JP3629727B2 - Organic wastewater treatment method and apparatus - Google Patents

Organic wastewater treatment method and apparatus Download PDF

Info

Publication number
JP3629727B2
JP3629727B2 JP22363294A JP22363294A JP3629727B2 JP 3629727 B2 JP3629727 B2 JP 3629727B2 JP 22363294 A JP22363294 A JP 22363294A JP 22363294 A JP22363294 A JP 22363294A JP 3629727 B2 JP3629727 B2 JP 3629727B2
Authority
JP
Japan
Prior art keywords
carrier
zone
filter bed
treated water
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22363294A
Other languages
Japanese (ja)
Other versions
JPH0889989A (en
Inventor
元之 依田
敦 渡辺
浩昭 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP22363294A priority Critical patent/JP3629727B2/en
Publication of JPH0889989A publication Critical patent/JPH0889989A/en
Application granted granted Critical
Publication of JP3629727B2 publication Critical patent/JP3629727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は微生物を嫌気−好気サイクルにおいて有機性排水を処理する方法および装置、特にリンを含む有機性排水の処理に適した排水処理方法および装置に関するものである。
【0002】
【従来の技術】
微生物による窒素、リンの除去方法として、生物学的リン除去方法がある。生物脱リン法とは、排水中のリンをポリリン酸として菌体内に蓄積する能力を有する微生物(脱リン菌)を選択的に増殖させ、増殖した微生物を含む余剰汚泥を排出することにより、リンを系外に取出す方法である。リン除去率は汚泥のリン含有率を上昇させることによって、高めることができる。すなわち一般の活性汚泥中のリン含有率は1〜2%程度であるが、脱リン菌を集積することにより、リン含有率は5〜10%に高めることができ、下水などを対象としてほぼ実用化のレベルに達している。
【0003】
ところで脱リン菌を選択的に集積させるためには、好気的に有機物を分解する工程の前段に、嫌気ゾーンを設けて微生物を嫌気−好気サイクルにおくことが必要である。これにより嫌気ゾーンで汚泥中のポリリン酸を加水分解して、このエネルギーで有機物を吸収できる細菌が選択的に生き残ることになる。嫌気ゾーンでは、ポリリン酸が正リン酸として混合液中に放出されるが、次の好気ゾーンにて脱リン菌がリンを吸収することにより、リン除去を行うものである。
【0004】
【発明が解決しようとする課題】
ところで生物学的リン除去方法では、微生物が好気ゾーンおよび嫌気ゾーンのいずれをも繰返して経験する必要があるため、これまでは汚泥を容易に移送できる浮遊微生物法(活性汚泥法)だけにその適用が限定されていた。浮遊微生物法は、水と汚泥を分離するために沈降分離が不可欠であり、また汚泥濃度を高く維持できないので、容積当たりの処理効率は悪く、コスト高になるという問題点がある。
本発明の目的は、上記問題点を解決するため、汚泥濃度を高く維持した状態で、微生物を嫌気−好気サイクルにおくことができ、これにより有機物、リン等の処理対象成分を効率よく処理することができ、しかも汚泥の分離が容易な有機性排水の処理方法および装置を提案することである。
【0005】
【課題を解決するための手段】
本発明は次の有機性排水処理方法および装置である。
(1) 浮上性の粒状担体を塔内に浮上状態で充填して濾床を形成し、この濾床の中間に酸素含有ガス供給装置を設けて、下部に脱リン菌がリンを放出する嫌気ゾーン、および上部に脱リン菌がリンを吸着する好気ゾーンを形成し、上向流で通液して脱リン菌を含む生物膜を担体表面に形成し、生物膜を形成した担体を濾床上部から引抜き、余剰汚泥を剥離して濾床下部に循環することにより、担体を嫌気ゾーンと好気ゾーン間を循環させて有機性排水を処理することを特徴とする有機性排水の処理方法。
(2) 嫌気ゾーンおよび好気ゾーン間に脱窒ゾーンを形成し、処理水の一部を脱窒ゾーンに循環させて脱窒を行う上記(1)記載の方法。
(3) 浮上性の粒状担体を充填し、担体表面に脱リン菌を含む生物膜を形成した濾床と、
この濾床内に設けられて下部に脱リン菌がリンを放出する嫌気ゾーン、および上部に脱リン菌がリンを吸着する好気ゾーンを形成する酸素含有ガス供給装置と、
濾床の上部から生物膜の付着した担体を引抜き、余剰汚泥を剥離して濾床の下部に循環する担体循環装置と、
被処理水を濾床に上向流で通過させる被処理水供給装置と、
濾床の上部から処理水を取出す処理水取出装置と、
を備えていることを特徴とする有機性排水の処理装置。
(4)嫌気ゾーンおよび好気ゾーン間に形成された脱窒ゾーンと、
濾床の上部から処理水の一部を引抜いて脱窒ゾーンに循環する処理水循環装置を備えた上記(3)記載の装置。
【0006】
本発明において、処理対象となる有機性排水は下水、工場排水、し尿、家庭排水など、有機物(BOD、COD)および懸濁物を含む排水であり、リンを含むものが処理に適しており、さらにアンモニア性窒素、有機性窒素等の窒素を含む排水も処理対象となる。
【0007】
本発明において、粒状の担体としては、担体表面に脱リン菌を含む汚泥を付着させて、脱リン菌を含む生物膜を形成できるものであればよく、粒径は0.5〜20mm、好ましくは1〜5mmのものが望ましい。このような担体は嫌気ゾーンおよび好気ゾーンに存在させて生物膜を形成し、生物膜を形成した担体を嫌気ゾーンおよび好気ゾーンを循環させて有機性排水の処理を行う。担体に生物膜を形成するには、嫌気ゾーンおよび/または好気ゾーンに有機性排水を供給して処理を行うことにより、自然発生的に形成することができるが、他の装置から活性汚泥を導入して処理を行うと、活性汚泥が担体に付着して生物膜が形成される。
