JP2548044B2 - Optical interference gyro - Google Patents

Optical interference gyro

Info

Publication number
JP2548044B2
JP2548044B2 JP2324013A JP32401390A JP2548044B2 JP 2548044 B2 JP2548044 B2 JP 2548044B2 JP 2324013 A JP2324013 A JP 2324013A JP 32401390 A JP32401390 A JP 32401390A JP 2548044 B2 JP2548044 B2 JP 2548044B2
Authority
JP
Japan
Prior art keywords
light
optical
light source
branching device
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2324013A
Other languages
Japanese (ja)
Other versions
JPH04194614A (en
Inventor
栄一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2324013A priority Critical patent/JP2548044B2/en
Priority to EP91915269A priority patent/EP0502196B1/en
Priority to DE69115877T priority patent/DE69115877T2/en
Priority to CA002071882A priority patent/CA2071882C/en
Priority to US07/848,967 priority patent/US5327214A/en
Priority to PCT/JP1991/001149 priority patent/WO1992004597A1/en
Publication of JPH04194614A publication Critical patent/JPH04194614A/en
Application granted granted Critical
Publication of JP2548044B2 publication Critical patent/JP2548044B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は光源よりの光を第1光分岐器で2分し、そ
の一方の光を第2光分岐器で更に2分してループ状光伝
送路の両端に右回り光、左回り光としてそれぞれ供給
し、そのループ状光伝送路から出射した両光を合成して
干渉させ、その干渉光を第1光分岐器で光源側と光検出
器側とに分岐し、その光検出器の出力から、ループ状光
伝送路にその軸心まわりに印加された角速度を検出する
光干渉角速度計に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial field of application" The present invention divides light from a light source into two parts by a first optical branching device and further divides one light by a second optical branching device into two loops. The light is supplied to both ends of the optical transmission line as right-handed light and left-handed light, respectively, and the two lights emitted from the loop-shaped optical transmission line are combined and interfered with each other. The present invention relates to an optical interference angular velocimeter that branches to the detector side and detects the angular velocity applied to the loop optical transmission line around its axis from the output of the photodetector.

「従来の技術」 第3図に従来の光干渉角速度計を示す。光源11から出
た光は、光分岐器12において2分され、その一方は偏光
子13を通過した後、光分岐器14へと導かれ、他方は、終
端素子15に終端される。光分岐器14を通過した光は右回
り光と左回り光とに分岐され、左回り光は、光分岐器14
から出た後すぐに位相変調器16によって位相変調を受け
た後、ループ状光伝送路としての光ファイバコイル17の
一端の入射され、光ファイバコイル17を左回りに伝搬し
た後、ふたたび光分岐器14に到達する。一方右回り光は
光分岐器14を出て光ファイバコイル17の他端に入射さ
れ、光ファイバコイル17を左回りに伝搬後、位相変調器
16によって位相変調を受けた後、再び光分岐器14に到達
する。光分岐器14では、これら光ファイバコイル17を伝
搬した右回り光と左回り光とが出会い干渉する。このと
きに右回り光と左回り光とは位相変調器16によって周期
的な位相偏移を受けているため右回り光と左回りとのあ
いだには周期的な位相差が生じる。例えば位相変調器16
を駆動する変調信号の周波数fmが1/(2τ)(τは光フ
ァイバコイル17を光が伝搬する時間)の時、光分岐器14
で合成される右回り光と左回り光との位相差は2τ周期
で変化する。このためこれら両光が合成された干渉光は
互いに強め合ったり弱め合ったりすることが周期τで繰
返され、つまり周期τで強度が変化する光となる。右回
り光と左回り光との位相差に応じて干渉光の強度が周期
τで変化する。
“Prior Art” FIG. 3 shows a conventional optical interference gyro. The light emitted from the light source 11 is divided into two in the optical branching device 12, one of which is passed through the polarizer 13 and then guided to the optical branching device 14, and the other is terminated by the terminating element 15. The light that has passed through the optical splitter 14 is split into right-handed light and left-handed light.
After being subjected to phase modulation by the phase modulator 16 immediately after exiting from, it is incident on one end of the optical fiber coil 17 as a loop-shaped optical transmission line, propagates counterclockwise through the optical fiber coil 17, and then splits again. Reach vessel 14. On the other hand, the clockwise light exits the optical splitter 14 and enters the other end of the optical fiber coil 17, propagates counterclockwise in the optical fiber coil 17, and then the phase modulator.
After being phase-modulated by 16, it reaches the optical splitter 14 again. In the optical branching device 14, the clockwise light and the counterclockwise light propagating through the optical fiber coils 17 meet and interfere with each other. At this time, the right-handed light and the left-handed light undergo a periodic phase shift by the phase modulator 16, so that a periodic phase difference occurs between the right-handed light and the left-handed light. For example, phase modulator 16
When the frequency f m of the modulation signal that drives the optical fiber is 1 / (2τ) (τ is the time during which light propagates through the optical fiber coil 17), the optical branching device 14
The phase difference between the right-handed light and the left-handed light combined in step 1 changes in 2τ cycles. For this reason, the interference light obtained by combining these two lights is repeatedly strengthened or weakened with each other in the cycle τ, that is, the light whose intensity changes in the cycle τ. The intensity of the interference light changes in the cycle τ according to the phase difference between the clockwise light and the counterclockwise light.

光分岐器14よりの干渉光は偏光子13を通じ、光分岐器
12に達し、2つの光に分岐され、その一方は光源11に戻
り、他方は光検出器21で電気信号に変換される。この電
気信号は位相変調周波数fmの2倍の周波数、1/τで変化
する信号となる。
The interference light from the optical splitter 14 passes through the polarizer 13,
The light reaches 12 and is split into two lights, one of which returns to the light source 11 and the other is converted into an electric signal by the photodetector 21. This electric signal becomes a signal that changes at a frequency twice the phase modulation frequency f m and 1 / τ.

光ファイバコイル17に、その軸心を中心とする角速度
が印加されると、サニャック効果により、右回り光と左
回り光との間に、その入力角速度に応じた位相差が生じ
る。このため、光検出器21の出力電気信号にその位相差
に応じて、位相変調周波数fmの成分が現れる。光検出器
21の出力は同期検波回路22において位相変調周波数の参
照信号で同期検波される。入力角速度がゼロの場合は前
述したように、光検出器21の出力は位相変調周波数の偶
数倍成分のみ、主として2倍の成分のみであるから同期
検波回路22の出力はゼロであるが、角速度が入力される
と、光検出器21の出力に位相変調周波数と同一周波数の
成分が生じ、その入力角速度の方向及び大きさに応じた
極性及びレベルの出力が同期検波回路22から得られ、こ
れが出力端子23へ供給され、入力角速度を検出すること
ができる。位相変調器16に供給する位相変調信号及び同
期検波回路22へ供給する参照信号は変調信号発生器24で
作られる。
When an angular velocity about the axis is applied to the optical fiber coil 17, a phase difference corresponding to the input angular velocity is generated between the clockwise light and the counterclockwise light due to the Sagnac effect. Therefore, a component of the phase modulation frequency f m appears in the output electric signal of the photodetector 21 according to the phase difference. Photo detector
The output of 21 is synchronously detected by the synchronous detection circuit 22 with the reference signal of the phase modulation frequency. When the input angular velocity is zero, as described above, the output of the photodetector 21 is only an even multiple component of the phase modulation frequency, mainly the double component, so the output of the synchronous detection circuit 22 is zero. Is input, a component having the same frequency as the phase modulation frequency is generated at the output of the photodetector 21, and an output of polarity and level according to the direction and magnitude of the input angular velocity is obtained from the synchronous detection circuit 22. It is supplied to the output terminal 23, and the input angular velocity can be detected. The phase modulation signal supplied to the phase modulator 16 and the reference signal supplied to the synchronous detection circuit 22 are generated by the modulation signal generator 24.

「発明が解決しようとする課題」 従来の光干渉角速度計においては、光源11から出射さ
れた光を分岐する光分岐器12の分岐比が1対1に設定さ
れているため、光素子の損失がゼロとし、光源11からの
入射光量を100とすると、偏光子13と終端素子15とに分
岐された光の光量は50ずつとなり、この50の光量が光フ
ァイバコイル17より戻り、光源11へのもどり光の光量と
光検出器21への信号光の光量は25ずつとなり、光学系の
信号対雑音比は大きくとれるが、同時に光源11へのもど
り光量も最大となってしまい、光干渉角速度計の性能が
劣化する欠点があった。
[Problems to be Solved by the Invention] In the conventional optical interference angular velocity meter, since the branching ratio of the optical branching device 12 that branches the light emitted from the light source 11 is set to 1: 1, the loss of the optical element is caused. Is zero and the incident light amount from the light source 11 is 100, the light amount of the light branched into the polarizer 13 and the terminating element 15 is 50, and the light amount of 50 is returned from the optical fiber coil 17 to the light source 11. The amount of return light and the amount of signal light to the photodetector 21 are 25, respectively, and the signal-to-noise ratio of the optical system can be large, but at the same time, the amount of return light to the light source 11 is also maximized, and the optical interference angular velocity There is a drawback that the performance of the meter deteriorates.

