priority Critical patent/JPS588585A/en
Publication of JPS588585A publication Critical patent/JPS588585A/en
Publication of JPS6321555B2 publication Critical patent/JPS6321555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】 この発明は汚水処理用の微生物を表面に付着さ
せた細かい粒状ないし粉状の担体粒子を曝気槽内
で汚水と共に対流状に循環流させて有機性汚水を
生物学的に処理する流動床式汚水処理装置に関
し、停電その他で運転を中断して次に運転を再開
するなどの起動の際に沈積した担体粒子を速みや
かに流動状態にし、対流状に循環流する定常運転
に迅速に移行させる様にしたものであつて、本出
願人が先に提案した実願昭56−2300(実開昭)を
更に改良したものである。
DETAILED DESCRIPTION OF THE INVENTION This invention is a method of biologically treating organic wastewater by circulating fine granular or powder carrier particles on the surface of which microorganisms for wastewater treatment are attached together with wastewater in an aeration tank. Regarding fluidized bed sewage treatment equipment, when the operation is interrupted due to a power outage or other reason and restarted the next time, the accumulated carrier particles are quickly brought into a fluidized state and circulated in a convection manner. It is designed to quickly shift to steady operation, and is a further improvement of Utility Model Application No. 56-2300 (Utility Model Application No. 1983-1999) previously proposed by the present applicant.

図示の実施例を参照して本発明を説明すると、
1は縦長な曝気槽で、その内部には下端を槽底
1′から上に少し離して同心状にドラフトチユー
ブ(主チユーブとも記す。)2を設置し、主チユ
ーブ2によつて囲まれた上向流路3と、曝気槽1
と主チユーブ2の間に筒状の下向流路4を形成
し、両流路3,4の下端同志は主チユーブ2の下
端と槽底1′の間隔によつて連通させる。曝気槽
1及び主チユーブ2の断面形状は円筒形でも、角
筒形でもよい。下向流路4中には上から劃壁筒5
を突入してその内部上方を上向流路3からの溢入
部6′と、処理水の取出部6に劃し、又、上向流
路3中に下から或いは高さの途中から処理すべき
汚水を導入する給液装置7と、酸素ガスないし圧
縮空気(空気とだけ記すこともある。)を吹込む
散気装置8を設ける。
The invention will now be described with reference to illustrated embodiments:
1 is a vertically elongated aeration tank, inside which a draft tube (also referred to as main tube) 2 is installed concentrically with its lower end slightly above the tank bottom 1', and is surrounded by the main tube 2. Upward flow path 3 and aeration tank 1
A cylindrical downward flow path 4 is formed between the main tube 2 and the main tube 2, and the lower ends of both the flow paths 3 and 4 are communicated with each other by a gap between the lower end of the main tube 2 and the tank bottom 1'. The cross-sectional shapes of the aeration tank 1 and the main tube 2 may be cylindrical or prismatic. A wall tube 5 is inserted into the downward flow path 4 from above.
and enters the upper part of the inside thereof into the inflow part 6' from the upward flow path 3 and the treated water takeout part 6, and also enters into the upward flow path 3 from below or from the middle of the height. A liquid supply device 7 that introduces waste water to be removed, and an aeration device 8 that blows oxygen gas or compressed air (sometimes referred to simply as air) are provided.

そして、装置内には砂、活性炭、アンスラサイ
ト、プラスチツク、その他微生物が付着すること
のできる細かい粒状或いは粉状の充填材を投入
し、これを活性汚泥と混合して微生物を付着させ
微生物の担体粒子とする。充填材は比重1.1〜
2.6、粒径0.3〜1.0mm程度、その量は曝気槽の容積
の50%以下、好ましくは15〜30%程度で、微生物
担体粒子の総表面積当りのBOD面積負荷を
10gBOD/m2・d以下の条件で運転することが好
ましい。
Then, sand, activated carbon, anthracite, plastic, and other fine granular or powdery fillers to which microorganisms can adhere are put into the equipment, and this is mixed with activated sludge to allow microorganisms to adhere to them and to act as carriers for microorganisms. Particles. The specific gravity of the filler is 1.1~
2.6, the particle size is about 0.3 to 1.0 mm, the amount is 50% or less of the volume of the aeration tank, preferably about 15 to 30%, and the BOD area load per total surface area of microbial carrier particles is
It is preferable to operate under conditions of 10 gBOD/m 2 ·d or less.

運転は上向流路3の下部に装置7と8で汚水と
空気を供給し、空気により担体粒子と液を上向流
路中で上向流させ、その際気泡を担体粒子で細分
して汚水、担体粒子、空気の三相を急激に接触さ
せ、接触効率の極めて高い処理工程を営ませる。
そして、上向流した液と担体粒子は上向流路の上
端から下向流路4に溢入して下向流し、こゝで液
は担体粒子と並流状態で接触し吸着、酸化作用を
受けて浄化され、下向流路4の下端から上向流路
に入つて循環し、一部の液は取出部6にそれ、槽
1の上端から処理水として取出される。従つて、
主チユーブ2の上端は槽1内の汚水の液面と略々
同じか、それよりも少し下にする。
In operation, waste water and air are supplied to the lower part of the upward flow path 3 by devices 7 and 8, and the air causes carrier particles and liquid to flow upward in the upward flow path, at which time air bubbles are subdivided by the carrier particles. The three phases of sewage, carrier particles, and air are brought into rapid contact, resulting in a treatment process with extremely high contact efficiency.
The liquid and carrier particles flowing upward overflow into the downward flow path 4 from the upper end of the upward flow path and flow downward, where the liquid comes into contact with the carrier particles in a parallel flow state, causing adsorption and oxidation effects. The liquid enters the upward flow path from the lower end of the downward flow path 4 and circulates, and a part of the liquid is diverted to the extraction section 6 and taken out from the upper end of the tank 1 as treated water. Therefore,
The upper end of the main tube 2 is set approximately at the same level as the liquid level of the sewage in the tank 1, or slightly below it.

流路3,4での通水線速度はともに10〜15m/
minの高速流とし、液は1〜5分間で一循環する
様にする。このためには空気の吹込速度は上向流
路の断面積を基準として担体粒子の終末速度(落
下速度)以上に定めることがこの場合吹込む空気
量と循環液量の比は1:5〜1:30の範囲にな
る。
The linear velocity of water flow in channels 3 and 4 is both 10 to 15 m/
The flow should be set at a high speed of 1 min, and the liquid should be circulated once in 1 to 5 minutes. For this purpose, the air blowing speed should be determined to be higher than the terminal velocity (falling speed) of the carrier particles based on the cross-sectional area of the upward flow path.In this case, the ratio of the amount of air blown to the amount of circulating liquid should be 1:5 to It will be in the 1:30 range.

さて、この装置での担体粒子を循環流させる駆
動力は上述の様に上向流路3と下向流路4の静水
頭差(ガスホールドアツプの差)によつて生じる
エアリフト循環流であつて、運転を開始する当初
或いは停電その他で運転を中断し、次に再開する
など起動の際はそれまでに担体粒子が沈積し、そ
の堆積層が槽1及び主チユーブ2の下部を埋めて
いるので給気装置8から空気を吹出させても堆積
層の流路抵抗によつてエアリフト循環流が起ら
ず、定常運転が行えない。このために流路抵抗を
無くするか、或いは減少することが必要になり、
本出願人は実願昭56−2300で主チユーブの下部に
下端からスリツトを設けることを提案したが、こ
れには次の様な問題点がある。
Now, as mentioned above, the driving force for circulating carrier particles in this device is the air lift circulation flow generated by the difference in static water head (difference in gas hold up) between the upward flow path 3 and the downward flow path 4. At the beginning of operation, or when operation is interrupted due to a power outage or the like, and then restarted, by then carrier particles have been deposited, and the deposited layer fills the lower part of tank 1 and main tube 2. Therefore, even if air is blown out from the air supply device 8, the air lift circulation flow does not occur due to the flow path resistance of the deposited layer, and steady operation cannot be performed. For this purpose, it is necessary to eliminate or reduce flow path resistance.
The present applicant proposed in Utility Model Application No. 56-2300 to provide a slit in the lower part of the main tube from the lower end, but this has the following problems.

主チユーブ内での汚水の上向流速度はスリツト
の開口面積によつて制限される。従つて、この上
向流速度を担体粒子の終未速度以上にするにはス
リツトの開口面積を大きくする必要があるが、そ
の様に大きくすると定常運転状態ではスリツトを
通じて起るエアリフト循環流のシヨートパスによ
つて主チユーブ下端から上向流路中に吸込まれる
吸込み流速が低下し、それが担体粒子の終末速度
以下になると担体粒子は定常運転中に沈積する虞
がある。
The upward flow rate of wastewater within the main tube is limited by the opening area of the slit. Therefore, in order to make this upward flow velocity higher than the final velocity of the carrier particles, it is necessary to increase the opening area of the slit. However, if the opening area of the slit is increased in this way, the short path of the airlift circulation flow that occurs through the slit during steady operation is reduced. As a result, the suction flow rate sucked into the upward flow path from the lower end of the main tube decreases, and if it becomes less than the terminal velocity of the carrier particles, there is a risk that the carrier particles will settle during steady operation.

そこで本発明は主チユーブ2の一側に沿つて下
端内部に散気装置8の一部8′で空気が吹込まれ
る起動用ドラフトチユーブ(起動チユーブとも記
す)を設け、起動チユーブの下向流路に向いた外
面にスリツト又はガイドチユーブを設けたのであ
る。
Therefore, the present invention provides a starting draft tube (also referred to as a starting tube) into which air is blown by a part 8' of the air diffuser 8 inside the lower end along one side of the main tube 2, so that the downward flow of the starting tube A slit or guide tube was provided on the outer surface facing the road.

第1,2図は起動チユーブの外面にスリツトを
設けた実施例、第3,4図は起動チユーブの外面
にガイドチユーブを設けた実施例を示し、いずれ
の実施例でも起動チユーブ9は主チユーブ2の内
部を上向流路3と区劃する縦方向の劃壁9′によ
り主チユーブ内に劃設してあるが、勿論、主チユ
ーブ2の一側外面沿いに形成してもよい。しか
し、起動チユーブの断面積は上向流路3の断面積
の1/2以下とすることが好ましい。尚、劃壁9′の
上端と下端は主チユーブ2の上端と下端に略々一
致している。
1 and 2 show an embodiment in which a slit is provided on the outer surface of the starting tube, and FIGS. 3 and 4 show an embodiment in which a guide tube is provided on the outer surface of the starting tube. In both embodiments, the starting tube 9 is connected to the main tube. A vertical partition wall 9' separating the interior of the main tube 2 from the upward flow path 3 is provided in the main tube, but it may of course be formed along the outer surface of one side of the main tube 2. However, it is preferable that the cross-sectional area of the starting tube be 1/2 or less of the cross-sectional area of the upward flow path 3. The upper and lower ends of the field wall 9' substantially coincide with the upper and lower ends of the main tube 2.

第1,2図において、10は起動チユーブ9の
下向流路4に面した外面に設けたスリツトで、こ
の実施例では起動チユーブ9は主チユーブの内部
に劃設してあるので、起動チユーブを形成してい
る主チユーブの部分2′に下端から切込んで設け
てある。スリツト10の上端は運転停止時に沈積
する担体粒子の堆積層11の上面より少くとも上
に位置させるものとし、この実施例では起動チユ
ーブの全高の約1/2、つまり、下半部に設けてあ
る。尚、スリツト10の断面積は起動チユーブ9
の断面積の約1/3〜1/2に定める。
In FIGS. 1 and 2, 10 is a slit provided on the outer surface of the starting tube 9 facing the downward flow path 4. In this embodiment, the starting tube 9 is provided inside the main tube, so the starting tube It is cut into the portion 2' of the main tube forming the main tube from the lower end. The upper end of the slit 10 shall be located at least above the upper surface of the deposited layer 11 of carrier particles that is deposited when the operation is stopped. be. Note that the cross-sectional area of the slit 10 is the same as that of the starting tube 9.
Set at approximately 1/3 to 1/2 of the cross-sectional area of

起動するには散気装置8,8′で上向流路3と、
起動チユーブ9の内部に夫々同じ空塔ガス線速度
となる様に空気を吹込む。この空塔ガス線速度は
定常運転時の空塔ガス線速度と同じでよく、使用
する担体粒子の終末沈降速度と、給気装置8の散
気部の水深との関係に応じて設定する。これによ
り下向流路4中の汚水は堆積層11の上面上にあ
るスリツト10の上部を潜つて起動チユーブ9内
に流れ込んで上向流し、起動チユーブ9と下向流
路4間に局部的な循環流が生じ、担体粒子の堆積
層11のうち起動チユーブと、下向流路中のドラ
フトチユーブが向いている部分の夫々下方にある
担体粒子がこの局部的な循環流に乗つて循環を始
め、堆積はこの部分から堀り下げられて崩れ始め
る。そして上向流路3とドラフトチユーブ9の境
界、つまり劃壁9′の下端部まで堆積が崩れて来
ると上向流路3を上向して循環する循環流が生
じ、上向流路及び下向流路の下部でそれまで堆積
していた担体粒子もやがて一緒に循環を始め、定
常運転状態になる。定常運転状態ではスリツトを
潜つてドラフトチユーブ内を上向する循環流も生
じるが、スリツトの開口面積は上向流路に較べれ
ば遥かに断面積が小さい起動用ドラフトチユーブ
中で担体粒子の終末沈降速度以上の速度で上向流
が起る様に定めればよいので小さくて済み、又、
上向流路3は起動チユーブから隔離されているの
で主チユーブ下端から上向流路中に吸込まれる吸
込み流速の低下は生じないため、定常運転中に担
体粒子が沈積する虞は解消できる。
To start, the air diffuser 8, 8' connects the upward flow path 3,
Air is blown into the startup tubes 9 so that the superficial gas linear velocity is the same. This superficial gas linear velocity may be the same as the superficial gas linear velocity during steady operation, and is set depending on the relationship between the terminal sedimentation velocity of the carrier particles used and the water depth of the aeration section of the air supply device 8. As a result, the sewage in the downward flow path 4 passes through the upper part of the slit 10 on the upper surface of the sediment layer 11, flows into the starting tube 9, and flows upward, causing a localized area between the starting tube 9 and the downward flow path 4. A circulating flow is generated, and the carrier particles below the part of the carrier particle accumulation layer 11 facing the starting tube and the draft tube in the downward flow path are circulated by riding on this local circulating flow. Initially, the deposits are dug down from this part and begin to crumble. Then, when the accumulation collapses to the boundary between the upward flow path 3 and the draft tube 9, that is, the lower end of the field wall 9', a circulation flow that circulates upward in the upward flow path 3 is generated, and the upward flow path and The carrier particles that had been deposited at the bottom of the downward flow path eventually begin to circulate together, resulting in a steady state of operation. During steady operation, a circulating flow passes through the slit and moves upward in the draft tube, but the opening area of the slit is much smaller than that of the upward flow path. It can be set so that the upward flow occurs at a speed higher than the current speed, so it can be small, and
Since the upward flow path 3 is isolated from the starting tube, there is no reduction in the suction flow rate sucked into the upward flow path from the lower end of the main tube, so that the risk of carrier particles being deposited during steady operation can be eliminated.

第3,4図では起動用ドラフトチユーブ9の外
面、下向流路4に向いた部分に、下端を起動チユ
ーブの下端に略々一致させ、上端は堆積層11の
上面よりも上に位置させて上下端が開放したガイ
ドチユーブ12を設ける。この実施例ではガイド
チユーブ12は起動チユーブ9に接触させて設け
てあるが、接触させることは要件でなく、下端で
起動チユーブと接触さえしていれば離して設けて
もよい。そして、定常運転時には担体粒子がガイ
ドチユーブ中に入るのを防ぎ、これにより運転を
止めたときガイドチユーブ中に担体粒子の沈積が
生じるのを防ぐためにガイドチユーブの上端には
これよりも一回り大きなキヤツプ13を浅く被せ
て取付けて置くことが好ましい。
3 and 4, on the outer surface of the starting draft tube 9, the part facing the downward flow path 4, the lower end is approximately aligned with the lower end of the starting tube, and the upper end is located above the upper surface of the deposited layer 11. A guide tube 12 with open upper and lower ends is provided. In this embodiment, the guide tube 12 is provided so as to be in contact with the starting tube 9, but it is not necessary that the guide tube 12 be in contact with the starting tube 9, and may be provided separately as long as the guide tube 12 is in contact with the starting tube at its lower end. In order to prevent carrier particles from entering the guide tube during steady operation, and to prevent carrier particles from depositing in the guide tube when operation is stopped, the upper end of the guide tube is designed to have a diameter slightly larger than this. It is preferable to attach the cap 13 with a shallow cover.

起動するには散気装置8,8′で上向流路3と
起動チユーブ9の内部に前述の実施例と同様な空
塔ガス線速度となる様に空気を吹込む。これによ
り下向流路中の汚水はキヤツプ13の下縁を潜
り、ガイドチユーブ12中に上端から入つて下降
し、ガイドチユーブ12の下端から起動チユーブ
の下端に折返し状に入つて上向流する局部的な循
環流を生じ、担体粒子の堆積層11のうちガイド
チユーブの下端と、起動チユーブ内にある担体粒
子がこの局部的な循環流に乗つて循環を始め、堆
積はこの部分から堀り下げられて崩れ始める。そ
して、上向流路3と起動チユーブ9の境界、つま
り劃壁9′の下端部まで堆積が崩れて来ると上向
流路3を上向して循環する循環流が生じ、上向流
路及び下向流路の下部でそれまで堆積していた担
体粒子もやがて一緒に循環を始め、定常運転状態
になる。
To start, air is blown into the upward passage 3 and the starting tube 9 using the diffusers 8, 8' so that the superficial gas linear velocity is the same as in the previous embodiment. As a result, the waste water in the downward flow path passes under the lower edge of the cap 13, enters the guide tube 12 from the upper end and descends, enters the lower end of the starting tube from the lower end of the guide tube 12 in a folded manner, and flows upward. A local circulating flow is generated, and the carrier particles at the lower end of the guide tube and in the starting tube of the deposited layer 11 of carrier particles begin to circulate on this local circulating flow, and the deposit is excavated from this part. It is lowered and begins to collapse. Then, when the accumulation collapses to the boundary between the upward flow path 3 and the starting tube 9, that is, the lower end of the field wall 9', a circulation flow that circulates upward in the upward flow path 3 is generated, and the upward flow path The carrier particles that had been deposited in the lower part of the downward flow path eventually begin to circulate together, resulting in a steady state of operation.

このガイドチユーブによつて起動を行う実施例
は前述のスリツトによる場合に避けられないシヨ
ートパスの問題点は全く生じない。そして、ガイ
ドチユーブは起動チユーブ内に担体粒子の終末速
度以上の速度の上向流を生じさせることができる
断面積を有することが必要で、そのためにはガイ
ドチユーブの断面積Sは起動チユーブ或いは上向
流路中での上向流速度を使用担体粒子の終末沈降
速度Vs0の何倍にするかX・Vs0、ガイドチユー
ブ中での最大流速Vをいくらにするかによつて起
動チユーブ或いは上向流路の断面積S′を基に次式
で定める。
The embodiment in which starting is performed by means of this guide tube does not cause any of the short path problems that are unavoidable when using the aforementioned slit. The guide tube must have a cross-sectional area capable of producing an upward flow at a velocity higher than the terminal velocity of the carrier particles in the starting tube. The starting tube or It is determined by the following formula based on the cross-sectional area S' of the upward flow path.

S≧X・Vs0/V×S′ しかし、ガイドチユーブの断面積Sは上向流路
3の断面積に較べれば遥かに小さい起動チユーブ
9の断面積を基に定めればよいため遥かに断面積
の小さいものとすることができる。
S ≧ It can have a small cross-sectional area.

尚、キヤツプ13には内部に空気を給排するこ
とができる管14を接続して槽外に導き、弁V1
を一定時間開いてエアコンプレツサなどの散気装
置8,8′への空気供給源から空気を供給できる
様にして置けば定常運転中はキヤツプ内に空気が
溜まり、ガイドチユーブ12を通る循環流を生じ
させない様にして運転停止時にガイドチユーブ内
に担体粒子が堆積するのを全く防止できる。そし
て、起動時には弁V2を開いてキヤツプ内の空気
を排出すればよい。
In addition, a pipe 14 capable of supplying and discharging air inside the cap 13 is connected to lead it outside the tank, and a valve V 1
If the cap is opened for a certain period of time so that air can be supplied from an air supply source to the air diffuser 8, 8' such as an air compressor, air will accumulate in the cap during steady operation, and a circulating flow through the guide tube 12 will occur. It is possible to completely prevent carrier particles from accumulating in the guide tube when the operation is stopped. Then, at startup, valve V2 can be opened to exhaust the air inside the cap.

そして、起動チユーブ9の下向流路4に面した
上端部には切欠き15を設けるとか、起動チユー
ブ9と上向流路3を隔てる壁9′の上端からは遮
蔽板16を突出させ、起動チユーブ中を上向する
循環流が特に起動時に上向流路3中に上から入る
のを防ぎ、専ら下向流路4中に入る様にするのが
好ましい。
Then, a notch 15 is provided in the upper end of the starting tube 9 facing the downward flow path 4, or a shielding plate 16 is made to protrude from the upper end of the wall 9' separating the starting tube 9 and the upward flow path 3. It is preferable to prevent the upward circulating flow in the startup tube from entering the upward flow path 3 from above, especially during startup, and to allow it to enter exclusively into the downward flow path 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面図、第2図
は同上の―線に沿う断面図、第3図は本発明
の他の一実施例の縦断面図、第4図は第3図の
―線に沿う断面図で、図中、1は曝気槽、2は
ドラフトチユーブ、3は上向流路、4は下向流
路、8,8′は散気装置、9は起動用ドラフトチ
ユーブ、10はスリツト、11は担体粒子の堆積
層、12はガイドチユーブを示す。
FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the same line as above, FIG. This is a cross-sectional view taken along line - in Figure 3, in which 1 is the aeration tank, 2 is the draft tube, 3 is the upward flow path, 4 is the downward flow path, 8 and 8' are the air diffusers, and 9 is the startup. 10 is a slit, 11 is a deposited layer of carrier particles, and 12 is a guide tube.

Claims (1)

【特許請求の範囲】 1 曝気槽内に、内部に散気手段を有するドラフ
トチユーブを同心状に縦設してドラフトチユーブ
で囲まれた上向流路と、ドラフトチユーブの外に
下向流路を設け、散気手段からドラフトチユーブ
中に散気した空気によつて微生物を付着した担体
粒子を汚水とゝもに槽内で対流状に循環流させて
生物学的に汚水を処理する流動床式水処理装置に
おいて、 ドラフトチユーブの外面の一側沿いに上下端が
ドラフトチユーブに略々揃い、内部に空気が散気
される起動用ドラフトチユーブを縦設し、起動用
ドラフトチユーブの下向流路に向いた外面に、下
端は起動用ドラフトチユーブに略々揃え、上端は
全担体粒子が沈積した場合の堆積層上面よりも上
の水中に位置させてスリツトを設けたことを特徴
とする流動床式汚水処理装置。 2 特許請求の範囲第1項記載の流動床式汚水処
理装置において、起動用ドラフトチユーブの下向
流路に向いた外面上端部には切欠きが設けてある
流動床式汚水処理装置。 3 特許請求の範囲第1項記載の流動床式汚水処
理装置において、起動用ドラフトチユーブの上向
流路に向いた上端には上向きに遮蔽板が設けてあ
る流動床式汚水処理装置。 4 曝気槽内に、内部に散気手段を有するドラフ
トチユーブを同心状に縦設してドラフトチユーブ
で囲まれた上向流路と、ドラフトチユーブの外に
下向流路を設け、散気手段からドラフトチユーブ
中に散気した空気によつて微生物を付着した担体
粒子を汚水とゝに槽内で対流状に循環流させて生
物学的に汚水を処理する流動床式汚水処理装置に
おいて、ドラフトチユーブの外面の一側沿いに上
下端がドラフトチユーブに略々揃い、内部に空気
が散気される起動用ドラフトチユーブを縦設し、
起動用ドラフトチユーブの下向流路に向いた外面
に、下端は起動用ドラフトチユーブに略々揃え、
上端は全担体粒子が沈積した場合の堆積層上面よ
りも上の水中に位置させてガイドチユーブを設け
たことを特徴とする流動床式汚水処理装置。 5 特許請求の範囲第4項記載の流動床式汚水処
理装置において、起動用ドラフトチユーブの上向
流路に向いた上端には上向きに遮蔽板が設けてあ
る流動床式汚水処理装置。 6 特許請求の範囲第4項記載の流動床式汚水処
理装置において、ガイドチユーブの上端にはその
上端開口を囲んで下向きに開放したカツプを設け
た流動床式汚水処理装置。 7 特許請求の範囲第6項記載の流動床式汚水処
理装置において、カツプには空気の給排手段を連
結してある流動床式汚処理装置。
[Claims] 1. In an aeration tank, a draft tube having an internal aeration means is arranged vertically in a concentric manner, and an upward flow path surrounded by the draft tube and a downward flow path outside the draft tube are provided. A fluidized bed that biologically treats sewage by circulating carrier particles with microorganisms attached to them in a convective manner within the tank using the air diffused from the aeration means into the draft tube. In water treatment equipment, a starting draft tube is installed vertically along one side of the outer surface of the draft tube, the upper and lower ends of which are approximately aligned with the draft tube, and the air is diffused inside. A fluid flow system characterized in that a slit is provided on the outer surface facing the road, with the lower end substantially aligned with the starting draft tube and the upper end located in the water above the top surface of the sediment layer when all the carrier particles are deposited. Floor-type sewage treatment equipment. 2. The fluidized bed sewage treatment apparatus according to claim 1, wherein a notch is provided at the upper end of the outer surface of the starting draft tube facing the downward flow path. 3. The fluidized bed type sewage treatment apparatus according to claim 1, wherein a shielding plate is provided upward at the upper end of the startup draft tube facing the upward flow path. 4 In the aeration tank, a draft tube with an aeration means inside is arranged vertically in a concentric manner, and an upward flow path surrounded by the draft tube and a downward flow path are provided outside the draft tube, and the aeration means is provided. In a fluidized bed sewage treatment equipment that biologically treats sewage by circulating carrier particles with microorganisms attached to the sewage in a convective manner in the tank by air diffused into the draft tube, Along one side of the outer surface of the tube, a startup draft tube whose upper and lower ends are approximately aligned with the draft tube and whose internal air is diffused is installed vertically.
On the outer surface of the startup draft tube facing the downward flow path, the lower end is approximately aligned with the startup draft tube,
A fluidized bed type sewage treatment device characterized in that a guide tube is provided with the upper end positioned in water above the upper surface of the sediment layer when all the carrier particles are deposited. 5. The fluidized bed sewage treatment apparatus according to claim 4, wherein a shielding plate is provided upward at the upper end of the startup draft tube facing the upward flow path. 6. The fluidized bed sewage treatment apparatus according to claim 4, wherein a cup is provided at the upper end of the guide tube, surrounding the upper end opening and opening downward. 7. The fluidized bed sewage treatment apparatus according to claim 6, wherein the cup is connected to an air supply/discharge means.
JP56106217A 1981-07-09 1981-07-09 Fluidized-bed type sewage treating device Granted JPS588585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56106217A JPS588585A (en) 1981-07-09 1981-07-09 Fluidized-bed type sewage treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56106217A JPS588585A (en) 1981-07-09 1981-07-09 Fluidized-bed type sewage treating device

Publications (2)

Publication Number Publication Date
JPS588585A JPS588585A (en) 1983-01-18
JPS6321555B2 true JPS6321555B2 (en) 1988-05-07

Family

ID=14427975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56106217A Granted JPS588585A (en) 1981-07-09 1981-07-09 Fluidized-bed type sewage treating device

Country Status (1)

Country Link
JP (1) JPS588585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185875U (en) * 1987-05-25 1988-11-29

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619856U (en) * 1984-06-22 1986-01-21 日本電気株式会社 Lead frame crimping machine
JPS6244447U (en) * 1985-09-04 1987-03-17
JP6024807B2 (en) * 2015-02-16 2016-11-16 栗田工業株式会社 Biological treatment tank, operation method thereof, and organic wastewater treatment method
WO2016132881A1 (en) * 2015-02-16 2016-08-25 栗田工業株式会社 Biological treatment tank, method for operating same and method for treating organic wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185875U (en) * 1987-05-25 1988-11-29

Also Published As

Publication number Publication date
JPS588585A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
US4278546A (en) Treatment of a liquid by circulation and gas contacting
JPH0669559B2 (en) Water purification and aeration device for open water
US4614589A (en) Method and apparatus for biological aerobic wastewater treatment
KR101081520B1 (en) Water circulation system for prevention of hypolimnetic oxygen deficit
JPS6321555B2 (en)
JP2006075839A5 (en)
JP3150530B2 (en) Biological nitrogen removal equipment
US2024345A (en) Sewage purifying device
KR100628481B1 (en) Plant and process for wastewater treatment
JP4313934B2 (en) Underwater stirring type diffuser
JP3223945B2 (en) Nitrification / denitrification equipment
JPH11290882A (en) Nitrogen removing apparatus
JP4765041B2 (en) Water treatment equipment
CN107188251B (en) Aquaculture and integrative equipment of purification
KR102545064B1 (en) Multi-stage sewage treatment system
JPS62136295A (en) Method and apparatus for treating waste water
JPS62262794A (en) Treatment of waste water
JPS5936317Y2 (en) Fluidized bed sewage treatment equipment
CN220788253U (en) SBR sewage treatment equipment
KR100241496B1 (en) Sewage purifying facility of suspended pattern making use of a microorganism
JPS588586A (en) Fluidized-bed type sewage treating device
JPS6340597B2 (en)
CN212740883U (en) Vertical integrated sewage treatment device of inner loop
CN218435361U (en) Rural sewage treatment system of integration
JPH04180802A (en) Oil/water separation and its device