【0008】
このような生物膜を形成した担体は嫌気ゾーンおよび好気ゾーンに浮遊状態で存在させてもよく、充填状態で存在させてもよい。いずれの場合も担体表面に生物膜を形成することにより汚泥濃度を高く維持することができ、この状態で担体を循環することにより脱リン菌を嫌気−好気サイクルにおくことができる。また担体上で余剰に増殖した余剰汚泥は担体の循環に際して容易に剥離でき、この剥離汚泥は重質であるため、分離排出は容易である。
【0009】
本発明の処理方法は、浮上性の粒状担体を塔内に浮上状態で充填して濾床を形成し、この濾床の中間に酸素含有ガス供給装置を設けることにより、下部に嫌気ゾーン、上部に好気ゾーンを形成し、濾床上部から担体を引抜き、余剰汚泥を剥離して濾床下部に循環しながら上向流で通液して処理する方法である。
この方法は生物膜濾過法と呼ばれる方法であり、濾床を形成する発泡状のポリスチレン、ポリエチレン等の浮上性の担体の表面に生物膜を形成して、上向流で通水することにより濾過と生物処理を同時に行う方法である。ここで使用する浮上性の担体としては比重0.01〜0.9、粒径1〜12mmのものが好ましい。
【0010】
このとき被処理水が好気ゾーンを通過することにより、懸濁物の除去と有機物の分解が行われる。そして担体が嫌気ゾーンと好気ゾーン間を循環することにより、微生物は嫌気−好気サイクルにおかれ、嫌気ゾーンにおけるエネルギー源を貯えるために、好気ゾーンにおいて多量のリンを吸収する。担体の循環に際して余剰の汚泥を剥離して排出することにより、リンは系外に排出される。
【0011】
有機排水がリンのほかにアンモニア性窒素、有機性窒素を含む場合は、濾床上部から処理水の一部を引抜き、嫌気ゾーンの中間に循環すると、この部分から上部の嫌気ゾーンは脱窒ゾーンとなり脱窒が行われる。この場合嫌気ゾーン、特にその上部は硝化ゾーンとなり、アンモニア性窒素および/または有機性窒素が硝化され、脱窒ゾーンに循環して脱窒される。
【0012】
【実施例】
以下、本発明を図面の実施例により説明する。
図1および図2はそれぞれ別の実施例を示す系統図である。
【0013】
図1および図2において、1は濾過塔であって、内部に発泡ポリスチレン、ポリエチレン等の浮上性の粒状担体を充填して濾床2が形成され、その中間部に散気装置3が配置されて、下部に嫌気ゾーン2a、上部に好気ゾーン2bが形成されている。図2では嫌気ゾーン2aの中間に処理水導入装置4が設けられて、散気装置3と処理水導入装置4の間に脱窒ゾーン2cが形成されている。
【0014】
濾床2の上部には、液を通過させかつ担体の通過を阻止する多孔質の支持板5が設けられて、浮上性の濾床2を上から支持している。濾過塔1の下部には被処理水路6が連絡し、上部には処理水路7が連絡し、散気装置3には空気供給路8が連絡している。図2ではさらに処理水路7から分岐する分岐処理水路9が処理水導入装置4に連絡し、処理水循環装置を形成している。
【0015】
10は担体洗浄塔であって、上部および下部に支持板5と同様に液を通過させかつ担体の通過を阻止する多孔質の支持板11、12が設けられており、その中間部に、濾過塔1の支持板5に開口する担体引抜路13が連絡している。また下部の支持板12に開口する担体循環路14が濾過塔1の嫌気ゾーン2aの下部に連絡している。担体洗浄塔10の上部には洗浄水路15が連絡し、下部には洗浄排水路16が連絡している。上記の各要素が担体循環装置を形成している。
なお前記各流路には弁、ポンプ等の送液またはその遮断手段が設けられているが、図示は省略されている。
【0016】
図1の装置において、濾過塔1に浮上性の粒状担体を導入すると、担体は浮上して支持板5に支持され濾床2を形成する。この状態で空気供給路8から空気を供給して散気装置3から散気すると、散気装置3の上部は好気状態に保たれる。これにより散気装置3の下部に嫌気ゾーン2a、上部に好気ゾーン2bが形成される。そして担体の浮力を利用して、好気ゾーン2bの上部の担体を担体引抜路13から引抜き、担体洗浄塔10を通して担体循環路14から濾過塔1に循環すると、嫌気ゾーン2aの上部の担体は浮上して好気ゾーンに移行し、循環した担体は嫌気ゾーン2aを形成する。これにより担体は嫌気ゾーンと好気ゾーン間を順次移動して循環し、嫌気−好気の繰返しサイクル下の環境におかれる。
【0017】
この状態で被処理水路6から被処理水としてリンを含む有機性排水を導入し、濾床2を上向流で通液して処理を行うと、濾床2を構成する粒状担体の表面に微生物が付着して増殖し、生物膜が形成される。被処理水中の懸濁物は嫌気ゾーン2aおよび好気ゾーン2bの全層を通じて、生物膜に捕捉され、生物膜濾過により除去される。生物膜の形成により浮遊法の3〜5倍の汚泥が濃縮状態で固定され、このように担体に支持された状態で汚泥中の微生物は嫌気ゾーン2aおよび好気ゾーン2b間を循環する。
【0018】
嫌気ゾーン2aでは、担体に形成された生物膜に含まれる脱リン菌がポリリン酸を加水分解して正リン酸を放出し、このとき発生するエネルギーを利用して有機物を分解する。このため被処理水中に含まれる有機物の少なくとも一部は生物膜に吸着されて分解される。
【0019】
好気ゾーン2bでは、生物膜に含まれる脱リン菌は、通常の酸素を利用する呼吸に戻り、生物膜中に吸着した有機物および被処理水中の有機物を分解する。このとき嫌気ゾーン2aにおける嫌気性環境に備えて、多量のリンを体内に蓄積するため、脱リン菌は嫌気ゾーン2aで放出したリンおよび被処理水中のリンを吸着して増殖する。
【0020】
このようにして濾床2を通過する間に被処理液中の懸濁物、有機物およびリンが除去され、処理水は処理水路7から取出される。
好気ゾーン2bにおいて微生物の増殖により多量の汚泥が付着した汚泥は、好気ゾーン2bの上部から担体引抜路13に連続的または間欠的に引抜かれ、担体洗浄塔10に導入される。担体洗浄塔10では、洗浄水路15から洗浄水を導入して下向流で通水することにより洗浄が行われ、担体に付着した余剰汚泥が剥離して、洗浄排水として洗浄排水路16に取出される。余剰汚泥を剥離し、必要量の汚泥を生物膜として付着した担体は担体循環路14から嫌気ゾーン2aに循環する。
【0021】
洗浄排水路16から取出される洗浄排水は固液分離槽等で固液分離され、機械式脱水機等により脱水処理されるが、洗浄排水に含まれる剥離汚泥は浮遊汚泥とは異なり、担体に濃縮状態で付着した汚泥が剥離したものであるため、固液分離性および脱水性は良好であり、沈降分離等により容易に固液分離および脱水が行われる。
【0022】