つまり、光干渉角速度計に使用されている光源11は半
導体レーザ等のように光共振器を利用したものが多い。
通常、半導体レーザは、レーザのチップの両端のへき開
面を反射鏡として光の共振器を構成し、この共振器で共
振した光をレーザ光として取り出している。このように
半導体レーザ等のように光の共振を利用した光源におい
ては、半導体レーザチップのへき開面以外のところから
の反射光、あるいはもどり光があると、この反射光、あ
るいはもどり光がレーザチップに入射することによっ
て、半導体レーザを構成している共振器のほかに、別の
共振器が構成されてしまう。この別の共振器は、半導体
レーザの外部に構成されるため外部共振器と呼ばれてい
る。この外部共振器が形成されると、光源のスペクトラ
ム形状、中心波長、可干渉性等が変動する。このような
現象は光干渉角速度計に良く用いられるスーパールミネ
ッセントダイオード(SLD)においても引き起こされる
ことが報告されている。
That is, the light source 11 used in the optical interference angular velocity meter often uses an optical resonator such as a semiconductor laser.
Usually, a semiconductor laser constitutes a resonator of light by using cleavage planes at both ends of a laser chip as reflecting mirrors, and the light resonated by this resonator is taken out as laser light. As described above, in a light source utilizing the resonance of light such as a semiconductor laser, when there is a reflected light or a returning light from a portion other than the cleavage plane of the semiconductor laser chip, the reflected light or the returning light causes the laser chip to return. When incident on, another resonator will be formed in addition to the resonator forming the semiconductor laser. This other resonator is called an external resonator because it is formed outside the semiconductor laser. When this external resonator is formed, the spectrum shape, center wavelength, coherence, etc. of the light source change. It has been reported that such a phenomenon is also caused in a super luminescent diode (SLD) which is often used in an optical interference angular velocity meter.

光干渉角速度計において光源11のスペクトラム形状、
中心波長、可干渉性が変動することは致命的であり、特
に中心波長の変動は、直接光干渉角速度計のスケールフ
ァクタの変動に結びつくため問題となる。なぜなら、光
干渉角速度計のスケールファクタは、光源11の波長の関
数となるから、波長変動がスケールファクタの変動に結
びつく。また、光源11の可干渉性の変動は、光干渉角速
度計内での反射、散乱光によって生じるバイアスエラー
量を変動させるため、これも大きな問題となる。
The spectrum shape of the light source 11 in the optical interference gyro,
The fluctuation of the center wavelength and coherence is fatal, and the fluctuation of the center wavelength is a problem because it directly leads to the fluctuation of the scale factor of the optical interference gyro. Because the scale factor of the optical coherence gyro is a function of the wavelength of the light source 11, the wavelength variation leads to the scale factor variation. Further, the fluctuation of the coherence of the light source 11 also changes the bias error amount caused by the reflected and scattered light in the optical interference gyro, which is also a big problem.

この発明はスケールファクタ変動、バイアスエラーを
引き起こす光源の波長変動、可干渉性の変動の原因とな
る光源へのもどり光を抑え、スケールファクタ変動およ
びバイアスエラー量を低減した光干渉角速度計を提供す
ることを目的とする。
The present invention provides an optical coherent angular velocity meter that reduces the scale factor fluctuation and the amount of bias error by suppressing the returning light to the light source that causes the scale factor fluctuation, the wavelength fluctuation of the light source causing the bias error, and the coherence fluctuation. The purpose is to

「課題を解決するための手段」 この発明によればループ状光伝送路からの戻った干渉
光を光検出器側と光源側とに分岐する光分岐器は、光源
側に分岐される光量より光検出器側へ分岐される光量が
大となるように分岐比が選定されている。つまりこの光
分岐器の分岐比は1:1からずらされており、光源側の光
量:光検出器側の光量が例えば5:95〜40:60、好ましく
は20:80乃至30:70程度に選定される。
[Means for Solving the Problem] According to the present invention, the optical branching device for branching the returned interference light from the loop-shaped optical transmission line to the photodetector side and the light source side is The branching ratio is selected so that the amount of light branched to the photodetector side is large. That is, the branching ratio of this optical branching device is shifted from 1: 1 and the light amount on the light source side: the light amount on the photodetector side is, for example, 5:95 to 40:60, preferably about 20:80 to 30:70. Selected.

このような分岐比に選定されているため、光源よりの
光はループ状光伝送路側よりも終端素子側へ多く分岐さ
れ、ループ状光伝送路側の光量が減少し、光学系の信号
対雑音比が小さくなるので、必要に応じてこの信号対雑
音比が所要値以上になるように光源の光量を従来より大
とする。一方ループ状光伝送路を伝搬してきた信号光
(干渉光)、あるいは、光ファイバ内の各点からのレイ
リー散乱光、ファイバ融着点からの反射光等の光源への
戻り光量を低減させることができるため、それによって
引き起こされる光源のスペクトラム形状変動、中心波長
変動、可干渉性の変動を低減することが可能となる。そ
の結果、これら光源特性の変動によってもたらされる光
干渉角速度計のスケールファクタエラーおよびバイアス
エラーを低減させることができる。
Since such a branching ratio is selected, the light from the light source is branched to the terminating element side more than the loop optical transmission line side, the light amount on the loop optical transmission line side is reduced, and the signal-to-noise ratio of the optical system is reduced. Therefore, the light amount of the light source is made larger than the conventional one so that the signal-to-noise ratio becomes a required value or more. On the other hand, to reduce the amount of signal light (interference light) propagating through the loop optical transmission line, or Rayleigh scattered light from each point in the optical fiber, reflected light from the fiber fusion point, etc. Therefore, it is possible to reduce the fluctuation of the spectrum shape of the light source, the fluctuation of the central wavelength, and the fluctuation of the coherence caused by the fluctuation. As a result, it is possible to reduce the scale factor error and the bias error of the optical interference gyro which are caused by the variation of these light source characteristics.

「実施例」 第1図にこの発明の実施例を示し、第3図と対応する
部分に同一符号を付けてある。この発明では光源11から
の光は分岐比が、この例では1:4の光分岐器25に入射さ
れ、光分岐器25により2分された光中の光量が少ない方
が偏光子13側へ入射され、多い方が終端素子15へ入射さ
れる。光ファイバコイル17から戻った干渉光は光分岐器
25に入射し、光源11側と光検出器21側とに分岐される。
[Embodiment] FIG. 1 shows an embodiment of the present invention, in which parts corresponding to those in FIG. In the present invention, the light from the light source 11 has a branching ratio of 1: 4 in this example, and the smaller the amount of light in the light split by the light splitter 25 is toward the polarizer 13 side. It is incident, and the larger one is incident on the terminating element 15. The interference light returned from the optical fiber coil 17 is an optical branching device.
It is incident on 25 and is branched to the light source 11 side and the photodetector 21 side.

このように構成されているから、光素子の損失がゼロ
とし、光源11からの光の光量を100とすると、偏光子13
側への光の光量は20、終端子15側への光の光量は80とな
り、戻って来た干渉光の光量は20であるから、光源11へ
のもどり光の光量は4となり、光検出器21への信号光の
光量は16となる。このように光源11へのもどり光が従来
よりも可成り少なくなり、それだけ光源11のスペクトラ
ム形状、中心波長、可干渉性が変動し難いものとなり、
光ファイバジャイロのスケールファクタやバイアスエラ
ーも変動が少なくなる。
With this configuration, assuming that the loss of the optical element is zero and the amount of light from the light source 11 is 100, the polarizer 13
The amount of light to the side is 20, the amount of light to the side of the terminator 15 is 80, and the amount of interference light that has returned is 20, so the amount of return light to the light source 11 is 4 and light detection The quantity of signal light to the device 21 is 16. In this way, the return light to the light source 11 becomes considerably smaller than before, and the spectrum shape of the light source 11, the center wavelength, and the coherence are less likely to change,
Variations in the scale factor and bias error of the optical fiber gyro are reduced.

上述においてはこの発明をオープンループ光干渉角速
度計に適用したが、クローズドループ光干渉角速度計に
も適用することができる。その例を第2図に第1図と対
応する部分に同一符号を付けて示す。つまり同期検波回
路22の出力が鋸歯状波発生回路27へ供給され、鋸歯状波
発生回路27はその入力の極性に応じた傾斜方向で、入力
の大きさに応じた傾斜角度で鋸歯状波(段階状鋸歯状波
の場合もある)信号を発生し、その鋸歯状波信号で、光
ファイバコイル17の一端と光分岐器14との間に直列に挿
入された位相変調器28を位相変調し、同期検波回路22の
出力がゼロになるように負帰還制御する。この結果、入
力角速度の極性に応じた極性で、かつ入力角速度の大き
さに応じた周波数の鋸歯状波信号が鋸歯状波発生回路27
より得られ、その鋸歯状波信号と同一周波数のパルス
が、その鋸歯状波信号の極性に応じて出力端子29a、29b
の何れかに出力される。
Although the present invention is applied to the open-loop optical interference angular velocity meter in the above description, it can also be applied to the closed-loop optical interference angular velocity meter. An example thereof is shown in FIG. 2 with the same reference numerals attached to the parts corresponding to those in FIG. That is, the output of the synchronous detection circuit 22 is supplied to the sawtooth wave generation circuit 27, and the sawtooth wave generation circuit 27 has a sawtooth wave (in a tilt direction according to the polarity of the input and at a tilt angle according to the magnitude of the input). Signal (which may be a stepped sawtooth wave), and the sawtooth wave signal phase modulates a phase modulator 28 inserted in series between one end of the optical fiber coil 17 and the optical splitter 14. Negative feedback control is performed so that the output of the synchronous detection circuit 22 becomes zero. As a result, a sawtooth wave signal having a polarity according to the polarity of the input angular velocity and a frequency corresponding to the magnitude of the input angular velocity is generated by the sawtooth wave generation circuit 27.
A pulse having the same frequency as that of the sawtooth signal is obtained from the output terminals 29a and 29b according to the polarity of the sawtooth signal.
Is output to any of

光分岐器25としては、プリズムを用いたいわゆるバル
ク形のもの、2本の光ファイバのクラフドを研磨して互
いに接合して互いに結合させた光ファイバカプラ、2本
の光ファイバを融着、延伸した光ファイバカプラ、光導
波路よりなる光方向性結合器、光導波路よりなるダブル
Y形の分岐器などを用いることができる。
As the optical branching device 25, a so-called bulk type using a prism is used. An optical fiber coupler in which a clough of two optical fibers is polished and bonded to each other to be bonded to each other, and two optical fibers are fused and extended. An optical fiber coupler, an optical directional coupler including an optical waveguide, a double Y-shaped branching device including an optical waveguide, or the like can be used.

「発明の効果」 以上述べたようにこの発明によれば、光源からの光を
ループ状光伝送路側へ分岐すると共に、ループ状光伝送
路から戻った左、右回り光の干渉光を光検出器側と光源
側とに分岐する光分岐器として、干渉光が光源側より光
検出器側へ分岐される量が多くなるように分岐比が選定
されているため、光源へのもどり光の光量が少なく、光
源のスペクトラム形状、中心波長、可干渉性などの光源
特性の変動量が従来より少なくなり、その結果、光干渉
角速度計のスケールファクタ変動、バイアスエラーが低
減される。
[Advantages of the Invention] As described above, according to the present invention, the light from the light source is branched to the side of the loop-shaped optical transmission line, and the interference light of the left-handed and right-handed light returning from the loop-shaped optical transmission line is detected. As an optical branching device that splits the interference light into the light source side and the light source side, the branching ratio is selected so that the amount of interference light that branches from the light source side to the photodetector side increases, so the amount of return light to the light source As a result, the fluctuation amount of the light source characteristics such as the spectrum shape of the light source, the central wavelength, and the coherence becomes smaller than the conventional one, and as a result, the scale factor fluctuation and the bias error of the optical interference angular velocity meter are reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すブロック図、第2図は
この発明の他の実施例を示すブロック図、第3図は従来
の光干渉角速度計を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram showing another embodiment of the present invention, and FIG. 3 is a block diagram showing a conventional optical interference angular velocity meter.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光源からの光を第1光分岐器により分岐
し、その一方の分岐出力光を第2光分岐器により2つの
光に分岐し、その一方の光をループ状光伝送路の一端に
右回り光として入射し、他の光を上記ループ状光伝送路
の他端に左回り光として入射し、そのループ状光伝送路
を通過した上記右回り光と上記左回り光とを上記第2光
分岐器で合成して干渉させ、その干渉光を上記第1光分
岐器で上記光源と光検出器とに分岐供給し、その光検出
器の出力から、上記ループ状光伝送路にその軸心まわり
に印加された角速度を検出する光干渉角速度計におい
て、 上記第1光分岐器における上記光源側への分岐光量より
上記光検出器側への分岐光量が大となるように第1光分
岐器の分岐比が選定されていることを特徴とする光干渉
角速度計。
1. A light from a light source is branched by a first optical branching device, one of the branched output lights is branched by a second optical branching device into two lights, and one of the light beams is output from a loop optical transmission line. The light is incident on one end as clockwise light, the other light is incident on the other end of the loop-shaped optical transmission line as counterclockwise light, and the clockwise light and the counterclockwise light that have passed through the loop-shaped optical transmission line are The second optical branching device synthesizes and causes interference, and the interference light is branched and supplied to the light source and the photodetector by the first optical branching device, and the loop-shaped optical transmission line is output from the output of the photodetector. In the optical interference gyroscope for detecting the angular velocity applied around its axis, the first optical branching device is configured so that the branching light amount to the photodetector side is larger than the branching light amount to the light source side in the first optical branching device. An optical interference angular velocity meter characterized in that a branching ratio of one optical branching device is selected.
JP2324013A 1990-08-31 1990-11-27 Optical interference gyro Expired - Fee Related JP2548044B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2324013A JP2548044B2 (en) 1990-11-27 1990-11-27 Optical interference gyro
EP91915269A EP0502196B1 (en) 1990-08-31 1991-08-29 Optical interference angular velocity meter
DE69115877T DE69115877T2 (en) 1990-08-31 1991-08-29 DEVICE FOR MEASURING ANGLE SPEED THROUGH OPTICAL INTERFERENCE
CA002071882A CA2071882C (en) 1990-08-31 1991-08-29 Optical interferometric gyro having reduced light to the light source
US07/848,967 US5327214A (en) 1990-08-31 1991-08-29 Optical interferometric gyro having reduced return light to the light source
PCT/JP1991/001149 WO1992004597A1 (en) 1990-08-31 1991-08-29 Optical interference angular velocity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324013A JP2548044B2 (en) 1990-11-27 1990-11-27 Optical interference gyro

Publications (2)

Publication Number Publication Date
JPH04194614A JPH04194614A (en) 1992-07-14
JP2548044B2 true JP2548044B2 (en) 1996-10-30

Family

ID=18161164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324013A Expired - Fee Related JP2548044B2 (en) 1990-08-31 1990-11-27 Optical interference gyro

Country Status (1)

Country Link
JP (1) JP2548044B2 (en)

Also Published As

Publication number Publication date
JPH04194614A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
JP2722005B2 (en) Passive ring resonator gyro with polarization rotating ring path
JP3692474B2 (en) Fiber optic gyro
US4661964A (en) Resonant waveguide laser gyro with a switched source
JPS61277014A (en) Ring interferometer device
US5465149A (en) Lightwave phase control for reduction of resonator fiber optic gyroscope Kerr effect error
US6014217A (en) Fiber optic gyroscope scattering error reduction
JPH06129859A (en) Optical fiber gyro taking out signal from light source
US4208128A (en) Interferometer gyro using heterodyne phase detection without severe light source coherence requirements
Sanders et al. Development of compact resonator fiber optic gyroscopes
US6563589B1 (en) Reduced minimum configuration fiber optic current sensor
US5349441A (en) Fiber optic gyroscope refractive index induced error compensation
JPS6337212A (en) Method for reading rotational speed by passive optical resonator
US5327214A (en) Optical interferometric gyro having reduced return light to the light source
US5517305A (en) Brillouin ring laser gyro
JPS63108221A (en) Triaxial fiber optic sling interferometer
US5384637A (en) Fiber optic gyroscope modulation amplitude control
US5394242A (en) Fiber optic resonant ring sensor and source
US5453836A (en) Fiber optic laser rotation sensor utilizing a fiber loop reflector
JP2766974B2 (en) Passive ring resonant optical gyro
JP2548044B2 (en) Optical interference gyro
US5285257A (en) Optic rotation sensing apparatus and related method including providing synchronous detection at a phase at which the AM noise is minimized
JPS6135486B2 (en)
EP0501002B1 (en) Optic rotation sensing apparatus and related method
CN113532413B (en) Light source relative intensity noise suppression device based on F-P cavity
US4720193A (en) Optical fiber gyroscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees