JPS61240647A - Manufacturing equipment for semiconductor - Google Patents

Manufacturing equipment for semiconductor

Info

Publication number
JPS61240647A
JPS61240647A JP8333185A JP8333185A JPS61240647A JP S61240647 A JPS61240647 A JP S61240647A JP 8333185 A JP8333185 A JP 8333185A JP 8333185 A JP8333185 A JP 8333185A JP S61240647 A JPS61240647 A JP S61240647A
Authority
JP
Japan
Prior art keywords
vacuum chamber
carrier
substrate
coil
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8333185A
Other languages
Japanese (ja)
Inventor
Toku Tokumasu
徳 徳増
Fumiya Matsui
松井 文哉
Toshihiko Fukuyama
福山 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Japan Inc
Original Assignee
Applied Materials Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Japan Inc filed Critical Applied Materials Japan Inc
Priority to JP8333185A priority Critical patent/JPS61240647A/en
Publication of JPS61240647A publication Critical patent/JPS61240647A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67709Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to accurately control temperature without frictional heat and to obtain a thin film of desired uniform thickness without particle by levitating a carrier for placing and conveying substrates by a magnetic force acting externally of a vacuum chamber. CONSTITUTION:Carriers 46 which place substrates 48 to be treated are aligned in the prescribed number on the support 56 of a conveyor 54 so that the carriers 46 are disposed in the first preliminary vacuum chamber 14. At this time, a permanent magnet 50 is followed to the movement of the carriers 46 to be moved so as not to be affected by the magnet 50. In the meantime, the preceding substrate 48 is vapor-phase grown in a vacuum chamber 12, and the substrate which has already been grown in the second preliminary vacuum chamber 16 is sequentially fed by a conveyor 58. A conveying mechanism for conveying by levitating by a magnetic force is employed as a noncontact type without slide, thereby accurately controlling the temperature without frictional heat.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体製造装置に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to semiconductor manufacturing equipment.

(背景技術およびその問題点) 半導体装置の一種であるCVn (化学的気相成長)装
置は、一般に真空チャンバー内に必要な反応ガスを導入
して、所要の薄膜を乱板上に形成するものである。この
場合、CVD装置が大型になると、真空チャンバー内へ
の基板の自動的な搬出入機構および真空チャンバー内で
の基板の移動機構が必要となる。
(Background technology and its problems) CVn (chemical vapor deposition) equipment, which is a type of semiconductor device, generally introduces a necessary reaction gas into a vacuum chamber to form a desired thin film on a disordered plate. It is. In this case, as the CVD apparatus becomes larger, a mechanism for automatically transporting the substrate into and out of the vacuum chamber and a mechanism for moving the substrate within the vacuum chamber are required.

このようなIli出人出槽機構動機構は、従来において
は、コンヘヤ方式、ローラ方式、ロボット装置等の機械
的な装置が採用されていた。これらにおいてはいずれも
駆動装置としてのモータが必要であり、また回転ローラ
とその軸との関係のように機械的な摺動部が必然的に介
在してくる。
Conventionally, mechanical devices such as a conveyor system, a roller system, and a robot system have been employed as the Ili turnout tank operating mechanism. All of these require a motor as a driving device, and mechanical sliding parts are inevitably involved, such as the relationship between a rotating roller and its shaft.

そして上記のモータが真空チャンバー内に配置されると
きは、モータからの発熱が真空ヂャンハ−外に放熱され
ず、真空チャンバー内温度が常に上昇することとなり、
真空チャンバー内の温度制御が困難となる問題がある。
When the above-mentioned motor is placed in a vacuum chamber, the heat generated from the motor is not radiated outside the vacuum chamber, and the temperature inside the vacuum chamber constantly rises.
There is a problem in that it is difficult to control the temperature inside the vacuum chamber.

