JPH0663866B2 - Wavelength detector - Google Patents

Wavelength detector

Info

Publication number
JPH0663866B2
JPH0663866B2 JP59210728A JP21072884A JPH0663866B2 JP H0663866 B2 JPH0663866 B2 JP H0663866B2 JP 59210728 A JP59210728 A JP 59210728A JP 21072884 A JP21072884 A JP 21072884A JP H0663866 B2 JPH0663866 B2 JP H0663866B2
Authority
JP
Japan
Prior art keywords
light
wavelength
grating
sin
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59210728A
Other languages
Japanese (ja)
Other versions
JPS6189527A (en
Inventor
義徳 太田
雄三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59210728A priority Critical patent/JPH0663866B2/en
Publication of JPS6189527A publication Critical patent/JPS6189527A/en
Publication of JPH0663866B2 publication Critical patent/JPH0663866B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザの如き、周囲温度や注入電流に
よって揺動する発振波長を安定化する装置に関する。
Description: TECHNICAL FIELD The present invention relates to a device such as a semiconductor laser that stabilizes an oscillation wavelength oscillated by an ambient temperature or an injection current.

(従来技術とその問題点) 半導体レーザは小型で消費電力が小さく、比較的高い光
出力を得られ、直接に高速変調が可能であるなどの幾多
の特長を有し、光通信装置や光ディスク等の光情報処理
など広く応用が拡がりつゝある。周知のごとく半導体レ
ーザは、周囲温度や注入電流による発熱などにより結晶
の屈折率が変化し、光学的な共振器長が変わり、発振波
長が変化しやすいという特性を有する。通常、波長の変
化率は温度1度当り3〜4オングストローム程度ある。
半導体レーザ光をエネルギーとして使用する通常の光通
信装置や、光ディスク装置などでは上記の波長の温度変
動がシステム性能に与える影響は大きくない。しかしな
がら、波長に対して特性が依存する光学現象、例えば格
子による光の回折効果や光波の干渉効果等を利用する場
合には、上記の半導体レーザのもつ発振波長の温度依存
性は影響が大きすぎ使用しにくい。例えば、音波による
光の回折効果を使った装置の一例、超音波セルに印加す
る高周波信号の周波数スペクトルをセルによって回折さ
れる光の回折位置によって検出する音響光学スペクトラ
ムアナライザーのスペクトル解析の分解能は光波の波長
の安定度の影響を受けるため、半導体レーザを光源とし
て用いることは難かしい。更に光の干渉を使う光センサ
ー、例えば円形状に巻かれた光ファイバ中をこの円形ル
ープに対して右回りに透過する光波と左回りに透過する
光波とを干渉させ、ファイバループの作る面内で発生す
る回転角速度を2つの光波の位相差を干渉光強度変化と
して検出する光ファイバジャイロ装置では、左右両回り
の光の光路差は全く同一に設定するのは難しい。光源の
波長の揺動は光路差を介して干渉光強度の変化を招来す
る。即ち、検出信号にドリフトが付加され、測定精度の
低下を来たす。
(Prior art and its problems) Semiconductor lasers have many features such as small size, low power consumption, relatively high optical output, and direct high-speed modulation. It has a wide range of applications such as optical information processing. As is well known, the semiconductor laser has a characteristic that the refractive index of the crystal changes due to the ambient temperature or heat generated by the injection current, the optical resonator length changes, and the oscillation wavelength easily changes. Generally, the rate of change of wavelength is about 3 to 4 angstroms per degree of temperature.
In a normal optical communication device that uses semiconductor laser light as energy, an optical disc device, or the like, the above-mentioned temperature fluctuation of the wavelength does not have a great influence on system performance. However, when an optical phenomenon whose characteristics depend on the wavelength, such as the diffraction effect of light by a grating or the interference effect of light waves, is used, the temperature dependence of the oscillation wavelength of the above semiconductor laser is too large. Hard to use. For example, one example of a device that uses the diffraction effect of light by sound waves, the resolution of the spectrum analysis of an acousto-optic spectrum analyzer that detects the frequency spectrum of the high-frequency signal applied to the ultrasonic cell by the diffraction position of the light diffracted by the cell is It is difficult to use a semiconductor laser as a light source because it is affected by the stability of the wavelength. Further, an optical sensor that uses light interference, for example, in a circularly wound optical fiber, the light waves that pass clockwise and counterclockwise with respect to this circular loop are caused to interfere with each other, and the plane formed by the fiber loop In the optical fiber gyro device that detects the phase difference between the two light waves as the interfering light intensity change, it is difficult to set the optical path difference between the left and right lights exactly the same. The fluctuation of the wavelength of the light source causes a change in the intensity of the interference light through the optical path difference. That is, a drift is added to the detection signal, resulting in a decrease in measurement accuracy.

波長を検出する方法として良く知られている技術として
は、分光器の技術がある。空間周波数の稠密な鋸歯状反
射格子に被測定光を照射し反射回折させ、定められた方
向に位置するスリットを透過するように、前記反射格子
を回転させ、その回転角度から波長を知るものである。
A well-known technique for detecting a wavelength is a spectroscope technique. It radiates the light to be measured on a dense sawtooth reflection grating with spatial frequency, reflects and diffracts it, and rotates the reflection grating so that it passes through a slit located in a specified direction, and the wavelength can be known from the rotation angle. is there.

半導体レーザを光学装置の光源に用いる利点の1つは、
それが小型であり、装置全体が小型化することにある。
光ディスク装置の光ピックアップに観られるように、半
導体レーザ放射光を平行光束化し、偏光分離する等の周
辺光回路を含めても煙草箱大の大きさ程度にしか過ぎな
い。このような小型装置における半導体レーザの波長揺
動を検出するのに前述の分光器の技術を用いることは困
難である、反射格子の回折角度から波長変化を検出する
本方法では、波長弁別分解能を高めるのには反射格子か
らスリットまでの光路長を長大にとらなければならない
からである。このため装置サイズが大型化することを免
れることは出来ない。
One of the advantages of using a semiconductor laser as the light source of an optical device is
It is small, and the entire device is small.
As seen in an optical pickup of an optical disk device, a peripheral light circuit for converting a semiconductor laser radiation into a parallel beam and splitting the polarized light is only about the size of a cigarette box. It is difficult to use the above-mentioned spectroscopic technique to detect the wavelength fluctuation of the semiconductor laser in such a small device.In the present method of detecting the wavelength change from the diffraction angle of the reflection grating, the wavelength discrimination resolution is This is because the optical path length from the reflection grating to the slit must be long in order to increase the height. For this reason, the device size cannot be avoided.

(発明の目的) 本発明の目的は、上述のような従来の欠点を除去せしめ
て、小型で量産性に優れる波長検出装置を提供すること
にある。
(Object of the Invention) An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a small-sized wavelength detection device excellent in mass productivity.

(発明の構成) 本発明によれば、中心波長λのレーザ光を平行光束化し
た光束の一部を光路より分離し、格子ピッチαの透過型
回折格子にほぼ sinθ+1=λ/α なる入射角θで入射し、前記回折格子の透過回折光、
反射回折光の強度の差を測定することにより、前記レー
ザ光の波長λの変化を検出する波長検出装置が得られ
る。
(Structure of the Invention) According to the present invention, a part of a light beam obtained by converting a laser beam having a central wavelength λ into a parallel light beam is separated from an optical path, and a sinusoidal diffraction grating having a grating pitch α is approximately sin θ i + 1 = λ / α. Incident at an incident angle θ i and transmitted and diffracted by the diffraction grating,
By measuring the difference in the intensity of the reflected diffracted light, a wavelength detection device for detecting the change in the wavelength λ of the laser light can be obtained.

(本発明の作用原理) 次に図面を参照して、この発明を詳細に説明する。第2
図は、この発明の原理を説明するために回折格子に対す
る光の入射、回折の関係を示す断面図である。
(Principle of Operation of the Present Invention) Next, the present invention will be described in detail with reference to the drawings. Second
The figure is a cross-sectional view showing the relationship between incidence and diffraction of light on a diffraction grating in order to explain the principle of the present invention.

図においては、11が格子面であることを示すために、格
子を実際よりも拡大してある。第2図では入射光12が図
に示した入射角θで格子の基板面13から入射する。基
板面では入射光は屈折し、基板の屈折率をnとすると屈
折角θは、次式の開係となる。
In the figure, the lattice is enlarged from the actual size to show that 11 is a lattice plane. In FIG. 2, incident light 12 is incident from the substrate surface 13 of the grating at the incident angle θ 1 shown in the figure. Incident light is refracted on the substrate surface, and the refraction angle θ 2 is given by the following equation, where n is the refractive index of the substrate.

sinθ=nsinθ ……(1) 屈折光14は、格子面11で次式に従い回折して、点線で示
した回折光15となって空気中に出る。
sin θ 1 = ns in θ 2 (1) The refracted light 14 is diffracted on the grating surface 11 according to the following equation, and becomes diffracted light 15 shown by a dotted line and goes out into the air.

nsinθ+sinθ=λ/α ……(2) こゝに、λは光の波長、αは格子のピッチを表わす。
(2)式に(1)式を代入すると、次式となる。
nsinθ 2 + sinθ 3 = λ / α (2) where λ is the wavelength of light and α is the pitch of the grating.
Substituting equation (1) into equation (2) yields the following equation.

sinθ+sinθ=λ/α ……(3) (3)式で、λ/αが1よりも大きい場合について考察す
る。入射角θを90゜から0゜の方向へ小さくして行く
と、回折角θは、大きくなって行き、入射角θが sinθ=λ/α−1 ……(4) の時、θは90゜になり、回折光は空気中に出て来なく
なる。この時、基板内では、次式が成立する。
sin θ 1 + sin θ 3 = λ / α (3) Consider the case where λ / α is larger than 1 in the equation (3). When the incident angle θ 1 is decreased from 90 ° to 0 °, the diffraction angle θ 3 increases, and when the incident angle θ 1 is sin θ 1 = λ / α-1 (4) , Θ 3 becomes 90 °, and the diffracted light does not come out into the air. At this time, the following equation is established in the substrate.

nsinθ+nsinθ=λ/α ……(5) したがってnsinθ=1となり、16で示す反射回折光が
生じる。ところが、sinθ=1/nであるから、回折
光16は基板面13で全反射し、反射光17となる。反射光17
は回折光16と鏡面対称であるから格子面11で反射回折光
18を生じる。反射回折光18は基板面13で屈折し、屈折光
19となり空気中に出る。以上説明したように(4)式のθ
を境としてsinθ+1>λ/αの時は回折光19は生
じず格子面側から回折光15を生じる。
nsinθ 2 + nsinθ 4 = λ / α (5) Therefore, nsinθ 4 = 1 and reflected diffracted light 16 is generated. However, since sin θ 4 = 1 / n, the diffracted light 16 is totally reflected by the substrate surface 13 and becomes reflected light 17. Reflected light 17
Is a mirror symmetry with the diffracted light 16 and is reflected by the grating surface 11
Yields 18. The reflected diffracted light 18 is refracted at the substrate surface 13,
It becomes 19 and goes out into the air. As explained above, θ in Eq. (4)
When sin θ 1 +1> λ / α with 1 as the boundary, the diffracted light 19 is not generated and the diffracted light 15 is generated from the grating surface side.

sinθ+1<λ/αの時は、回折光19を生じ、格子面
側の回折光15は生じない。従って、回折光19と回折光15
とを差動で検出することにより、レーザ光の波長λのλ
/α=sinθ+1を満たす値からのずれを検出するこ
とができる。また、異なる検出法として回折光15を生じ
る条件、すなわちsinθ+1>λ/αとなるように格
子へ光ビームの入射角θを設定しておく。
When sin θ 1 +1 <λ / α, diffracted light 19 is generated, and diffracted light 15 on the grating surface side is not generated. Therefore, diffracted light 19 and diffracted light 15
By differentially detecting and,
It is possible to detect the deviation from the value that satisfies / α = sin θ 1 +1. Further, as a different detection method, the incident angle θ 1 of the light beam on the grating is set in advance so that diffracted light 15 is generated, that is, sin θ 1 +1> λ / α.

回折光15の出射角度θは(3)式より θ=sin-1(λ/α−sinθ) ……(6) から、波長λの変化により回折光15の出射角度θが変
化するため、2分割光検出器によってこの角度変化、即
ち波長変化を検出することができる。
The output angle θ 3 of the diffracted light 15 is calculated from the formula (3) as follows: θ 3 = sin −1 (λ / α-sin θ 1 ) ... (6) Therefore, the output angle θ 3 of the diffracted light 15 is changed by the change of the wavelength λ. Therefore, the two-divided photodetector can detect this angle change, that is, the wavelength change.

以上が本発明の原理である。The above is the principle of the present invention.

本発明に用いる回折格子の表裏を逆転しても、同様の効
果が得られる。
The same effect can be obtained by reversing the front and back of the diffraction grating used in the present invention.

第3図は、第2図の回折格子の表裏を逆転した場合の本
発明の原理を示す断面図である。本図においても21が格
子面であることを示すために、格子を実際よりも拡大し
てある。第3図では入射光20が図に示したθで格子の
格子面21から入射する。
FIG. 3 is a sectional view showing the principle of the present invention when the front and back of the diffraction grating of FIG. 2 are reversed. Also in this figure, the lattice is enlarged from the actual size to show that 21 is a lattice plane. In FIG. 3, incident light 20 is incident from the grating surface 21 of the grating at θ 5 shown in the drawing.

格子面では入射光は回折し、基板の屈折率をnとする
と、回折角θは次式の関係となる。
The incident light is diffracted on the lattice plane, and the diffraction angle θ 6 has the following relationship, where n is the refractive index of the substrate.

sinθ+nsinθ=λ/α ……(7) 回折光22は、基板面23で次式に従い屈折して点線で示し
た屈折光24となって空気中に出る。
sin θ 5 + nsin θ 6 = λ / α (7) The diffracted light 22 is refracted on the substrate surface 23 according to the following equation and becomes refracted light 24 shown by a dotted line and goes out into the air.

nsinθ=sinθ ……(8) (7)式を(6)式に代入すると、次式となる。nsin θ 6 = sin θ 7 (8) Substituting equation (7) into equation (6) yields the following equation.

sinθ+sinθ=λ/α ……(9) こゝでも、(8)式でλ/αが1よりも大きい場合につい
て考察する。
sin θ 5 + sin θ 7 = λ / α (9) Again, consider the case where λ / α is larger than 1 in the equation (8).

入射角θを90゜から0゜の方向へ小さくして行くと屈
折角θは大きくなって行き、入射角θが sinθ=λ/α−1 ……(10) の時、θは90゜になり、屈折光は空気中に出て来なく
なり、基板面23で全反射する。全反射した光25は格子面
21で再び回折し、回折光26となって空気中に出る。以上
説明したように(9)式のθを境として、sinθ+1>
λ/αの時は回折光26は生じず、基板面側から屈折光24
を生じる。sinθ+1<λ/αの時は、回折光26を生
じ、基板面側の屈折光24は生じない。従って、前述と同
様回折光26と屈折光24とを差動で検出、または屈折光24
の角度変化を検出することにより光源の波長変化を検出
することができる。
When the incident angle θ 5 is decreased from 90 ° to 0 °, the refraction angle θ 7 increases, and when the incident angle θ 5 is sin θ 5 = λ / α-1 (10), θ 7 becomes 90 °, refracted light does not come out in the air, and is totally reflected by the substrate surface 23. Totally reflected light 25 is a lattice plane
It is diffracted again at 21 and becomes diffracted light 26 and goes out into the air. As explained above, with θ 5 of the equation (9) as a boundary, sin θ 5 +1>
When λ / α, diffracted light 26 does not occur, and refracted light 24
Cause When sin θ 5 +1 <λ / α, diffracted light 26 is generated and refracted light 24 on the substrate surface side is not generated. Therefore, similarly to the above, the diffracted light 26 and the refracted light 24 are differentially detected or the refracted light 24 is detected.
The wavelength change of the light source can be detected by detecting the change in the angle.

(実施例) 第1図は本発明の装置を波長安定化装置に応用した実施
例を示す構成図である。光源である半導体レーザ1の放
射光はコリメーティングレンズ2によって平行ビームに
される。平行ビームの光路中に挿入されたビームスブリ
ッタ3によって光束の一部が分離され回折格子4へ入射
される。回折格子4の格子ピッチα、半導体レーザ1の
中心波長λ、回折格子への入射角θはほぼ sinθ+1=λ/α を満たすように設定させられている。周囲温度の変動等
によって半導体レーザ1の発振波長は変化する。周囲温
度が低下し、発振波長が短波長にずれたとき、前述の如
く回折格子4の光入射側とは反対側の面から出射する光
9が現われる。波長が長波長にずれたとき、光入射側の
面から出射する光10が現われる。各々を光検出器5及び
6によって受光され増幅器7によって差動増幅され、半
導体レーザ1に設置されているペルチェ素子8への注入
電流が与えられる。この帰還系により発振波長がλ
なるように安定化される。
(Embodiment) FIG. 1 is a block diagram showing an embodiment in which the device of the present invention is applied to a wavelength stabilizing device. The emitted light of the semiconductor laser 1 which is the light source is collimated by the collimating lens 2. A part of the light flux is separated by the beam splitter 3 inserted in the optical path of the parallel beam and is incident on the diffraction grating 4. The grating pitch α of the diffraction grating 4, the center wavelength λ 0 of the semiconductor laser 1, and the incident angle θ i to the diffraction grating are set so as to substantially satisfy sin θ i + 1 = λ 0 / α. The oscillation wavelength of the semiconductor laser 1 changes due to fluctuations in the ambient temperature. When the ambient temperature decreases and the oscillation wavelength shifts to a short wavelength, the light 9 emitted from the surface of the diffraction grating 4 opposite to the light incident side appears as described above. When the wavelength is shifted to the long wavelength, the light 10 emitted from the surface on the light incident side appears. Each of them is received by the photodetectors 5 and 6 and differentially amplified by the amplifier 7, and an injection current is given to the Peltier device 8 installed in the semiconductor laser 1. This feedback system stabilizes the oscillation wavelength to λ 0 .

回折格子の数値例としては、λ=780nmで使う場合、入
射角をほぼ45゜とすると(4)式から格子ピッチは0.4569
μmとなる。このようなピッチ格子は2光束干渉で容易
に製作できる。ホトレジストに直接記録するためには、
波長441.6μmのHe−Cdレーザを用いて、入射角28.897
゜の等入射角で2光束を干渉させれば得られる。
As a numerical example of the diffraction grating, when used at λ = 780 nm, assuming that the incident angle is approximately 45 °, the grating pitch is 0.4569 from equation (4).
μm. Such a pitch grating can be easily manufactured by two-beam interference. To record directly to photoresist,
Incident angle 28.897 using He-Cd laser with wavelength 441.6 μm
It can be obtained by interfering two light beams at an equal incident angle of °.

周知の如く半導体レーザは温度のみならず、注入電流に
よっても波長が変化する。2分割検出器の差動出力を注
入電流に帰還を掛けても波長安定化を実現できる。
As is well known, the wavelength of the semiconductor laser changes not only with the temperature but also with the injection current. Wavelength stabilization can be realized even if the injected current is fed back to the differential output of the two-divided detector.

(発明の効果) 本発明に用いる回折格子は表面レリーフ格子として上記
に述べたようにホトレジストに製作した後、ニッケル電
鋳法で金型を製作することで、圧縮成形や射出成形によ
ってプラスチックに安価に量産できる。又ホトリソグラ
フィによってガラス表面をエッチングしても製作でき
る。
(Effect of the Invention) The diffraction grating used in the present invention is manufactured as a surface relief grating on a photoresist as described above, and then a metal mold is manufactured by a nickel electroforming method. Can be mass-produced. It can also be manufactured by etching the glass surface by photolithography.

以上述べたように本発明により小型で安価で量産性にす
ぐれた波長検出装置が得られる。
As described above, according to the present invention, it is possible to obtain a wavelength detecting device which is small, inexpensive, and excellent in mass productivity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1の実施例を示す構成図、第2図,
第3図は本発明の原理を示す回折格子の断面図である。 図において、1……半導体レーザ、2……コリメーティ
ングレンズ、3……ビームスプリッタ、4……回折格
子、5,6……光検出器、7……増幅器、8……ペルチェ
素子、11,21……格子面、13,23……基板面。
FIG. 1 is a block diagram showing the first embodiment of the present invention, FIG.
FIG. 3 is a sectional view of a diffraction grating showing the principle of the present invention. In the figure, 1 ... semiconductor laser, 2 ... collimating lens, 3 ... beam splitter, 4 ... diffraction grating, 5,6 ... photodetector, 7 ... amplifier, 8 ... Peltier element, 11 , 21 …… Lattice plane, 13,23 …… Substrate plane.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心波長λのレーザ光を格子ピッチαの透
過型回折格子に、ほぼ、 sinθ+1=λ/α なる入射角θで入射し、該回折格子の透過回折光及び
反射回折光の強度の差を測定することにより、前記レー
ザ光の波長の変化を検出することを特徴とする波長検出
装置。
1. A laser beam having a central wavelength λ is incident on a transmission diffraction grating having a grating pitch α at an incident angle θ i of sin θ i + 1 = λ / α, and the transmitted diffraction light and the reflection diffraction of the diffraction grating are incident. A wavelength detecting device, which detects a change in wavelength of the laser light by measuring a difference in light intensity.
JP59210728A 1984-10-08 1984-10-08 Wavelength detector Expired - Lifetime JPH0663866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59210728A JPH0663866B2 (en) 1984-10-08 1984-10-08 Wavelength detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59210728A JPH0663866B2 (en) 1984-10-08 1984-10-08 Wavelength detector

Publications (2)

Publication Number Publication Date
JPS6189527A JPS6189527A (en) 1986-05-07
JPH0663866B2 true JPH0663866B2 (en) 1994-08-22

Family

ID=16594121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59210728A Expired - Lifetime JPH0663866B2 (en) 1984-10-08 1984-10-08 Wavelength detector

Country Status (1)

Country Link
JP (1) JPH0663866B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5299212A (en) * 1993-03-10 1994-03-29 At&T Bell Laboratories Article comprising a wavelength-stabilized semiconductor laser
US5706301A (en) * 1995-08-16 1998-01-06 Telefonaktiebolaget L M Ericsson Laser wavelength control system
JP2005116063A (en) * 2003-10-08 2005-04-28 Tdk Corp Holographic memory reproducing device, holographic recording/reproducing device, holographic recording/reproducing method, and holographic recording medium
JP2020008720A (en) * 2018-07-09 2020-01-16 大日本印刷株式会社 Reflection type optical diffraction element, manufacturing method of reflection type optical diffraction element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391758A (en) * 1977-01-24 1978-08-11 Ritsuo Hasumi Optical digital element for light wave length meter
JPS59164924A (en) * 1983-03-03 1984-09-18 コルモーゲン コーポレイション Automatic correction system of calibrated wavelength

Also Published As

Publication number Publication date
JPS6189527A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
US5333144A (en) Diode laser device having a reflecting feedback element, and apparatus using the device
JP4722474B2 (en) Displacement detector
US6835924B2 (en) Optical encoder for detecting changes in diffraction interference patterns
US4357533A (en) Focus detector for an optical disc playback system
US20060250900A1 (en) Displacement detection apparatus, displacement measuring apparatus and fixed point detection apparatus
US4911512A (en) Waveguide type optical head
JPS625677A (en) Frequency-stabilized semiconductor laser element
US4806778A (en) Micro-displacement measuring apparatus using a semiconductor laser
CN103471527B (en) A kind of laser external cavity feedback low-angle rolling angle measurement system
JPH0663866B2 (en) Wavelength detector
JPH06174844A (en) Laser distance measuring apparatus
US3485559A (en) Angle measuring apparatus utilizing lasers
JPH02262064A (en) Laser doppler speedometer
EP0935131A2 (en) Surface plasmon resonance sensor with wavelength-stabilized laser light source
JPH0472163B2 (en)
JPS6355035B2 (en)
JP3044865B2 (en) Displacement information detection device and speedometer
JP3454870B2 (en) Optical displacement sensor
JP2990891B2 (en) Displacement information detection device and speedometer
JP2007178307A (en) Wavelength detector of laser light, and laser device
JPH04504471A (en) Reflex-activated detection device that remotely detects physical quantities
JPS58151509A (en) Optical measuring method of surface roughness
JPH07169090A (en) Optical information parallel recorder/reproducer
JPH0375801B2 (en)
JP2687631B2 (en) Interference signal processing method of absolute length measuring device