図2は窒素を含む有機性排水の処理に適した装置であり、処理水の一部を分岐処理水路9から処理水導入装置4に循環すると、脱窒ゾーン2cが形成され、この部分に脱窒細菌が増殖する。このため脱窒ゾーン2cに入った被処理水中の有機物の一部が脱窒細菌に資化されて脱窒が行われる。
好気ゾーン2bでは前述の通り被処理水中の有機物が分解されるとともに、特に好気ゾーン2bの上部に近い部分では硝化が行われ、被処理水中のアンモニア性窒素および有機性窒素が硝酸または亜硝酸に酸化される。
【0023】
さらに生成する硝酸または亜硝酸は処理水とともに分岐処理水路9から循環し、脱窒ゾーン2cで脱窒される。処理水路7から取出される処理水に含まれる硝酸または亜硝酸は後続の最終脱窒槽等において脱窒される。
嫌気ゾーン2aにおけるリンの放出および好気ゾーン2bにおけるリンの吸収、有機物の分解、懸濁物の除去ならびに担体の循環等の操作は図1の場合と同様に行われる。
【0024】
上記の装置において、濾過塔1における担体の引抜および循環は、汚泥の入替わり時間が8〜24時間となるように行うことが好ましく、具体的にはリン濃度、有機物濃度等により決められる。また担体洗浄塔10における洗浄水量、洗浄時間等は必要量の汚泥を担体表面に残し、余剰汚泥を剥離するのに必要な量および時間とする。
【0025】
以上のように担体に汚泥を付着させて嫌気ゾーン2aおよび好気ゾーン2bを循環させることにより、汚泥を高濃度に維持した状態で嫌気−好気サイクルを繰返すことができ、これにより容積効率を高め、小型の装置で効率よく有機物およびリンを除去することができる。そして処理水(または硝化水)を循環して脱窒ゾーン2cを形成すると、脱窒を行うことも可能になる。
【0026】
また上記のように浮上性の担体を用いて濾床2を形成し、上向流で通水して処理を行うようにすると、生物濾過により懸濁物、有機物、リン等の除去が効率化できるとともに、担体の浮力を利用して担体の移送、引抜、洗浄、循環等を行うことができ、装置の構成および操作を簡素化することができる。
【0027】
【発明の効果】
本発明の有機性排水の処理方法では、浮上性の粒状担体を塔内に浮上状態で充填して濾床を形成し、この濾床の中間に酸素含有ガス供給装置を設けて、下部に脱リン菌がリンを放出する嫌気ゾーン、および上部に脱リン菌がリンを吸着する好気ゾーンを形成し、上向流で通液して脱リン菌を含む生物膜を担体表面に形成し、生物膜を形成した担体を濾床上部から引抜き、余剰汚泥を剥離して濾床下部に循環することにより、担体を嫌気ゾーンと好気ゾーン間を循環させるようにしたので、汚泥濃度を高く維持した状態で脱リン菌を嫌気−好気サイクルにおくことができ、これにより有機物、リン等の処理対象成分を効率よく処理することができ、しかも汚泥の分離が容易である。
【0028】
本発明の有機性排水の処理装置では、浮上性の粒状担体を充填して濾床を形成し、脱リン菌を含む生物膜を担体表面に形成するとともに、濾床に脱リン菌がリンを放出する嫌気ゾーン、および脱リン菌がリンを吸着する好気ゾーンを形成し、濾床の上部から担体を引抜き、余剰汚泥を剥離して下部に循環するようにしたので、担体の浮力を利用して小型の装置で濾床を形成して生物濾過を行い、しかも容易に担体を循環させて嫌気−好気サイクルにおくことができ、これにより懸濁物、有機物、リン等の処理対象物を効率よく処理できるとともに、容積効率を高め処理コストを低下させることができる。
この場合、処理水を循環して脱窒ゾーンを形成することにより、脱窒を同時に行うことができ、効率のよい処理を行うことが可能になる。
【図面の簡単な説明】
【図1】実施例の処理装置を示す系統図である。
【図2】他の実施例の処理装置を示す系統図である。
【符号の説明】
1 濾過塔
2 濾床
2a 嫌気ゾーン
2b 好気ゾーン
2c 脱窒ゾーン
3 散気装置
4 処理水導入装置
5、11、12 支持板
6 被処理水路
7 処理水路
8 空気供給路
9 分岐処理水路
10 担体洗浄塔
13 担体引抜路
14 担体循環路
15 洗浄水路
16 洗浄排水路
[0001]
[Industrial application fields]
The present invention relates to a method and apparatus for treating organic wastewater in an anaerobic-aerobic cycle of microorganisms, and more particularly to a wastewater treatment method and apparatus suitable for treating organic wastewater containing phosphorus.
[0002]
[Prior art]
There is a biological phosphorus removal method as a method for removing nitrogen and phosphorus by microorganisms. The biological dephosphorization method is a method of selectively growing microorganisms (dephosphorization bacteria) having the ability to accumulate phosphorus in wastewater as polyphosphoric acid in the microbial cells, and discharging excess sludge containing the grown microorganisms. This is a method to take out the system. The phosphorus removal rate can be increased by increasing the phosphorus content of the sludge. In other words, the phosphorus content in general activated sludge is about 1 to 2%, but by accumulating dephosphorizing bacteria, the phosphorus content can be increased to 5 to 10% and is practically used for sewage and the like. Has reached the level of conversion.