また、RIE(ReactiveJon Etch)装
置においては真空チャンバー内に腐蝕性ガスが流れるの
で耐蝕性上問題となることがある。真空装置専用のモー
タが開発されてはいるが、モータが真空チャンバー内に
配置される限り、上述の問題は多少とも富に発生ずる。
Furthermore, in a RIE (Reactive Jon Etch) device, corrosive gas flows into the vacuum chamber, which may pose a problem in terms of corrosion resistance. Although motors specifically for vacuum devices have been developed, as long as the motor is located within a vacuum chamber, the above-mentioned problems will occur more or less frequently.

」二記のモータは、真空チャンバーの構造によっては真
空チャンバー外に配置することもできる。
The motor mentioned in ``2'' can also be placed outside the vacuum chamber depending on the structure of the vacuum chamber.

しかしながら真空チャンバー内におけるXY方向への伝
達機構たる歯車機構は真空チャンバー内に配置される必
要があり、また直接の1ull送体であるコンベヤ、ロ
ーラ、ロポント装置のアーム等も必然的に真空チャンバ
ー内に配置される。これらには前述のように多くの摺動
部があり、真空中での摩擦係数が大気中のそれと比して
極めて大きい(50倍程度)ことから、発生する摩擦熱
も大であり、やはり真空チャンバーの温度制御が困難と
なる。
However, the gear mechanism that is the transmission mechanism in the X and Y directions within the vacuum chamber must be placed inside the vacuum chamber, and the conveyor, roller, arm of the robot device, etc. that are the direct 1ull conveyors must also be placed inside the vacuum chamber. will be placed in As mentioned above, these have many sliding parts, and the coefficient of friction in a vacuum is extremely large (about 50 times) compared to that in the atmosphere, so the frictional heat generated is also large. Chamber temperature control becomes difficult.

周知のようにCVD装置は気相中あるいは基板表面での
化学反応により薄膜を形成するものであるから、化学反
応速度との関係で温度制御は均一な厚さの薄膜を得る」
−で極めて重要なファクターであるのであるか、上述の
ように従来の装置は温度制御に問題点があり、均一な厚
さの薄膜を高精度で得ることが困難であった。
As is well known, CVD equipment forms thin films through chemical reactions in the gas phase or on the surface of the substrate, so temperature control is important in relation to the chemical reaction rate to obtain thin films with uniform thickness.
- This is an extremely important factor, as mentioned above, conventional devices have problems with temperature control, making it difficult to obtain a thin film of uniform thickness with high precision.

また上記のように、大きな摩1察抵抗により摩1察熱が
発生ずる摺動部には、摩擦抵抗を極力減するべく、各種
の潤滑剤や、金ボール、銀ボール等を用いるヘアリング
が使用されたりするが、前者にあっては潤滑剤が真空チ
ャンバー内に揮散して薄膜中に不純物が混入する問題点
があり、後者にあっては装置が極めて高価となる問題点
がある。
In addition, as mentioned above, in order to reduce frictional resistance as much as possible, hair rings using various lubricants and gold balls, silver balls, etc. are applied to sliding parts where frictional heat is generated due to large frictional resistance. However, the former method has the problem that the lubricant evaporates into the vacuum chamber and impurities are mixed into the thin film, and the latter method has the problem that the equipment is extremely expensive.

以上のように、CVD装置およびRIE装置における真
空チャンバー内での基板のIB送機構には種々の問題点
がある。
As described above, the IB transport mechanism for substrates within the vacuum chamber in CVD apparatuses and RIE apparatuses has various problems.

(発明の概要) 本発明は上記様々の問題点を解消すべくなされたもので
あり、その目的とするところは、基板を載置搬送する搬
送体を、真空チャンバー外部から作用する磁気力によっ
て浮上させて搬送する機構を採用することによって、摺
動部のない無接触方式とすることができ、したがって摩
擦熱の発生がなく正確な温度制御が可能となり、かつ、
パーティクルの発生がなく所望の均一な厚さの良好な薄
膜を得ることができる半導体製造装置を提供するにあり
、その特徴は、真空チャンバーと、該真空チャンバー内
への基板のl股出入機構とを具備する半導体製造装置に
おいて、前記基板の搬出入機構は、前記真空チャンバー
の下方に配置されるとともに、正負の電流が交互に通じ
られて、電流の磁気作用を真空チャンバー内に及ぼすコ
イルと、前記コイルからの磁気作用によって真空チャン
バー内で浮上される、強磁性体から成る1B送体と、前
記真空チャンバーの両側方に、前記浮上する1M送体を
挟んで配置され、適宜機構によって真空チャンバーに沿
って移動されることによって前記浮上している搬送体を
吸引力によって真空ヂャンハー内を移動させる磁石とで
構成されているところにある。
(Summary of the Invention) The present invention has been made to solve the various problems mentioned above, and its purpose is to levitate a carrier that carries and carries a substrate by magnetic force applied from outside the vacuum chamber. By adopting a mechanism that transports the material by moving it, it is possible to use a non-contact method with no sliding parts, which eliminates the generation of frictional heat and enables accurate temperature control.
The purpose of the present invention is to provide a semiconductor manufacturing apparatus capable of obtaining a good thin film with a desired uniform thickness without generating particles, and its features include a vacuum chamber, a mechanism for moving a substrate in and out of the vacuum chamber, and In the semiconductor manufacturing apparatus, the substrate loading/unloading mechanism includes a coil disposed below the vacuum chamber, through which positive and negative currents are alternately passed to exert a magnetic effect of the current inside the vacuum chamber; A 1B sending body made of a ferromagnetic material is levitated within the vacuum chamber by the magnetic action from the coil, and the floating 1M sending body is placed on both sides of the vacuum chamber, and the vacuum chamber is suspended by an appropriate mechanism. and a magnet that moves the floating conveyor within the vacuum chamber by means of an attractive force.

(実施例) 以下本発明の好適な実施例を添付図面に基づいて詳細に
説明する。
(Embodiments) Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明装置の概要を示す正面図、第2図はその
平面図を示す。
FIG. 1 is a front view showing an outline of the apparatus of the present invention, and FIG. 2 is a plan view thereof.

全体符号10は反応筒、12はその真空チャンバーであ
り、その前後にはそれぞれ第1の予備真空室14、第2
の予備真空室16が接続されてい −る。
The overall reference numeral 10 is a reaction tube, 12 is a vacuum chamber thereof, and a first preparatory vacuum chamber 14 and a second preliminary vacuum chamber 14 are provided before and after the reaction tube, respectively.
A preliminary vacuum chamber 16 is connected.

真空チャンバー12と第1、第2の予備真空室14.1
6とはそれぞれ隔壁18.20、端面壁22.24で気
密に仕切られている。各隔壁1B、20および各端面壁
22.24には、第3図に示すように、後記する搬送体
およびこれに載置する基板が通過しうる所定の大きさの
透孔26が開口され、この透孔26には透孔を開閉自在
に蝶弁28.30.32.34が嵌合されている。36
はその回動軸で、外部から正逆モータ38によって駆動
される。
Vacuum chamber 12 and first and second preliminary vacuum chambers 14.1
6 are airtightly partitioned from each other by partition walls 18, 20 and end walls 22, 24, respectively. As shown in FIG. 3, each partition wall 1B, 20 and each end wall 22.24 are provided with a through hole 26 of a predetermined size through which a carrier described later and a substrate placed thereon can pass. Butterfly valves 28, 30, 32, and 34 are fitted into the through hole 26 so as to be able to open and close the through hole. 36
is its rotation axis, which is driven from the outside by a forward/reverse motor 38.

40は真空形成用の吸引パイプであり、真空チャンハー
12、第1、第2予備真空室14.16にそれぞれ設け
られている。
Reference numeral 40 denotes a suction pipe for forming a vacuum, which is provided in the vacuum chamber 12 and the first and second preliminary vacuum chambers 14 and 16, respectively.

42は浮上刃形成用のコイルであり、真空チャンバー1
2、第1、第2予備真空室14.16の下方に配置され
ている。44ばコイル42に通電する電源装置であり、
第5図(b)に示すような正負のパルス電源をコイル4
2に通ずる。
42 is a coil for forming floating blades, and the vacuum chamber 1
2, located below the first and second preliminary vacuum chambers 14.16. 44 is a power supply device that energizes the coil 42;
A positive and negative pulse power source as shown in Fig. 5(b) is connected to the coil 4.
Leads to 2.

46は強磁性体から成る板状の1般送体であり、薄膜を
気相成長させる基板48を載置するサセプタの役目を兼
用する。
Reference numeral 46 denotes a plate-shaped general feeder made of a ferromagnetic material, which also serves as a susceptor on which a substrate 48 on which a thin film is grown in vapor phase is placed.

上記コイル42に通電されると、コイル42周辺に磁界
が生じ、この磁界によって強磁性体から成る搬送体46
が磁化される。これによって搬送体46にはコイル42
と逆の磁極が生じ、相互に吸引力が及ぼされることとな
る。次いでコイル42に逆向きの電流が通電されると、
コイルの磁極は上記と逆になる。そして搬送体46には
上記と逆向きの磁界が作用するが、1ull送体46の
磁極は残留磁気によって直ちに逆向きとはならず、磁化
の強さが零になるまでは、コイル42の磁極と同じ磁極
が対向して生じているから、この間は搬送体46がコイ
ル42から反発力を受けて浮」二する。
When the coil 42 is energized, a magnetic field is generated around the coil 42, and this magnetic field causes the carrier body 46 made of a ferromagnetic material to
becomes magnetized. As a result, the coil 42 is attached to the carrier 46.
Opposite magnetic poles are generated, and mutual attraction is exerted. Next, when a reverse current is applied to the coil 42,
The magnetic poles of the coil are opposite to those above. A magnetic field in the opposite direction to that described above acts on the carrier 46, but the magnetic pole of the 1ull carrier 46 does not immediately reverse due to residual magnetism, and until the strength of magnetization becomes zero, the magnetic pole of the coil 42 Since the same magnetic poles are facing each other, during this time the carrier 46 receives a repulsive force from the coil 42 and floats.

さらに継続して逆向きの磁界が作用すると今度は搬送体
46の磁極が切り換わり、急激に逆方向に磁化される。
When the magnetic field in the opposite direction continues to act, the magnetic pole of the carrier 46 is switched, and the carrier 46 is rapidly magnetized in the opposite direction.

この間は上述と同じように搬送体46はコイル42に対
して相互に吸引力を及ぼされるが、はとんど瞬間的に磁
極の強さが飽和近くに達し、実際上はほとんど吸引力が
作用されない。すなわち磁化の強さが飽和近くに達した
後直ちにコイル42への通電の方向を切り変えると、今
度は前述と同様に残留磁気の影響によって浮上刃が作用
する方向に切り換わるからである。このように浮」二カ
が支配的に作用するためには、強磁性体から成る搬送体
46として、第4図に示すように、磁化の速さに比して
消磁の速さが遅い強磁性材料を用いる必要がある。
During this time, the carrier 46 exerts a mutual attraction force on the coil 42 as described above, but the strength of the magnetic pole almost instantaneously reaches saturation, and in reality, almost no attraction force is applied. Not done. That is, if the direction of energization to the coil 42 is changed immediately after the strength of magnetization reaches near saturation, the direction will be changed to the direction in which the floating blade acts due to the influence of residual magnetism, as described above. In order for the floating force to act dominantly in this way, as shown in FIG. It is necessary to use magnetic materials.

第5図は、強磁性体から成る搬送体46の経時的な磁化
の強さの変化と、コイル42への通電パルスとを模式的
に示したものである。
FIG. 5 schematically shows changes over time in the magnetization strength of the carrier 46 made of a ferromagnetic material and the current pulse applied to the coil 42.

再び第1図および第2図において、50は搬送体46を
吸引して移動させるための永久磁石である。該永久磁石
50は、反応筒10の両側方に反応筒10の器壁に沿う
ようにループ状に配した非磁性体から成るガイドレール
52上を移動自在に設けられ、前記のごとく反応筒10
内で浮上している搬送体46を移動する。すなわち、本
実施例においては、lid送体46が、各予備真空室1
4.16および真空チャンバー12内に5個ずつ並ぶよ
うに設定されているが、永久磁石50は、この各室12
.14.16のそれぞれの搬送体46の両側方に対応位
置するように設けられ、永久磁石50がガイドレール5
2上を動くことによって、各搬送体46はその両側に位
置する永久磁石50に吸引されつつ移動する。各室12
.14.16に対応する永久磁石(本実施例においては
5個連結1組)は、各群ごとに移動が可能となっている
Referring again to FIGS. 1 and 2, 50 is a permanent magnet for attracting and moving the carrier 46. The permanent magnets 50 are movably provided on guide rails 52 made of non-magnetic material arranged in a loop along the walls of the reaction tube 10 on both sides of the reaction tube 10, and as described above,
The carrier 46 floating inside is moved. That is, in this embodiment, the lid feeder 46 is connected to each preliminary vacuum chamber 1.
4.16 and five permanent magnets 50 are lined up in each vacuum chamber 12.
.. Permanent magnets 50 are provided at corresponding positions on both sides of each of the transport bodies 46 of 14 and 16, and permanent magnets 50
2, each carrier 46 moves while being attracted by permanent magnets 50 located on both sides thereof. Each room 12
.. The permanent magnets corresponding to 14 and 16 (in this example, 5 pieces connected in 1 set) are movable for each group.

この永久磁石群自体の移動は、例えばガイドレール52
に刻設したランクに歯合して自走する自走式小型モータ
等(図示せず)によって行うことができる。
The movement of this permanent magnet group itself is controlled by, for example, the guide rail 52.
This can be carried out by a self-propelled small motor (not shown) that is self-propelled in mesh with a rank carved in the plate.

54は第1の予備真空室14内に搬送体46を搬入する
搬入装置であり、2本の支持体56上に搬送体46を載
せて第1の予備真空室14内に搬入する。
Reference numeral 54 denotes a carrying device for carrying the carrier 46 into the first preliminary vacuum chamber 14 , and the carrier 46 is placed on two supports 56 and carried into the first preliminary vacuum chamber 14 .

58は、搬出コンヘアであり、第2の予備真空室16か
ら搬送体46を搬出するものである。
Reference numeral 58 denotes an unloading conveyor, which unloads the carrier 46 from the second preliminary vacuum chamber 16.

ナオ、図示シないが真空チャンバー12には反応ガス導
入パイプ、排気パイプが接続され、またランプ加熱等の
必要な加熱源が設けられている。
Although not shown, the vacuum chamber 12 is connected to a reaction gas introduction pipe and an exhaust pipe, and is also provided with a necessary heat source such as lamp heating.

本発明は以上のように構成されている。The present invention is configured as described above.

続いてその動作について説明する。Next, its operation will be explained.

まず処理すべき基板48をのせた1般送体46を、搬入
装置54の支持体56上に所定数列置する。
First, a predetermined number of general carriers 46 carrying substrates 48 to be processed are placed on the support 56 of the carry-in device 54.

次いで1般入装置54を駆動して支持体56」二に列置
した(搬送体46が第1の予備真空室14内に位置する
ようにする。このとき、前述の永久磁石5゜の影響を受
けないように、永久磁石5oも搬送体46の動きに追随
して移動されるものである。なおこの第1の予備真空室
14内に1ull送体46がllli人されている間に
真空チャンバー12内では先行する基板4日上への気相
成長工程が行われ、また第2の予備真空室16内のすで
に気相成長が完了したものは搬出コンヘア58」二に移
送される。この点についてはさらに後述する。
Next, the first general entry device 54 was driven to align the support body 56'' (so that the conveyance body 46 was located inside the first preliminary vacuum chamber 14. At this time, the effect of the above-mentioned permanent magnet 5° The permanent magnet 5o is also moved following the movement of the carrier 46 so as not to be affected by the vacuum. In the chamber 12, a vapor phase growth process is performed on the preceding substrate, and the vapor phase growth process in the second preparatory vacuum chamber 16 is transferred to an unloading container 58. This point will be discussed further later.

上記のように第1の予備真空室14内に搬入された搬送
体46は、前記したようにコイル42の作用によって支
持体56」二から浮上するようになる。この状態で搬入
装置54が後退し、支持体56が第1の予備真空室14
外に出、次いで蝶弁28が閉しられ、真空装置によって
第1の予備真空室14内が減圧され待機状態となる。真
空チャンバー12内での先行するものの気相反応工程が
終了したならば、蝶弁30、蝶弁32が開放されて、対
応する永久磁石50が移動されることによって、第1の
予備真空室I4内の搬送体46がチャンバー12内に、
真空チャンバー12内の搬送体46が第2の予備真空室
16内に基板48をのせたまま移送される。次いで蝶弁
30、蝶弁32が閉じられ、真空チャンバー12内で新
たな気相成長工程が行われる。第1の予備真空室14に
は、蝶弁28が開放されて、前述のごとく次のサイクル
の搬送体46が搬入される。第2の予備真空室16内に
搬入された搬送体46は、蝶弁34が開放され、対応す
る永久磁石50が移動されることによって、搬出コンベ
ヤ58上に移入される。ここで搬送体46を両側方から
吸引支持する一対の永久磁石50が、第2図のごとくル
ープ状のガイドレール52に沿って各々移動して両側方
に離反するとともに、コイル42からの浮上刃が作用す
る範囲外となることによって、搬送体46が1111出
コンベヤ58上に移載され、搬送コンベヤ58によって
次々に移送される。次いで蝶弁34が閉じられ真空装置
によって第2の予備真空室16内が減圧されて待機状態
となるのである。
The carrier 46 carried into the first preparatory vacuum chamber 14 as described above floats from the support 56'' by the action of the coil 42 as described above. In this state, the carry-in device 54 is retracted, and the support body 56 is moved to the first preliminary vacuum chamber 14.
After going outside, the butterfly valve 28 is closed, and the pressure inside the first preliminary vacuum chamber 14 is reduced by the vacuum device to enter a standby state. When the preceding gas phase reaction process in the vacuum chamber 12 is completed, the butterfly valves 30 and 32 are opened and the corresponding permanent magnets 50 are moved, thereby opening the first preliminary vacuum chamber I4. The inner carrier 46 is in the chamber 12,
The carrier 46 in the vacuum chamber 12 is transferred into the second preliminary vacuum chamber 16 with the substrate 48 placed thereon. Next, the butterfly valves 30 and 32 are closed, and a new vapor phase growth process is performed within the vacuum chamber 12. The butterfly valve 28 is opened and the carrier 46 for the next cycle is carried into the first preliminary vacuum chamber 14 as described above. The carrier 46 carried into the second preliminary vacuum chamber 16 is transferred onto the discharge conveyor 58 by opening the butterfly valve 34 and moving the corresponding permanent magnet 50. Here, a pair of permanent magnets 50 that attract and support the carrier 46 from both sides move along the loop-shaped guide rails 52 and separate from both sides as shown in FIG. When the conveyance body 46 is out of the range in which it acts, the conveyance body 46 is transferred onto the 1111 output conveyor 58 and is conveyed one after another by the conveyance conveyor 58. Next, the butterfly valve 34 is closed, and the pressure inside the second preliminary vacuum chamber 16 is reduced by the vacuum device, resulting in a standby state.

(発明の効果) 以上のように本発明によれば、基板を載置Ill送する
1ull送体を、真空チャンバー外部から作用する磁気
力によって浮上させて搬送する機構を採用したから、摺
動部のない無接触方式とすることができ、したがって摩
擦熱の発生がなく正確な温度制御が可能となり、所望の
均一な厚さの薄膜の気相成長が行える。また摺動部がな
いから、部材の摺動による異物の発生がなく、緒特性に
優れる薄膜の気相成長が可能となる。
(Effects of the Invention) As described above, according to the present invention, since a mechanism is adopted in which the 1ull conveyor on which the substrate is placed and conveyed is levitated and conveyed by magnetic force applied from outside the vacuum chamber, the sliding portion Therefore, there is no generation of frictional heat, and accurate temperature control is possible, allowing vapor phase growth of a thin film with a desired uniform thickness. Furthermore, since there is no sliding part, there is no generation of foreign matter due to sliding of members, and it is possible to vapor-phase grow a thin film with excellent properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一例を示す正面図、第2図はその
平面図である。第3図は蝶弁の構造を示す説明図、第4
図は搬送体として用いる強磁性体のヒステリシス曲線を
示す。 また、第5図はillll送磁化の経時変化とコイルに
印加するパルス電流との関係を示すグラフである。 10・・・反応筒、  12・・・真空チャンバー、 
14.16・・・予備真空室、 18.20・・・隔壁、 22.24・・・端面壁、 
26・・・透孔、 2B、30.32.34・・・蝶弁
、 36・・・回動軸、 38・・・正逆モータ、 4
0・・・吸引パイプ、42・・・コイル、 44・・・
電源装置、46・・・搬送体、 48・・・基板、50
・・・永久磁石、 52・・・ガイドレール、54・・
・搬入装置、 56・・・支持体、58・・・搬出コン
ベヤ。
FIG. 1 is a front view showing an example of the apparatus of the present invention, and FIG. 2 is a plan view thereof. Figure 3 is an explanatory diagram showing the structure of the butterfly valve, Figure 4
The figure shows the hysteresis curve of a ferromagnetic material used as a carrier. Furthermore, FIG. 5 is a graph showing the relationship between the change in magnetization over time and the pulse current applied to the coil. 10... Reaction tube, 12... Vacuum chamber,
14.16... Preliminary vacuum chamber, 18.20... Partition wall, 22.24... End wall,
26...Through hole, 2B, 30.32.34...Butterfly valve, 36...Rotation shaft, 38...Forward/reverse motor, 4
0... Suction pipe, 42... Coil, 44...
Power supply device, 46... Carrier, 48... Board, 50
...Permanent magnet, 52...Guide rail, 54...
- Carrying-in device, 56... Support body, 58... Carrying-out conveyor.

Claims (1)

【特許請求の範囲】 1、真空チャンバーと、該真空チャンバー内への基板の
搬出入機構とを具備する半導体製造装置において、 前記基板の搬出入機構は、 前記真空チャンバーの下方に配置されると ともに、正負の電流が交互に通じられて、電流の磁気作
用を真空チャンバー内に及ぼすコイルと、 前記コイルからの磁気作用によって真空チ ャンバー内で浮上される、強磁性体から成る搬送体と、 前記真空チャンバーの両側方に、前記浮上 する搬送体を挟んで配置され、適宜機構によって真空チ
ャンバーに沿って移動されることによって前記浮上して
いる搬送体を吸引力によって真空チャンバー内を移動さ
せる磁石とで構成されていることを特徴とする半導体製
造装置。
[Claims] 1. A semiconductor manufacturing apparatus comprising a vacuum chamber and a mechanism for transporting a substrate into and out of the vacuum chamber, wherein the mechanism for transporting a substrate into and out of the vacuum chamber is disposed below the vacuum chamber; , a coil through which positive and negative currents are passed alternately to exert the magnetic action of the current in the vacuum chamber; a carrier made of a ferromagnetic material and levitated within the vacuum chamber by the magnetic action from the coil; and the vacuum Magnets are disposed on both sides of the chamber to sandwich the floating carrier, and are moved along the vacuum chamber by an appropriate mechanism to move the floating carrier within the vacuum chamber by an attractive force. 1. A semiconductor manufacturing device comprising:
JP8333185A 1985-04-17 1985-04-17 Manufacturing equipment for semiconductor Pending JPS61240647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8333185A JPS61240647A (en) 1985-04-17 1985-04-17 Manufacturing equipment for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8333185A JPS61240647A (en) 1985-04-17 1985-04-17 Manufacturing equipment for semiconductor

Publications (1)

Publication Number Publication Date
JPS61240647A true JPS61240647A (en) 1986-10-25

Family

ID=13799444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8333185A Pending JPS61240647A (en) 1985-04-17 1985-04-17 Manufacturing equipment for semiconductor

Country Status (1)

Country Link
JP (1) JPS61240647A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309049A (en) * 1991-08-05 1994-05-03 Mitsubishi Jukogyo Kabushiki Kaisha Alternating current magnetic levitation transport system
KR100541887B1 (en) * 2003-07-22 2006-01-11 엔티엠 주식회사 Fabrication apparatus of semiconductor and display with particulate elimination function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752149A (en) * 1980-09-16 1982-03-27 Hitachi Ltd Conveying device for wafer
JPS57135037A (en) * 1981-02-13 1982-08-20 Hitachi Ltd Mechanism for introducing linear motion in vacuum
JPS60107451A (en) * 1983-11-17 1985-06-12 株式会社東芝 Transporter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752149A (en) * 1980-09-16 1982-03-27 Hitachi Ltd Conveying device for wafer
JPS57135037A (en) * 1981-02-13 1982-08-20 Hitachi Ltd Mechanism for introducing linear motion in vacuum
JPS60107451A (en) * 1983-11-17 1985-06-12 株式会社東芝 Transporter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309049A (en) * 1991-08-05 1994-05-03 Mitsubishi Jukogyo Kabushiki Kaisha Alternating current magnetic levitation transport system
KR100541887B1 (en) * 2003-07-22 2006-01-11 엔티엠 주식회사 Fabrication apparatus of semiconductor and display with particulate elimination function

Similar Documents

Publication Publication Date Title
US5810549A (en) Independent linear dual-blade robot and method for transferring wafers
JPH0419081A (en) In-vacuum conveyor robot
JP2002516243A (en) Substrate transfer shuttle with magnetic drive
JPH10238U (en) Transport equipment for wafer processing line
JP2008512810A (en) Substrate processing system
JPS6036222A (en) Article conveying device under high-vaccum
TWI687533B (en) Apparatus for vacuum processing of a substrate, system for the manufacture of devices having organic materials, and method for sealing an opening connecting two pressure regions
JPH0446781A (en) Magnetic levitation type carrying robot in vacuum
JPS61240647A (en) Manufacturing equipment for semiconductor
JPS60227439A (en) Transporting device
JPH0649529B2 (en) Transfer method of objects in vacuum chamber
JPH03223021A (en) Carrier device used in special environment
JPS60261302A (en) Article conveyor in high vacuum
CN214269374U (en) Vacuum sample driving device
JPS62264128A (en) Wafer conveying device
JPS6392205A (en) Carrier equipment for magnetic levitation for vacuum apparatus
JPH0489717A (en) Carrying device used in special environment
JPH0410553A (en) Semiconductor substrate transfer chucking device, susceptor, and non-contact clean transfer device
JP2001233450A (en) Lateral conveying mechanism
JPH05122807A (en) Conveyor
JPS63288808A (en) Conveyor device
JPH07117849A (en) Magnetic levitation conveying device
JPH04267355A (en) Wafer conveying robot
JPH01299119A (en) Magnetically floated material conveyor
JPH0739015A (en) Conveyance device