JPS61240691A - Light source - Google Patents

Light source

Info

Publication number
JPS61240691A
JPS61240691A JP8206285A JP8206285A JPS61240691A JP S61240691 A JPS61240691 A JP S61240691A JP 8206285 A JP8206285 A JP 8206285A JP 8206285 A JP8206285 A JP 8206285A JP S61240691 A JPS61240691 A JP S61240691A
Authority
JP
Japan
Prior art keywords
light
semiconductor laser
lens
mode
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8206285A
Other languages
Japanese (ja)
Inventor
Yozo Nishiura
洋三 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8206285A priority Critical patent/JPS61240691A/en
Publication of JPS61240691A publication Critical patent/JPS61240691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the oscillation mode of a semiconductor laser to be stably changed from the single vertical mode to the multiple mode, by returning a part of light beams emitted from the semiconductor laser to the light-emitting face of the semiconductor laser by means of a partially reflecting mirror. CONSTITUTION:In the present light source employing a semiconductor laser, a partially reflecting mirror 13 having a flat plate shape is arranged at a predetermined angle such that a part of light beams from a lens 1 is transmitted by the mirror while the other part of the light beams is returned thereby to the lens 12 along a path parallel with the original light path. Further, the amount of light collected by the lens 12 and returned to the light-emitting end face of the semiconductor laser chip 10 is set so as to be sufficient to change the oscillation mode from the single vertical oscillation mode to the stable multiple mode. Light beams emitted from the light- emitting end face of the semiconductor laser chip 10 oscillating in the single vertical mode are converted into parallel beams by the lens 12 and applied to the partially reflecting mirror 13. The light beams reflected from the mirror 13 are collected by the lens 12 and returned to the light-emitting end face of the semiconductor laser chip 10, whereby the oscillating operation of the semiconductor laser chip 10 is stably changed to the multiple mode.

Description

【発明の詳細な説明】 〔概要〕 本発明は半導体レーザを用いた光源において、半導体レ
ーザからの出射光の一部を部分反射鏡によって半導体レ
ーザの発光端面に戻すことにより、簡単な構成で単一縦
モード発振している半導体レーザを安定にマルチモード
化したものである。
[Detailed Description of the Invention] [Summary] The present invention provides a light source using a semiconductor laser with a simple structure and a simple structure by returning a part of the emitted light from the semiconductor laser to the light emitting end facet of the semiconductor laser using a partial reflecting mirror. This is a stable multi-mode version of a semiconductor laser that oscillates in a single longitudinal mode.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体レーザを用いた光源に関し、特に安定し
たマルチモード発振を行なう光源に関する。
The present invention relates to a light source using a semiconductor laser, and particularly to a light source that performs stable multimode oscillation.

一般に、単一縦モード発振による光は、モードホッピン
グによるノイズがあり、また光源のコヒーレンス性が良
いため光ファイバジャイロ等同一光源からの光を逆方向
に伝1112させる干渉針においては光学部品の端面反
射光やファイバ中の後方散乱光が信号光と干渉してノイ
ズとなる。
In general, light generated by single longitudinal mode oscillation has noise due to mode hopping, and the coherence of the light source is good, so in an interference needle such as an optical fiber gyro that propagates light from the same light source in opposite directions, the end face of the optical component is used. Reflected light and backscattered light in the fiber interfere with the signal light and become noise.

そこで、このようなことが問題となる場合、従来はマル
チモード化した光が用いられる。
Therefore, when such a problem arises, multi-mode light is conventionally used.

〔従来の技術〕[Conventional technology]

従来、マルチモード化した光を得る光源として、■単一
縦モード発振を行なう半導体レーザを高周波で変調する
光源(例えば、1983年、秋、第44回応用物理学会
学術講演会予稿集、 26a−P−6、r高周波重畳に
よる半導体レーザの低雑音化と縦モード特性」参照) ■スーパールミネッセントダイオードを使用した光源 が知られている。
Conventionally, as a light source for obtaining multi-mode light, ■ a light source that modulates a semiconductor laser that performs single longitudinal mode oscillation at high frequency (for example, 1983, Fall, Proceedings of the 44th Japan Society of Applied Physics Academic Conference, 26a- (See page 6, ``Low noise and longitudinal mode characteristics of semiconductor lasers by high-frequency superposition'') ■A light source using a superluminescent diode is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、■の光源は、高周波を重畳するための発振器、
変調器が大損りとなり、光源自体が大型化する欠点があ
る。
However, the light source of ■ is an oscillator for superimposing high frequencies,
This has the disadvantage that the modulator becomes a major loss and the light source itself becomes larger.

また、■の光源は、基本的に不安定であり、製造上の歩
留り、信頼性等に問題がある。
Furthermore, the light source (2) is basically unstable and has problems in manufacturing yield, reliability, etc.

本発明の目的は、通常の単−紺モード発振を行なう半導
体レーザを使用し、簡単な部品を付加するだけで安定し
たマルチモート発振を行なわせることにある。
An object of the present invention is to use a semiconductor laser that performs normal single-dark blue mode oscillation and to perform stable multi-mode oscillation by simply adding simple parts.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、半導体レーザからの
出射光を部分反射鏡を介して外部に取出す構造とし、且
つ前記部分反射鏡で反射され前記半導体レーザの発光端
面に戻る光の量を、前記半導体レーザの発振モードを単
一縦モードから安定したマルチモードに変化せしめる量
に設定する。
In order to achieve the above object, the present invention has a structure in which light emitted from a semiconductor laser is extracted to the outside through a partial reflection mirror, and the amount of light reflected by the partial reflection mirror and returned to the light emitting end face of the semiconductor laser is The oscillation mode of the semiconductor laser is set to an amount that changes the oscillation mode from a single longitudinal mode to a stable multimode.

また、本発明の好ましい実施例においては、前記部分反
射鏡の反射面ば平面であり、且つ前記半導体レーザと前
記部分反射鏡との間に前記半導体レーザの発光端面から
の出射光を平行化して前記部分反射鏡に送出するレンズ
が配設されている。
In a preferred embodiment of the present invention, the reflecting surface of the partially reflecting mirror is a flat surface, and the emitted light from the light emitting end face of the semiconductor laser is collimated between the semiconductor laser and the partially reflecting mirror. A lens is disposed to send light to the partially reflecting mirror.

〔発明の着眼点〕[Focus of the invention]

本発明者は、光フアイバジャイロの開発、研究の一環と
し、例えば第2図に示すような測定系を使用して半導体
レーザの戻り光による影響を検討した。
As part of the development and research of the optical fiber gyro, the present inventor investigated the influence of return light from a semiconductor laser using a measurement system as shown in FIG. 2, for example.

第2図において、1は単一縦モード発振を行なう半導体
レーザで、その出射光はレンズ2で平行光に変換され、
ハーフミラ−3に入射される。ハ一フミラー3に入射し
た光は、これを透過してレンズ千により光ファイバ5に
入射すると共に、一部ハーフミラー3で反射して反射板
6に入射する。
In FIG. 2, 1 is a semiconductor laser that performs single longitudinal mode oscillation, and its emitted light is converted into parallel light by a lens 2.
The light is incident on the half mirror 3. The light incident on the half mirror 3 passes through the half mirror 3 and enters the optical fiber 5 through the lens, and is partially reflected by the half mirror 3 and enters the reflecting plate 6.

また、反射板6に入射した光は元の光と同し光路を経て
ハーフミラ−3に入射し、ハーフミラ−3で反射した光
がレンズ2で収束されて半導体レーザ1の発光端面に戻
るように構成されている。
Further, the light incident on the reflection plate 6 enters the half mirror 3 through the same optical path as the original light, and the light reflected by the half mirror 3 is converged by the lens 2 and returns to the light emitting end face of the semiconductor laser 1. It is configured.

光ファイバ5に入射した光は、光スペクトラムアナライ
ザ7に取り込まれ、ここでスペクトラムが計測される。
The light incident on the optical fiber 5 is taken into the optical spectrum analyzer 7, where the spectrum is measured.

そして、計測されたスペクトラムはアナライザ7に接続
されたX−yレコーダ8で用紙に記録される。
The measured spectrum is then recorded on paper by an X-y recorder 8 connected to the analyzer 7.

第2図に示す測定系において、本発明者は、反射板6と
して先ず反射率の小さいガラス板を使用してスペクトラ
ムを計測したところ、マルチモード化を示すスペクトラ
ムが観測されはしたが、スペクトラムが絶えず変化し安
定しないことが確認された。第3図(a)〜(d)はそ
のときに観測されたそれぞれ異なるスペクトラムを示す
In the measurement system shown in FIG. 2, the inventor first measured the spectrum using a glass plate with low reflectance as the reflector 6, and a spectrum indicating multimode was observed. It was confirmed that it constantly changes and is not stable. FIGS. 3(a) to 3(d) show different spectra observed at that time.

次に、反射板6として全反射ミラーを使用してスペクト
ラムを計測したところ、例えば第4図に示すようなマル
チモード化を示すスペクトラムが観測され、且つそのス
ペクトラムは計測中一定していた。
Next, when the spectrum was measured using a total reflection mirror as the reflection plate 6, a spectrum indicating multimode as shown in FIG. 4, for example, was observed, and the spectrum remained constant during the measurement.

このような結果の差異は、反射板6の反射率の差異によ
るものであり、延いては半導体レーザへの戻り光の量に
よるものであることは間違いない。
There is no doubt that such a difference in results is due to a difference in the reflectance of the reflecting plate 6, and in turn, due to the amount of light returning to the semiconductor laser.

そこで、本発明者は反射板6の反射率を変化させつつス
ペクトラムの観察を続行したところ、反射板6の反射率
がある値以上になったところからマルチモード化を示す
スペクトラムは安定することが確かめられた。
Therefore, the inventor continued to observe the spectrum while changing the reflectance of the reflector 6, and found that the spectrum indicating multimode becomes stable when the reflectance of the reflector 6 exceeds a certain value. It was confirmed.

本発明はこのような点に着目して為されたものであり、
以下実施例について説明する。
The present invention has been made with attention to these points,
Examples will be described below.

〔実施例〕〔Example〕

第1図は本発明の実施例の構成説明図であり、10は単
一縦モード発振を行なう半導体レーザチップで、基板1
1上に固定される。半導体レーザチップ10の発光端面
の前方には、半導体レーザチップ10から出射した光を
平行光に変換するレンズ12が配設され、このレンズ1
2の半導体レーザチップ11と反対側に、一部の光を反
射する部分反射鏡13が配設される。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention, in which 10 is a semiconductor laser chip that performs single longitudinal mode oscillation;
Fixed on 1. A lens 12 that converts the light emitted from the semiconductor laser chip 10 into parallel light is disposed in front of the light emitting end face of the semiconductor laser chip 10.
A partial reflecting mirror 13 that reflects part of the light is disposed on the opposite side of the second semiconductor laser chip 11.

部分反射鏡13ば、この実施例では平板状の形状を有し
、レンズ12からの光を透過すると共に一部反射して元
の光路と平行にレンズ12に戻すよう取付は角度が予め
規定されている。また、部分反射鏡13の反射率は、こ
れで反射されレンズ12で収束されて半導体レーザチッ
プ10の発光端面に戻る光の量が、発振モードを単一縦
モードから安定したマルチモードに変化せしめるに足る
量となるように設定される。このような反射率の下限値
は、半導体レーザの形式2種類によって異なるため、個
々の半導体レーザに対し設定するのが望ましい。
In this embodiment, the partial reflecting mirror 13 has a flat plate shape, and is mounted at a predetermined angle so that it transmits the light from the lens 12 and partially reflects it back to the lens 12 in parallel with the original optical path. ing. In addition, the reflectance of the partial reflecting mirror 13 is such that the amount of light that is reflected by the mirror, converged by the lens 12, and returned to the light emitting end face of the semiconductor laser chip 10 changes the oscillation mode from a single longitudinal mode to a stable multi-mode. The amount is set to be sufficient for Since such a lower limit value of reflectance differs between the two types of semiconductor lasers, it is desirable to set it for each semiconductor laser.

特に、部分反射鏡13から取出した光が部分反射鏡13
に戻らない状態のとき、つまり部分反射鏡13のレンズ
12と反対側に何もものがない状態のときに半導体レー
ザチップ10が安定してマルチモード化するように部分
反射鏡13の反射率等を設定しておけば、部分反射鏡1
3′#−からの光をレンズ等を介して光ファイバに導い
たときに生ずるレンズや光フアイバ端面での反射の影響
を受けることばない。
In particular, the light taken out from the partial reflecting mirror 13
The reflectance of the partial reflecting mirror 13 is adjusted so that the semiconductor laser chip 10 stably becomes multi-mode when the partial reflecting mirror 13 does not return to the normal state, that is, when there is nothing on the opposite side of the partial reflecting mirror 13 from the lens 12. If you set , partial reflector 1
It is not affected by reflection at the end face of the lens or optical fiber that occurs when the light from 3'#- is guided to the optical fiber via a lens or the like.

本実施例は上述した構成を有するから、半導体レーザチ
ップ10の発光端面から出射した光は、レンズ12で平
行光に変換されて部分反射鏡13に入射し、部分反射鏡
13で反射された光はレンズ12で集光されて半導体レ
ーザチップ10の発光端面に戻され、半導体レーザチッ
プ10の発振が安定してマルチモード化される。なお、
部分反射鏡13を透過した光が光源の出力光として使用
される。
Since this embodiment has the above-described configuration, the light emitted from the light emitting end face of the semiconductor laser chip 10 is converted into parallel light by the lens 12 and enters the partial reflection mirror 13, and the light reflected by the partial reflection mirror 13 is The light is focused by the lens 12 and returned to the light emitting end face of the semiconductor laser chip 10, and the oscillation of the semiconductor laser chip 10 is stabilized and made multi-mode. In addition,
The light transmitted through the partially reflecting mirror 13 is used as the output light of the light source.

なお、上記実施例では半導体レーザチップ10と部分反
射鏡I3との間にレンズ12を設けたが、これは部分反
射鏡13の反射率をできるだけ小さくして出力光を大き
くしつつ十分な戻り光を得るためであり、出力光の低減
が許容されるシステムではレンズ12を省略する構成と
することができる。
In the above embodiment, the lens 12 is provided between the semiconductor laser chip 10 and the partial reflection mirror I3, but this is done by reducing the reflectance of the partial reflection mirror 13 as much as possible to increase the output light and to ensure sufficient return light. The lens 12 can be omitted in a system in which a reduction in output light is allowed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、通常の単一縦モ
ード発振を行なう半導体レーザを使用し、部分反射鏡の
ような簡単な部品を付加するだけで安定したマルチモー
ド発振を行なわせることができる。
As explained above, according to the present invention, it is possible to use a semiconductor laser that performs normal single longitudinal mode oscillation and to perform stable multi-mode oscillation by simply adding a simple component such as a partial reflecting mirror. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、 第2図は半導体レーザの戻り光による影響を検討するた
めに用いた測定系の構成図、 第3図は第2図の測定系において反射板6として反射率
の小さいガラス板を使用したときに得られたスペクトラ
ムのそれぞれ異なる状態を示す線図、 第4図は第2図の測定系において反射板6として全面反
射ミラーを使用したときに(得られたスペクトラムの状
態を示す線図である。
Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 is a configuration diagram of a measurement system used to examine the influence of return light from a semiconductor laser, and Figure 3 is a reflection plate in the measurement system of Figure 2. Figure 4 is a diagram showing the different states of the spectrum obtained when a glass plate with a low reflectance is used as the reflectance plate 6. FIG. 3 is a diagram showing the state of the obtained spectrum.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザからの出射光を部分反射鏡を介して
外部に取出す構造を有し、且つ前記部分反射鏡で反射さ
れ前記半導体レーザの発光端面に戻る光の量は、前記半
導体レーザの発振モードを単一縦モードから安定したマ
ルチモードに変化せしめる量に設定されていることを特
徴とする光源。
(1) It has a structure in which the emitted light from the semiconductor laser is extracted to the outside via a partial reflection mirror, and the amount of light reflected by the partial reflection mirror and returned to the light emitting end facet of the semiconductor laser is determined by the oscillation of the semiconductor laser. A light source characterized in that the amount is set to change the mode from a single longitudinal mode to a stable multimode.
(2)特許請求の範囲第1項記載の光源において、前記
部分反射鏡の反射面は平面であり、且つ前記半導体レー
ザと前記部分反射鏡との間に前記半導体レーザの発光端
面からの出射光を平行化して前記部分反射鏡に送出する
レンズが配設されていることを特徴とする光源。
(2) In the light source according to claim 1, the reflecting surface of the partially reflecting mirror is a flat surface, and the light emitted from the light emitting end face of the semiconductor laser is disposed between the semiconductor laser and the partially reflecting mirror. A light source comprising a lens that collimates the light and sends the parallelized light to the partial reflecting mirror.
JP8206285A 1985-04-17 1985-04-17 Light source Pending JPS61240691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8206285A JPS61240691A (en) 1985-04-17 1985-04-17 Light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8206285A JPS61240691A (en) 1985-04-17 1985-04-17 Light source

Publications (1)

Publication Number Publication Date
JPS61240691A true JPS61240691A (en) 1986-10-25

Family

ID=13764017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8206285A Pending JPS61240691A (en) 1985-04-17 1985-04-17 Light source

Country Status (1)

Country Link
JP (1) JPS61240691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101512A (en) * 2002-08-03 2004-04-02 Dr Johannes Heidenhain Gmbh Location measuring apparatus
JP2013011592A (en) * 2011-05-27 2013-01-17 Sumitomo Osaka Cement Co Ltd Scanning type detection measuring device and measuring method
JP2017005127A (en) * 2015-06-11 2017-01-05 株式会社島津製作所 Laser device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175148A (en) * 1982-04-05 1983-10-14 Hitachi Ltd Optical pickup device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175148A (en) * 1982-04-05 1983-10-14 Hitachi Ltd Optical pickup device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101512A (en) * 2002-08-03 2004-04-02 Dr Johannes Heidenhain Gmbh Location measuring apparatus
DE10235669B4 (en) * 2002-08-03 2016-11-17 Dr. Johannes Heidenhain Gmbh Position measuring device
JP2013011592A (en) * 2011-05-27 2013-01-17 Sumitomo Osaka Cement Co Ltd Scanning type detection measuring device and measuring method
JP2017005127A (en) * 2015-06-11 2017-01-05 株式会社島津製作所 Laser device

Similar Documents

Publication Publication Date Title
JP3460724B2 (en) Optical oscillator
JP4809578B2 (en) Position measuring device
JPS61240691A (en) Light source
CN112066969A (en) Double-light self-injection locking resonant micro-opto-electro-mechanical gyroscope based on optical phase-locked loop
JP3428067B2 (en) Displacement measuring method and displacement measuring device used therefor
JPS5948668A (en) Optical fiber speedometer
KR0146274B1 (en) Solid ring laser gyroscope
JPH01231387A (en) Semiconductor light emitting device
JPH05160467A (en) Device for detecting mode hopping of semiconductor laser
JPH1065265A (en) Laser diode module and mode-hopping detecting device
JPH0663866B2 (en) Wavelength detector
JPH04115584A (en) Frequency stabilized semiconductor laser
JPH01282488A (en) Optical fiber sensor
JPS62136894A (en) Semiconductor laser device
JP2004150848A (en) Displacement to light quantity converter
JPS58175146A (en) Semiconductor laser
JPH0216969B2 (en)
Wang et al. An interferometer incorporating active optical feedback from a diode laser with application to vibrational measurement
JP2548044B2 (en) Optical interference gyro
JPH02106083A (en) Device for constricting spectrum line width of semiconductor laser
JP2005172688A (en) Standard apparatus for optical wavelength
JPH0245790A (en) Semiconductor laser device and semiconductor laser distance measuring instrument
JPH075028A (en) Vibration detection element
JPH05312523A (en) Length measuring apparatus for semiconductor laser
JP2002329925A (en) Semiconductor laser module