[0003]
By the way, in order to selectively accumulate dephosphorylated bacteria, it is necessary to provide an anaerobic zone in an anaerobic-aerobic cycle by providing an anaerobic zone before the step of aerobically decomposing organic matter. As a result, the polyphosphoric acid in the sludge is hydrolyzed in the anaerobic zone, and bacteria that can absorb organic matter with this energy selectively survive. In the anaerobic zone, polyphosphoric acid is released as normal phosphoric acid into the mixed solution, but in the next aerobic zone, dephosphorization bacteria absorb phosphorus to remove phosphorus.
[0004]
[Problems to be solved by the invention]
By the way, in the biological phosphorus removal method, it is necessary for microorganisms to experience both the aerobic zone and the anaerobic zone repeatedly, so far, only the floating microorganism method (activated sludge method) that can easily transfer sludge is used. Application was limited. In the floating microorganism method, sedimentation separation is indispensable in order to separate water and sludge, and since the sludge concentration cannot be maintained high, there is a problem that the treatment efficiency per volume is poor and the cost is high.
In order to solve the above problems, the object of the present invention is to allow microorganisms to be placed in an anaerobic-aerobic cycle while maintaining a high sludge concentration, thereby efficiently treating components to be treated such as organic matter and phosphorus. Another object of the present invention is to propose a method and apparatus for treating organic waste water that can be easily separated from sludge.
[0005]
[Means for Solving the Problems]
The present invention is the following organic wastewater treatment method and apparatus.
(1) An anaerobic structure in which a floating granular carrier is packed in a floating state in a tower to form a filter bed, an oxygen-containing gas supply device is provided in the middle of the filter bed, and dephosphorizing bacteria release phosphorus at the bottom. A zone and an aerobic zone where dephosphorizing bacteria adsorb phosphorus are formed in the upper part , and a liquid film containing dephosphorizing bacteria is formed on the surface of the carrier by flowing upward, and the carrier on which the biofilm is formed is filtered. An organic wastewater treatment method characterized in that the organic wastewater is treated by circulating the carrier between an anaerobic zone and an aerobic zone by pulling out from the upper part of the bed and peeling off excess sludge and circulating it to the lower part of the filter bed. .
(2) The method according to (1) above, wherein a denitrification zone is formed between the anaerobic zone and the aerobic zone, and a portion of the treated water is circulated to the denitrification zone for denitrification.
(3) a filter bed filled with a floating granular carrier and having a biofilm containing dephosphorizing bacteria formed on the carrier surface;
An oxygen-containing gas supply device which is provided in the filter bed and forms an anaerobic zone where dephosphorizing bacteria release phosphorus at the bottom, and an aerobic zone where dephosphorizing bacteria adsorb phosphorus at the top;
-Out drawing the attached carrier biofilm from the top of the filter bed, the carrier circulation device which circulates the bottom of the filter bed by stripping the excess sludge,
A treated water supply device for passing the treated water through the filter bed in an upward flow;
A treated water removal device for removing treated water from the upper part of the filter bed;
An organic wastewater treatment apparatus characterized by comprising:
(4) a denitrification zone formed between the anaerobic zone and the aerobic zone;
The apparatus according to the above (3), comprising a treated water circulation device for extracting a part of the treated water from the upper part of the filter bed and circulating it to the denitrification zone.
[0006]
In the present invention, organic wastewater to be treated is wastewater containing organic matter (BOD, COD) and suspension, such as sewage, factory wastewater, human waste, domestic wastewater, and those containing phosphorus are suitable for treatment. Further, wastewater containing nitrogen such as ammonia nitrogen and organic nitrogen is also treated.
[0007]
In the present invention, the granular carrier is not particularly limited as long as it can form a biofilm containing dephosphorizing bacteria by attaching sludge containing dephosphorizing bacteria to the surface of the carrier, and preferably has a particle size of 0.5 to 20 mm. Is preferably 1 to 5 mm. Such a carrier is present in the anaerobic zone and the aerobic zone to form a biofilm, and the organic wastewater is treated by circulating the biofilm-formed carrier through the anaerobic zone and the aerobic zone. In order to form a biofilm on a carrier, it can be spontaneously formed by supplying organic wastewater to an anaerobic zone and / or an aerobic zone for treatment, but activated sludge is generated from other devices. When introduced and treated, activated sludge adheres to the carrier and a biofilm is formed.
[0008]
The carrier on which such a biofilm is formed may be present in a floating state in the anaerobic zone and the aerobic zone, or may be present in a packed state. In any case, the sludge concentration can be kept high by forming a biofilm on the surface of the carrier. By circulating the carrier in this state, the dephosphorizing bacteria can be put in an anaerobic-aerobic cycle. In addition, surplus sludge that has grown excessively on the carrier can be easily separated during the circulation of the carrier, and since this exfoliated sludge is heavy, separation and discharge are easy.
[0009]
In the treatment method of the present invention , a floating granular carrier is filled in a tower in a floating state to form a filter bed, and an oxygen-containing gas supply device is provided in the middle of the filter bed, so that an anaerobic zone is formed in the lower part and an upper part. to form a aerobic zone,-out drawing the carrier from the filter bed top, a method of processing and passed through the column at an upflow while circulating the filter bed bottom is peeled off excess sludge.
This method is called a biofilm filtration method, in which a biofilm is formed on the surface of a floating carrier such as foamed polystyrene or polyethylene that forms a filter bed, and filtered by passing water in an upward flow. And biological treatment at the same time. The floating carrier used here is preferably one having a specific gravity of 0.01 to 0.9 and a particle diameter of 1 to 12 mm.
[0010]
At this time, when the water to be treated passes through the aerobic zone, the suspension is removed and the organic matter is decomposed. As the carrier circulates between the anaerobic zone and the aerobic zone, the microorganism is placed in an anaerobic-aerobic cycle and absorbs a large amount of phosphorus in the aerobic zone in order to store energy sources in the anaerobic zone. The phosphorus is discharged out of the system by separating and discharging excess sludge during the circulation of the carrier.
[0011]
When organic wastewater contains ammonia nitrogen and organic nitrogen in addition to phosphorus, a part of the treated water is extracted from the upper part of the filter bed and circulated in the middle of the anaerobic zone. Denitrification is performed. In this case, the anaerobic zone, particularly the upper part thereof, becomes a nitrification zone, and ammonia nitrogen and / or organic nitrogen is nitrified and circulated to the denitrification zone for denitrification.
[0012]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 and FIG. 2 are system diagrams showing different embodiments.
[0013]
1 and 2, reference numeral 1 denotes a filtration tower, in which a filter bed 2 is formed by filling a floating granular carrier such as expanded polystyrene or polyethylene, and an air diffuser 3 is disposed in the middle thereof. The anaerobic zone 2a is formed at the lower part and the aerobic zone 2b is formed at the upper part. In FIG. 2, the treated water introduction device 4 is provided in the middle of the anaerobic zone 2 a, and a denitrification zone 2 c is formed between the aeration device 3 and the treated water introduction device 4.
[0014]
A porous support plate 5 that allows the liquid to pass and prevents the carrier from passing is provided above the filter bed 2 to support the floating filter bed 2 from above. A treated water channel 6 communicates with the lower part of the filtration tower 1, a treated water channel 7 communicates with the upper part, and an air supply channel 8 communicates with the diffuser 3. In FIG. 2, a branched treated water channel 9 branched from the treated water channel 7 communicates with the treated water introduction device 4 to form a treated water circulation device.
[0015]
Reference numeral 10 denotes a carrier washing tower, which is provided with porous support plates 11 and 12 that allow liquid to pass and block the passage of the carrier in the upper part and the lower part as in the case of the support plate 5. A carrier extraction path 13 opening to the support plate 5 of the tower 1 communicates. A carrier circulation path 14 opened to the lower support plate 12 communicates with the lower part of the anaerobic zone 2 a of the filtration tower 1. A washing water channel 15 communicates with the upper part of the carrier washing tower 10, and a washing drainage channel 16 communicates with the lower part. Each of the above elements forms a carrier circulation device.
Each flow path is provided with a liquid supply such as a valve or a pump or a blocking means thereof, but the illustration is omitted.
[0016]
In the apparatus of FIG. 1, when a floating granular carrier is introduced into the filtration tower 1, the carrier floats and is supported by the support plate 5 to form the filter bed 2. When air is supplied from the air supply path 8 and diffused from the diffuser 3 in this state, the upper portion of the diffuser 3 is kept in an aerobic state. Thereby, the anaerobic zone 2a is formed in the lower part of the diffuser 3, and the aerobic zone 2b is formed in the upper part. Then, using the buoyancy of the carrier, when the carrier at the upper part of the aerobic zone 2b is drawn from the carrier drawing path 13 and circulated from the carrier circulation path 14 to the filtration tower 1 through the carrier washing tower 10, the carrier at the upper part of the anaerobic zone 2a is The floated carrier moves to the aerobic zone and the circulated carrier forms the anaerobic zone 2a. As a result, the carrier moves and circulates sequentially between the anaerobic zone and the aerobic zone, and is placed in an environment under a repeated anaerobic-aerobic cycle.
[0017]
In this state, when organic wastewater containing phosphorus is introduced as the water to be treated from the water channel 6 to be treated, and the filter bed 2 is flowed in an upward flow, the treatment is performed on the surface of the granular carrier constituting the filter bed 2. Microorganisms adhere and grow, and a biofilm is formed. Suspensions in the water to be treated are trapped in the biofilm through all layers of the anaerobic zone 2a and aerobic zone 2b and removed by biofilm filtration. By the formation of the biofilm, 3 to 5 times as much sludge as the floating method is fixed in a concentrated state, and the microorganisms in the sludge circulate between the anaerobic zone 2a and the aerobic zone 2b in such a state supported by the carrier.
[0018]
In the anaerobic zone 2a, the dephosphorizing bacteria contained in the biofilm formed on the carrier hydrolyze polyphosphoric acid to release normal phosphoric acid, and decompose organic substances using the energy generated at this time. For this reason, at least a part of the organic matter contained in the water to be treated is adsorbed on the biofilm and decomposed.
[0019]
In the aerobic zone 2b, the dephosphorizing bacteria contained in the biofilm return to the normal respiration using oxygen, and decompose organic substances adsorbed in the biofilm and organic substances in the water to be treated. At this time, in order to prepare for an anaerobic environment in the anaerobic zone 2a, a large amount of phosphorus is accumulated in the body, and therefore, the dephosphorizing bacteria grow by adsorbing phosphorus released in the anaerobic zone 2a and phosphorus in the water to be treated.
[0020]
In this way, while passing through the filter bed 2, the suspension, organic matter and phosphorus in the liquid to be treated are removed, and the treated water is taken out from the treated water channel 7.
Sludge to which a large amount of sludge has adhered due to the growth of microorganisms in the aerobic zone 2b is withdrawn continuously or intermittently from the upper part of the aerobic zone 2b into the carrier withdrawal passage 13 and introduced into the carrier washing tower 10. In the carrier washing tower 10, washing is performed by introducing washing water from the washing water channel 15 and passing the water in a downward flow, and excess sludge adhering to the carrier is peeled off and taken out to the washing water channel 16 as washing waste water. Is done. The carrier from which the excess sludge has been peeled off and the necessary amount of sludge has adhered as a biofilm is circulated from the carrier circulation path 14 to the anaerobic zone 2a.
[0021]
The washing wastewater taken out from the washing drainage channel 16 is solid-liquid separated in a solid-liquid separation tank or the like and dehydrated by a mechanical dehydrator or the like, but the exfoliated sludge contained in the washing wastewater is different from floating sludge on the carrier. Since the sludge adhering in the concentrated state is peeled off, the solid-liquid separation property and the dehydration property are good, and the solid-liquid separation and the dehydration are easily performed by sedimentation separation or the like.
[0022]
FIG. 2 shows an apparatus suitable for treatment of organic wastewater containing nitrogen. When a part of the treated water is circulated from the branch treated water channel 9 to the treated water introducing device 4, a denitrification zone 2c is formed, and this part is removed. Nitrogen bacteria grow. For this reason, a part of the organic matter in the for-treatment water entering the denitrification zone 2c is assimilated by the denitrification bacteria and denitrification is performed.
In the aerobic zone 2b, organic substances in the water to be treated are decomposed as described above, and nitrification is performed particularly in a portion near the upper part of the aerobic zone 2b, so that ammonia nitrogen and organic nitrogen in the water to be treated are mixed with nitric acid or nitrous acid. Oxidized to nitric acid.
[0023]
Further, the produced nitric acid or nitrous acid circulates from the branch treatment channel 9 together with the treated water, and is denitrified in the denitrification zone 2c. Nitric acid or nitrous acid contained in the treated water taken out from the treated water channel 7 is denitrified in a subsequent final denitrification tank or the like.
Operations such as release of phosphorus in the anaerobic zone 2a and absorption of phosphorus in the aerobic zone 2b, decomposition of organic substances, removal of suspension, and circulation of the carrier are performed in the same manner as in FIG.
[0024]
In the above apparatus, the extraction and circulation of the carrier in the filtration tower 1 are preferably carried out so that the sludge replacement time is 8 to 24 hours, and specifically, it is determined by the phosphorus concentration, the organic matter concentration, and the like. The amount of washing water and the washing time in the carrier washing tower 10 are the amount and time necessary for leaving the necessary amount of sludge on the surface of the carrier and stripping off excess sludge.
[0025]
As described above, the anaerobic-aerobic cycle can be repeated with the sludge maintained at a high concentration by attaching the sludge to the carrier and circulating through the anaerobic zone 2a and the aerobic zone 2b. Organic matter and phosphorus can be removed efficiently with a small and high-sized device. Denitrification can be performed by circulating the treated water (or nitrification water) to form the denitrification zone 2c.
[0026]
In addition, when the filter bed 2 is formed using a floating carrier as described above, and the treatment is performed by passing water in an upward flow, the removal of suspended matter, organic matter, phosphorus, etc. is improved by biological filtration. In addition, the carrier can be transferred, pulled out, washed, circulated and the like by using the buoyancy of the carrier, and the configuration and operation of the apparatus can be simplified.
[0027]
【The invention's effect】
In the organic wastewater treatment method of the present invention, a floating granular carrier is filled in a tower in a floating state to form a filter bed, an oxygen-containing gas supply device is provided in the middle of the filter bed, and the bottom is removed. An anaerobic zone where phosphorus bacteria release phosphorus and an aerobic zone where phosphorus removal bacteria adsorb phosphorus at the top form a biofilm containing dephosphorizing bacteria on the surface of the carrier by flowing upwardly. The carrier that formed the biofilm is drawn from the upper part of the filter bed, and the excess sludge is peeled off and circulated to the lower part of the filter bed, so that the carrier is circulated between the anaerobic zone and the aerobic zone. In this state, the dephosphorizing bacteria can be placed in an anaerobic-aerobic cycle, whereby the components to be treated such as organic matter and phosphorus can be efficiently treated, and the sludge can be easily separated.
[0028]
In the organic wastewater treatment apparatus of the present invention, a floatable granular carrier is filled to form a filter bed, a biofilm containing dephosphorizing bacteria is formed on the surface of the carrier, and the dephosphorizing bacteria add phosphorus to the filter bed. anaerobic zone to release, and dephosphorization bacteria form the aerobic zone to adsorb phosphorus,-out drawing the carrier from the top of the filter bed. Thus circulated to the lower by peeling off the excess sludge, the buoyancy of the carrier It can be used to form a filter bed in a small device to perform biological filtration, and easily circulate the carrier and put it in an anaerobic-aerobic cycle, so that it can treat suspension, organic matter, phosphorus, etc. The object can be processed efficiently, and the volumetric efficiency can be increased and the processing cost can be reduced.
In this case, the denitrification zone is formed by circulating the treated water, so that denitrification can be performed at the same time and efficient treatment can be performed.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a processing apparatus according to an embodiment.
FIG. 2 is a system diagram showing a processing apparatus according to another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Filtration tower 2 Filter bed 2a Anaerobic zone 2b Aerobic zone 2c Denitrification zone 3 Aeration apparatus 4 Treated water introduction apparatus 5, 11, 12 Support plate 6 Treated water channel 7 Treated water channel 8 Air supply channel 9 Branched treated water channel 10 Carrier Washing tower 13 Carrier extraction path 14 Carrier circulation path 15 Washing water path 16 Washing drainage path

Claims (4)

浮上性の粒状担体を塔内に浮上状態で充填して濾床を形成し、この濾床の中間に酸素含有ガス供給装置を設けて、下部に脱リン菌がリンを放出する嫌気ゾーン、および上部に脱リン菌がリンを吸着する好気ゾーンを形成し、上向流で通液して脱リン菌を含む生物膜を担体表面に形成し、生物膜を形成した担体を濾床上部から引抜き、余剰汚泥を剥離して濾床下部に循環することにより、担体を嫌気ゾーンと好気ゾーン間を循環させて有機性排水を処理することを特徴とする有機性排水の処理方法。An anaerobic zone in which a floating granular carrier is filled in a tower in a floating state to form a filter bed, an oxygen-containing gas supply device is provided in the middle of the filter bed, and dephosphorizing bacteria release phosphorus at the bottom , and dephosphorization bacteria form the aerobic zone to adsorb phosphorus in the upper, the biofilm comprising a dephosphorization bacteria was passed through the column at an upflow formed on the carrier surface, the filter bed upper carrier forming a biofilm A method for treating organic wastewater, wherein the organic wastewater is treated by circulating the carrier between an anaerobic zone and an aerobic zone by drawing and separating excess sludge and circulating it to the lower part of the filter bed . 嫌気ゾーンおよび好気ゾーン間に脱窒ゾーンを形成し、処理水の一部を脱窒ゾーンに循環させて脱窒を行う請求項1記載の方法。The method according to claim 1, wherein a denitrification zone is formed between the anaerobic zone and the aerobic zone, and a portion of the treated water is circulated to the denitrification zone for denitrification. 浮上性の粒状担体を充填し、担体表面に脱リン菌を含む生物膜を形成した濾床と、
この濾床内に設けられて下部に脱リン菌がリンを放出する嫌気ゾーン、および上部に脱リン菌がリンを吸着する好気ゾーンを形成する酸素含有ガス供給装置と、
濾床の上部から生物膜の付着した担体を引抜き、余剰汚泥を剥離して濾床の下部に循環する担体循環装置と、
被処理水を濾床に上向流で通過させる被処理水供給装置と、
濾床の上部から処理水を取出す処理水取出装置と、
を備えていることを特徴とする有機性排水の処理装置。
A filter bed filled with a floating particulate carrier and having a biofilm containing dephosphorizing bacteria formed on the carrier surface;
An oxygen-containing gas supply device which is provided in the filter bed and forms an anaerobic zone where dephosphorizing bacteria release phosphorus at the bottom, and an aerobic zone where dephosphorizing bacteria adsorb phosphorus at the top;
-Out drawing the attached carrier biofilm from the top of the filter bed, the carrier circulation device which circulates the bottom of the filter bed by stripping the excess sludge,
A treated water supply device for passing the treated water through the filter bed in an upward flow;
A treated water removal device for removing treated water from the upper part of the filter bed;
An organic wastewater treatment apparatus characterized by comprising:
嫌気ゾーンおよび好気ゾーン間に形成された脱窒ゾーンと、
濾床の上部から処理水の一部を引抜いて脱窒ゾーンに循環する処理水循環装置を備えた請求項3記載の装置。
A denitrification zone formed between an anaerobic zone and an aerobic zone;
The apparatus of Claim 3 provided with the treated water circulation apparatus which draws out a part of treated water from the upper part of a filter bed, and circulates to a denitrification zone.
JP22363294A 1994-09-19 1994-09-19 Organic wastewater treatment method and apparatus Expired - Fee Related JP3629727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22363294A JP3629727B2 (en) 1994-09-19 1994-09-19 Organic wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22363294A JP3629727B2 (en) 1994-09-19 1994-09-19 Organic wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH0889989A JPH0889989A (en) 1996-04-09
JP3629727B2 true JP3629727B2 (en) 2005-03-16

Family

ID=16801245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22363294A Expired - Fee Related JP3629727B2 (en) 1994-09-19 1994-09-19 Organic wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3629727B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291719A (en) * 2008-06-05 2009-12-17 Sumiju Kankyo Engineering Kk Biological wastewater treatment apparatus
WO2015076562A2 (en) * 2013-11-22 2015-05-28 주식회사 이피에스이앤이 Biofilm water treatment device having non-powered backwashing function
JP6245744B2 (en) * 2013-12-17 2017-12-13 学校法人 東洋大学 Waste water treatment equipment
CN110156162A (en) * 2019-06-04 2019-08-23 北京博汇特环保科技股份有限公司 The micro- light bed biochemical treatment apparatus of one kind and sewage water treatment method
CN110156159B (en) * 2019-06-04 2023-12-01 北京博汇特环保科技股份有限公司 Mixed bed biochemical treatment device and sewage treatment method
CN110156160A (en) * 2019-06-04 2019-08-23 北京博汇特环保科技股份有限公司 Vertical integrated sewage treatment device

Also Published As

Publication number Publication date
JPH0889989A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JP3863995B2 (en) Water treatment device with denitrification function
JP5150993B2 (en) Denitrification method and apparatus
JP3743771B2 (en) Non-powered wastewater treatment method
JP3629727B2 (en) Organic wastewater treatment method and apparatus
JP2002079034A (en) Biological desulfurization method and apparatus
KR100655324B1 (en) High Speed Treatment of High Concentration Organic Wastewater
KR100313315B1 (en) Method and apparatus for treating sewage and organic waste-water by circulation and filter of 3 divided biofilm
US5254254A (en) Biological method of treating wastewater in batch with porous biomass carrier
JP3391057B2 (en) Biological nitrogen removal equipment
JP2013236996A (en) Water treatment process
JP2609192B2 (en) Biological dephosphorization nitrification denitrification treatment method of organic wastewater
JP2002177979A (en) Waste water treatment equipment
KR100243729B1 (en) Method for treating wastewater biologically by continuously cycling and regenerating powdered zeolite in the bioreactor
JP3607088B2 (en) Method and system for continuous simultaneous removal of nitrogen and suspended solids from wastewater
CN216737997U (en) Bury sewage treatment device with high-efficient backward flow integral type
KR100714825B1 (en) Wastewater and high concentration organic wastewater treatment method using anaerobic / aerobic reactor combined with membrane and aerobic filter bed
JP2007196081A (en) Wastewater treatment system and toilet arrangement
JPH09262429A (en) Desulfurization equipment for sulfide-containing gas
JP2005254207A (en) Water treatment apparatus
JP3861573B2 (en) Waste water treatment equipment
JP2004202387A (en) Sewage treatment method
JPH03232590A (en) Treatment of sewage
JP3973069B2 (en) Organic wastewater treatment method and apparatus
JP2005349337A (en) Wastewater treatment method
JPH02184398A (en) Moving bed-type denitrification device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees